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Abstract  We propose a dynamic program to find the shortest path in a network having gamma 
probability distributions as arc lengths. Two operators of sum and comparison need to be adapted for 
the proposed dynamic program. Convolution approach is used to sum two gamma probability 
distributions being employed in the dynamic program.  
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1 Introduction  
 
Deterministic, time-dependent shortest path problems have been widely studied for the case of 
determining a single shortest path. If the arc lengths are constant, there are several efficient 
algorithms developed by [1,2,3]. Cook and Halsey [4] extended Bellman’s principle of 
optimality for dynamic programming (1958) to this case and Dreyfus (1969) suggested the 
use of Dijkstra’s algorithm (1959) for determining time-dependent shortest paths. Halpern [5] 
noted the limitations of the approach of Dreyfus (1969). It should be noted that the standard 
shortest path algorithms also have been found to be applicable to compute shortest paths in 
time-dependent but not stochastic networks [6, 7, 8, 9]. 

Kaufman et al., [10] subsequently studied the assumptions under which the existing time-
dependent shortest path problems algorithms would work, and showed that if the link-delays 
follow the first-in-first-out (FIFO) rule or consistency assumption, then one could use an 
expanded static network to obtain optimal paths. Malandraki [11] analyzed the time-
dependent shortest path problem and extended Halpern’s result for the special case of 
differentiable link delay functions and showed that the consistency assumption would be 
satisfied by verifying that the first derivative of the link delay function did not exceed 
negative unity. 

Ziliaskopoulos and Mahmassani [12] noted that turning movements of vehicles in 
congested urban networks contribute significantly to the travel time. The authors prescribed 
an efficient label-correcting procedure that uses an extended forward-star structure to 
represent the network including intersection movements and movement prohibitions. Chen 
and Tang [13] analyzed a shortest path problem on a mixed-schedule network, subject to side 
constraints. Haquari and Dejax [14] analyzed a similar problem, considering time-varying 
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costs and knapsack-like constraints. However, due to failure, maintenance or other reasons, 
different kinds of uncertainties are frequently encountered in practice, and must be taken into 
account. For example, the lengths of the arcs are assumed to represent transportation time or 
cost rather than the geographical distances, as time or cost fluctuate with traffic or weather 
conditions, payload and so on, it is not practical to consider each arc as a deterministic value. 
In these cases, probability theory has been used to attack randomness, and many researchers 
have done lots of work on stochastic shortest path problem. 

When arc lengths are random variables, the problem will become more difficult. Frank 
[15] computed the probability that the time of the shortest path of the network is smaller than 
a specific value where link travel times are random variables but not time dependent. Loui 
[16], Mirchandani and Soroush [17], and Murthy and Sarkar [18] showed that for identifying 
the expected shortest path if the random link travel times are replaced by their expected 
values, then the problem simply reduces to a deterministic shortest path problem and standard 
shortest path algorithms still can be used to find the expected shortest paths in a network. 
Wijerante et al. [19] presented a method to find the set of non-dominated paths from the 
source node to the sink node, in which each arc includes several criteria that some of them 
might be stochastic. Carraway et al. [20] applied the method of generalized dynamic 
programming to find the optimal path of a bicriteria network. Hall [21] studies for the first 
time the time-dependent version of the shortest path problem. He demonstrated that the 
standard shortest path algorithm may fail to find the expected shortest path in these networks. 
Hall proposed an optimal dynamic programming based algorithm to find the shortest paths 
and this algorithm was demonstrated on a small transit network example. He showed that the 
optimal ‘‘route choice’’ is not a simple path but an adaptive decision rule. The best route from 
any given node to the final destination depends on the arrival time at that node. The paper 
only considers the case where link travel times are modeled as discrete-time stochastic 
processes. 

Fu [22] studied the expected shortest paths in dynamic and stochastic networks in a 
traffic network where the link travel times are modeled as a continuous-time stochastic 
process. He showed that the replacement of the probability distribution for link delays by their 
expected values would yield sub-optimal results and prescribed a dynamic programming 
algorithm to solve the problem using conditional probability theory. Kaufman and Smith [10] 
subsequently showed that the time-space network formulation and expected link delays could 
be used to solve the problem if the consistency assumption is satisfied. Fan et al. [23] 
minimize expected travel time from any origin to a specific destination in a congestible 
network with correlated link costs. Bertsimas and Van Ryzin [24] introduced and analyzed a 
model for stochastic and dynamic vehicle routing, in which a single, uncapacitated vehicle 
traveling at a constant velocity in a Euclidean region must serve demands whose time of 
arrival, location and on-site service are stochastic. [25] extended this analysis and considered 
the problem of m identical vehicles with unlimited capacity. 

Miller et al. [26] prescribed an efficient label correcting algorithm to obtain Pareto 
optimal paths by discretizing the probability distribution of the link delays. Psaraftis and 
Tsitsiklis [27] examined shortest path problems, in which arc costs are the known functions of 
certain environmental variables at network nodes, and each of these variables evolves 
according to an independent Markov process. The vehicle can wait at a node in anticipation of 
more favorable arc costs. They showed that the optimal policy essentially classifies the state 
of the environmental variable at a node into two categories: green states for which the optimal 
action is to immediately traverse the arc, and red states for which the optimal action is to wait. 
Then they extended these concepts for the entire network by developing a dynamic 
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programming, which solves the corresponding problem. Ji [28] studied the shortest path 
problem with stochastic arc length. According to different decision criteria and presented 
three types of models, In order to solve these models, a hybrid intelligent algorithm 
integrating stochastic simulation and genetic algorithm has been developed. 
 
 
2 Problem definition 
 
Consider a network as shown in Figure 1 consisting of a finite set of nodes and arcs of the 
directed acyclic network. We assume that the admissible paths are always continuous and 
always move toward the right, and the length of each arc is a gamma random variable. We 
want to find the shortest path from the source node 1 to the sink node N using the backward 
dynamic programming approach. 
 

 
 
Fig. 1 A network with same rate parameter gamma distribution  
 
 
The optimal value function iS  can be defined by 

iS = the distribution of the shortest path from node i to node N. 
Then the recurrence relation can be stated as  
 

 jijiji SdS 


min                    For    i = N-1,…1       (1) 

 
and the boundary condition is .0NS  

In this paper we use convolution to find distribution of sum of two gamma distributions 
in each stage. And for comparison in each stage we find the probability that a random variable 
with first distribution become smaller than another random variable with second distribution. 

In order to show the operation in each stage, we first represent the convolution and 
comparison between two gamma distributions with same rate parameter, and then we show 
the convolution and comparison between two gamma distributions with different rate 
parameter. 
 
Definition 1. Let X and Y be two continuous random variables with density functions f(x) and 
g(y), respectively. Assume that both f(x) and g(y) are defined for all real numbers. Then the 
convolution f *g of f and g is the function given by 
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(݂ ∗ (ݖ) (݃ =  න ݖ)݃ (ݔ)݂ − (ݔ
ା∞

ି∞
 ݔ݀ 

           =  න ݂
ା∞

ି∞
ݖ) −  ݕ݀ (ݕ)݃ (ݕ

 
Theorem 1. Let X and Y be two independent random variables with density functions fX(x) 
and fY(y) defined for all x. Then the sum Z = X +Y is a random variable with density function 
fZ(z), where fZ is the convolution of fX and fY . 
 

௭݂ (ݖ)  =  ∫ ݂,
ା∞

ି∞ ,ݔ) ݖ −  (2) ݔ݀ (ݔ

=  න ݂,

ା∞

ି∞
ݖ) − ,ݕ  ݕ݀ (ݕ

  
 
Proof. as we knew the joint density function of independent variables is equal to the products 
of their density functions therefore to find density function of Z = X + Y we apply cumulative 
distribution function technique. 
 

ܲ(ܼ ≤ (ݖ =  ܲ(ܺ + ܻ ≤ (ݖ =  න ܲ(ܺ + ܻ ≤ ܺ|ݖ = �(ݔ
ା∞

ି∞

 ݂(ݔ) 

=  න ݔ)ܲ + ݕ ≤ (ݖ
ା∞

ି∞

 ݂(ݔ) ݀ݔ = න ݖ)ܨ −  ( ݔ
ା∞

ି∞

݂(ݔ) ݀ݔ 

 
Now, we set partial derivative to obtain the summation density function 
 

݂ (ݖ)  =  
(ݖ) ܨ݀

ݖ݀ =  
݀

 ݖ݀ න ݖ)ܨ − ( ݔ
ା∞

ି∞

 ݂(ݔ)݀ݔ 

=  න
ݖ)ܨ݀ − ( ݔ

ݖ݀  
ା∞

ି∞

 ݂(ݔ)݀ݔ =  න ݂(ݖ −  (ݔ
ା∞

ି∞

 ݂(ݔ)݀ݔ 

 
 
2.1 Sum of two independent gamma random variables with same rate parameter 
 
Suppose that we have two random variables X and Y with a gamma density function with 
parameter λ>0 and α>0. We represent the density function of Z = X + Y as follows  
 

݂ (ݔ)  =  
ఈభߣ

Γ(ߙଵ) ఈభିଵ݁ିఒ௫ݔ ݔ               ≥ 0 , 

݂ (ݕ)  =  
ఈమߣ

Γ(ߙଶ) ఈమିଵ݁ିఒ௬ݕ ݕ               ≥ 0. 
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݂(ݖ) = න ݂(ݖ −  ݔ݀ (ݔ)݂ (ݔ
ା∞

ିஶ

 

= න
ఈమߣ

Γ(ߙଶ) ݖ) − ఈమିଵ݁ିఒ(௭ି௫)(ݔ  
ఈభߣ

Γ(ߙଵ) ఈభିଵ݁ିఒ௫ݔ   ݔ݀ 
௭



 

= ఒഀభశ ഀమ

Γ(ఈభା ఈమ)
ఈభା ఈమିଵ݁ିఒ௭ݖ       (3) 

 
 
As a result, if X1, X2,…, Xn are independent gamma random variables with (α1,λ), (α2,λ),…, 

(αn,λ) then 



n

i
iXY

1

 follows gamma distribution with   and 



n

i
i

1
 . 

 

݂(ݕ) = ݊ߙ+⋯+1ߙߣ 

Γ(݊ߙ +⋯+1ߙ)  (4)      ݔߣି݁ 1−݊ߙ+⋯+1ߙݔ 
 
 
2.2 Sum of independent gamma random variables with different rate parameter 
 
Suppose that we have two random variables X1, X2,…, Xn with a gamma density function with 

parameter (α1,λ1), (α2,λ2),…, (αn,λn). We represent the density function of 



n

i
iXY

1

as 

follows 
 

݂(ݕ) = ఈభା⋯ାఈିଵݕ ܥ  ∫ …ଵ
 ∫ ݁ି௬ߣభ…,ߣ(ೠభ,…,ೠషభ)ଵ

 ఈభ,…,ఈܤ
,ଵݑ) … , ଵݑ݀(ିଵݑ …  ିଵ   (5)ݑ݀

  
For all x>0 and ݂(ݕ) = 0 for all ݔ ≤ 0, where 
 

ܥ =  ఒభ
ഀభ  ఒమ

ഀమ…ఒ
ഀ

(݊ߙ+⋯+1ߙ)
                              (6) 

 
and 
 
ఒభ…,ఒ(௨భ,…,௨షభ)ܥ ∶= ଵߣ   ∏ ݑ

ିଵ
ୀଵ +  ∑ ߣ

ିଵ
ୀଶ ൫1 − ∏ ൯ݑ ݑ

ିଵ
ୀ +  (1ߣ  −  ିଵ)      (7)ݑ

 
and 
 
ఈభ,…,ఈܤ

,ଵݑ) … , (ିଵݑ  ∶=  ଵ
(ఈభ,…,ఈ)

 ∏ ݑ
ఈభା⋯ାఈିଵିଵ

ୀଵ (1 −  )ఈೕశభିଵ    (8)ݑ
 
For all ݑଵ , … , ିଵݑ ∈  [0,1]. 
 
See (Akkuchi, 2005). 
 

Now we illustrate the method that we use to find minimum between two gamma random 
variables. In order to find the minimum random variable we compute the probability that the 
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first random variable X1 with gamma density function with (α1,λ1) became smaller than the 
second random variable X2 with gamma  density function with (α2,λ2). 
 

ܲ( ଵܺ < ܺଶ) =  න ܲ( ଵܺ < ܺଶ| ଵܺ = ଵ) .  ௫݂భݔ
 ଵݔ݀ (ଵݔ)

ஶ


 

=  න න
ଶߣ

ఈమ

Γ(ߙଶ) ଶݔ
ఈమିଵ݁ିఒమ௫మ

∞

௫భ

.
ଵߣ

ఈభ

Γ(ߙଵ) ଵݔ
ఈభିଵ݁ିఒభ௫భ  ݀

∞


 ଵݔ݀ ଶݔ

 
 
3 A numerical example 
 
Consider the network depicted in Figure 1. We want to obtain the shortest path from node 1 to 
node 6 where arcs have gamma distribution with same rate parameter. 
Boundary condition is S6 = 0. 
Using the recurrence relation (1) we have  
 
ܵହ = ସܵ ,(4,4)ܽ݉݉ܽܩ =  (5,4)ܽ݉݉ܽܩ
 
For each arc that doesn’t exist in network we replace infinity for dij in relation (1). 
 

ܵଷ = ݉݅݊ (7,4)ܽ݉݉ܽܩ + ܵସ
(1,4)ܽ݉݉ܽܩ + ܵହ

൨ =  ݉݅݊ 
(7,4)ܽ݉݉ܽܩ + (5,4)ܽ݉݉ܽܩ
(1,4)ܽ݉݉ܽܩ + ൨(4,4)ܽ݉݉ܽܩ

= ݉݅݊ (12,4)ܽ݉݉ܽܩ
(5,4)ܽ݉݉ܽܩ ൨ 

 
We find the minimum value between two density function as follows 
 

ܲ( ଵܺ < ܺଶ) =  න ܲ( ଵܺ < ܺଶ| ଵܺ = ଵ) .  ௫݂భݔ
 ଵݔ݀ (ଵݔ)

ஶ


 

=  න න
ఈమߣ

Γ(ߙଶ) ଶݔ
ఈమିଵ݁ିఒ௫మ

∞

௫భ

.
ఈభߣ

Γ(ߙଵ) ଵݔ
ఈభିଵ݁ିఒ௫భ  ݀

∞


ଵݔ݀ ଶݔ =  

= න න
4ହ

4! ଶݔ
ସ݁ିସ௫మ

∞

௫భ

.
4ଵଶ

11! ଵݔ
ଵଵ݁ିସ௫భ  ݀

∞


ଵݔ݀ ଶݔ = 0.038 

  
With probability 0.038 the first density function is smaller than the second, so we choose the 
second density function as minimum. 
 
ܵଷ =  (5,4)ܽ݉݉ܽܩ
 
We illustrate the operation of node 2 as follows 
 

ܵଶ = ݉݅݊ (2,4)ܽ݉݉ܽܩ + ܵସ
(6,4)ܽ݉݉ܽܩ + ܵହ

൨ =  ݉݅݊ (2,4)ܽ݉݉ܽܩ + (5,4)ܽ݉݉ܽܩ
(6,4)ܽ݉݉ܽܩ + ൨(4,4)ܽ݉݉ܽܩ

= ݉݅݊  (7,4)ܽ݉݉ܽܩ
 ൨(10,4)ܽ݉݉ܽܩ
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and too finding minimum value we have 
 
ܲ( ଵܺ < ܺଶ) =  න ܲ( ଵܺ < ܺଶ| ଵܺ = ଵ) .  ௫݂భݔ

 ଵݔ݀ (ଵݔ)
ஶ


 

=  න න
ఈమߣ

Γ(ߙଶ) ଶݔ
ఈమିଵ݁ିఒ௫మ

∞

௫భ

.
ఈభߣ

Γ(ߙଵ) ଵݔ
ఈభିଵ݁ିఒ௫భ  ݀

∞


ଵݔ݀ ଶݔ =  

= න න
4ଵ

9! ଶݔ
ଽ݁ିସ௫మ

∞

௫భ

.
4

6! ଵݔ
݁ିସ௫భ  ݀

∞


ଵݔ݀ ଶݔ =  

50643
65536 = 0.772 

  
with probability 0.772 the first density function is smaller than the second, so we choose the 
first density function as minimum. 
 
ܵଶ =  (7,4)ܽ݉݉ܽܩ

  
Now we do operations for S1 to find the shortest path in network 

  

ଵܵ = ݉݅݊ (1,4)ܽ݉݉ܽܩ + ܵଶ
(2,4)ܽ݉݉ܽܩ + ܵଷ

൨ =  ݉݅݊ 
(1,4)ܽ݉݉ܽܩ + (7,4)ܽ݉݉ܽܩ
(2,4)ܽ݉݉ܽܩ + ൨(5,4)ܽ݉݉ܽܩ

= ݉݅݊ (8,4)ܽ݉݉ܽܩ
 ൨(7,4)ܽ݉݉ܽܩ

  

ܲ( ଵܺ < ܺଶ) = න න
4

6! ଶݔ
݁ିସ௫మ

∞

௫భ

.
4଼

7! ଵݔ
݁ିସ௫భ  ݀

∞


ଵݔ݀ ଶݔ =  

1619
4096 = 0.3952 

 
݉݅݊ (8,4)ܽ݉݉ܽܩ

൨(7,4)ܽ݉݉ܽܩ =  (7,4)ܽ݉݉ܽܩ

  
With probability 0.3952 the first density function is smaller than the second, so we choose the 
second density function as minimum. Now the shortest path in network with probability 
0.6048 is 1-3-5-6. 
Now we explain operations to find the shortest path in network with gamma arcs in general 
case. 
 

 
 
Fig. 2 A network with gamma distribution arc length  
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Boundary condition is S6 = 0 
Using the recurrence relation (1) we have  

 
ܵହ = ସܵ  ,(3,5)ܽ݉݉ܽܩ =  (2,1)ܽ݉݉ܽܩ

 
For each arc that doesn’t exist in network we replace infinity for dij in relation (1). 

 
ܵଷ = ݉݅݊ (2,7)ܽ݉݉ܽܩ + ܵସ

(3,3)ܽ݉݉ܽܩ + ܵହ
൨ =  ݉݅݊ 

(2,7)ܽ݉݉ܽܩ + (2,1)ܽ݉݉ܽܩ
(3,3)ܽ݉݉ܽܩ +  ൨(3,5)ܽ݉݉ܽܩ

 
From formula (5) we have 
 

ଵܺ = ,(2,7)ܽ݉݉ܽܩ ܺଶ =  (2,1)ܽ݉݉ܽܩ
 

ܵ =  ଵܺ + ܺଶ 

݂(ݔ) = 7ଶ ݁ି௫ ቆ
(−1)ଶିଵ

0! ݔ  ቀ2 + 1 − 1
1 ቁ

1
(−6)ଷ +

(−1)

1! ଵݔ ቀ2 + 0 − 1
0 ቁ 

1
(−6)ଶቇ 

 

+1ଶ ݁ି௫ ቆ
(−1)ଵ

0! ݔ  ቀ2 + 1 − 1
1 ቁ

7ଶ

(6)ଷ +
(−1)

1! ଵݔ ቀ2 + 0 − 1
0 ቁ 

7ଶ

(6)ଶቇ 

= 49݁ି௫ ൬
2

6ଷ +
ݔ

36൰ + ݁ି௫ ൬
−98
6ଷ +

ݔ49
36 ൰ 

 
Convolution of gamma(3,3) and gamma(3,5) is as follows   

 

݂ (ݔ)  =  
3ଷ

(3 − 1)! ଶ݁ିଷ௫ݔ ݔ               ≥ 0 , 

݂ (ݕ)  =  
5ଷ

(3 − 1)! ଶ݁ିହ௬ݕ ݕ               ≥ 0 , 

 

݂(ݖ) = න ݂(ݖ −  ݔ݀ (ݔ)݂ (ݔ
ା∞

ିஶ

 

= න
ଶߣ

ఈమ

Γ(ߙଶ) ݖ) − ఈమିଵ݁ିఒమ(௭ି௫)(ݔ  
ଵߣ

ఈభ

Γ(ߙଵ) ఈభିଵ݁ିఒభ௫ݔ   ݔ݀ 
௭



 

= න
5ଷ

(3 − 1)! ݖ) − ଶ݁ିହ(௭ି௫)(ݔ  
3ଷ

(3 − 1)! ଶ݁ିଷ௫ݔ   ݔ݀ 
௭



 

=
−10125

16 ݁ିହ௭ݖ −
10125

16 ݁ିହ௭ −
3375

16 ݁ିହ௭ݖଶ −
10125

16 ݁ିଷ௭ݖ +
10125

16 ݁ିଷ௭

+
3375

16 ݁ିଷ௭ݖଶ                                             , ݖ ≥ 0 
  

We find the minimum value between two density function as follows 
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ܲ( ଵܺ < ܺଶ) = න න ௫݂మ
௫݂భ  . (ଶݔ)

ଵݔଶ݀ݔ݀ (ଵݔ)

ஶ

௫భ

 
ஶ


= න ௫݂భ

(ଵݔ) ቆන ௫݂మ
ଶݔ݀(ଶݔ)

ஶ

௫భ

ቇ  ଵݔ݀
ஶ


 

= න ቆ49݁ି௫భ ൬
2

6ଷ +
ଵݔ

36൰ + ݁ି௫భ ൬
−98
6ଷ +

ଵݔ49

36 ൰ቇ (න
−10125

16 ݁ିହ௫మݔଶ −
10125

16 ݁ିହ௫మ
ஶ

௫భ

ஶ



−
3375

16 ݁ିହ௫మݔଶ
ଶ −

10125
16 ݁ିଷ௫మݔଶ +

10125
16 ݁ିଷ௫మ

+
3375

16 ݁ିଷ௫మݔଶ
ଶ ݀ݔଶ) ݀ݔଵ =  

200557
552960 = 0.3627 

 
With probability 0.3627 the first density function is smaller than the second, so we choose the 
second density function as minimum. 
 

ܵଷ = ݉݅݊ 
(2,7)ܽ݉݉ܽܩ + (2,1)ܽ݉݉ܽܩ
(3,3)ܽ݉݉ܽܩ + ൨(3,5)ܽ݉݉ܽܩ = (3,3)ܽ݉݉ܽܩ  +  (3,5)ܽ݉݉ܽܩ

  
We explain operations of node 2 as follows 

  
ܵଶ = ݉݅݊ (1,6)ܽ݉݉ܽܩ + ܵସ

(3,2)ܽ݉݉ܽܩ + ܵହ
൨ = ݉݅݊ 

(1,6)ܽ݉݉ܽܩ + (2,1)ܽ݉݉ܽܩ
(3,2)ܽ݉݉ܽܩ +  ൨(3,5)ܽ݉݉ܽܩ

 
Convolution of gamma (1,6) and gamma(2,1) is as follows   
 

݂ (ݔ)  =  
6ଵ

0! ݁ି௫ݔ ݔ               ≥ 0 , 

݂ (ݕ)  =  
1ଶ

1! ݕ              ଵ݁ି௬ݕ ≥ 0 , 
 

݂(ݖ) = න ݂(ݖ −  ݔ݀ (ݔ)݂ (ݔ
ା∞

ିஶ

 

= න 6݁ି௫ ݖ)   −   ݔ݀ ଵ݁ି(௭ି௫)(ݔ
௭



=  
6
5 ݁ି௭ݖ −

6
25 ݁ି௭ +

6
25 ݁ି௭                      , ݖ ≥ 0 

 
and the convolution of gamma(3,2) and gamma(3,5) is as follows 

 

݂ (ݔ)  =  
2ଷ

2! ଶ݁ିଶ௫ݔ ݔ               ≥ 0 , 

݂ (ݕ)  =  
5ଷ

2! ଶ݁ିହ௬ݕ ݕ               ≥ 0 , 

݂(ݖ) = න ݂(ݖ −  ݔ݀ (ݔ)݂ (ݔ
ା∞

ିஶ

 

= න
2ଷ

2! ଶ݁ିଶ௫ݔ  .
5ଷ

2! ݖ) −   ݔ݀ ଶ݁ିହ(௭ି௫)(ݔ
௭
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=
−500

27 ݁ିହ௭ݖଶ −
1000

27 ݁ିହ௭ݖ −
2000

81 ݁ିହ௭ +
500
27 ݁ିଶ௭ݖଶ −

1000
27 ݁ିଶ௭ݖ

+
2000

81 ݁ିଶ௭                                                                                        , ݖ ≥ 0 
 
We find the minimum value between two density function as follows 
 

ܲ( ଵܺ < ܺଶ) = න න ௫݂మ
௫݂భ  . (ଶݔ)

ଵݔଶ݀ݔ݀ (ଵݔ)

ஶ

௫భ

 
ஶ


= න ௫݂భ

(ଵݔ) ቆන ௫݂మ
ଶݔ݀(ଶݔ)

ஶ

௫భ

ቇ  ଵݔ݀
ஶ


 

= න ൬
−500

27 ݁ିହ௫భݔଵ
ଶ −

1000
27 ݁ିହ௫భݔଵ −

2000
81 ݁ିହ௫భ +

500
27 ݁ିଶ௫భݔଵ

ଶ −
1000

27 ݁ିଶ௫భݔଵ

ஶ



+
2000

81 ݁ିଶ௫భ൰ ቆන  
6
5 ݁ି௫మݔଶ −

6
25 ݁ି௫మ +

6
25 ݁ି௫మ݀ݔଶ

ஶ

௫భ

ቇ = ଵݔ݀  
10902337
20699712

= 0.5267  
 
With probability 0.5267 the first density function is smaller than the second, so we choose the 
first density function as minimum. 

 
ܵଶ = ݉݅݊ 

(1,6)ܽ݉݉ܽܩ + (2,1)ܽ݉݉ܽܩ
(3,2)ܽ݉݉ܽܩ + ൨(3,5)ܽ݉݉ܽܩ = (1,6)ܽ݉݉ܽܩ  +  (2,1)ܽ݉݉ܽܩ

  
Now we do operations for S1 to find the shortest path in network 

  

ଵܵ = ݉݅݊ (1,4)ܽ݉݉ܽܩ + ܵଶ
(1,7)ܽ݉݉ܽܩ + ܵଷ

൨   

 

= ݉݅݊ 
(1,4)ܽ݉݉ܽܩ + (1,6)ܽ݉݉ܽܩ + (2,1)ܽ݉݉ܽܩ
(1,7)ܽ݉݉ܽܩ + (3,3)ܽ݉݉ܽܩ +  ൨(3,5)ܽ݉݉ܽܩ

 
To obtain convolution of gamma (1,4), gamma (1,6) and gamma (2,1) we convolute gamma 
(1,4) with density function that obtained from convoluting gamma (1,6) and gamma (2,1). 
 

݂(ݖ) = න ݂(ݖ −  ݔ݀ (ݔ)݂ (ݔ
ା∞

ିஶ

 

= න 4݁ିସ(௭ି௫) ൬ 
6
5 ݁ି௫ݔ −

6
25 ݁ି௫ +

6
25 ݁ି௫൰   ݔ݀ 

௭



 

=
4

75
(25݁ଶ௭ + ହ௭݁ݖ30 − 16݁ହ௭ − 9)݁ି௭ 

 
To obtain convolution of gamma (1,7), gamma (3,3) and gamma (3,5) we do same as above. 

  

݂(ݖ) = න ݂(ݖ −  ݔ݀ (ݔ)݂ (ݔ
ା∞

ିஶ
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= න 7݁ି(௭ି௫) ൬−
10125

16 ݁ିହ௫ݔ −
10125

16 ݁ିହ௫ −
3375

16 ݁ିହ௫ݔଶ −
10125

16 ݁ିଷ௫ݔ
௭



+
10125

16 ݁ିଷ௫ +
3375

16 ݁ିଷ௫ݔଶ൰    ݔ݀ 

=
−23625

512
(−1 + ଶ௭݁ݖ32 + 32݁ଶ௭ + 16݁ଶ௭ݖଶ + ସ௭݁ݖ28 − 31݁ସ௭ − 8݁ସ௭ݖଶ)݁ି௭ 

 
We find the minimum value between two density function as follows 
 

ܲ( ଵܺ < ܺଶ) = න න ௫݂మ
௫݂భ  . (ଶݔ)

ଵݔଶ݀ݔ݀ (ଵݔ)

ஶ

௫భ

 
ஶ


= න ௫݂భ

(ଵݔ) ቆන ௫݂మ
ଶݔ݀(ଶݔ)

ஶ

௫భ

ቇ  ଵݔ݀
ஶ


 

= න ൬
4

75
(25݁ଶ௫భ + ଵ݁ହ௫భݔ30 − 16݁ହ௫భ

ஶ



− 9)݁ି௫భ൰ ቆන
−23625

512
(−1 + ଶ݁ଶ௫మݔ32 + 32݁ଶ௫మ + 16݁ଶ௫మݔଶ

ଶ
ஶ

௫భ

+ ଶ݁ସ௫మݔ28 − 31݁ସ௫మ − ଶቇݔଶ)݁ି௫మ݀ݔ8 = ଵݔ݀
103463451397
281295286272 = 0.3678 

 
Considering the probability of 0.3678, the first density function is smaller than the second 

one, so we choose the second density function as minimum. Now the shortest path in the 
network is 1-3-5-6 with probability of 0.6322. 
 
 
4 Conclusions 
 
This paper proposed a dynamic program for determining the shortest path in a gamma 
probability distribution arc length network. Since the definite values of the dynamic program 
were turned into gamma random variables, two modifications were performed on sum and 
comparison operators. The convolution technique was employed for summing two gamma 
probability distributions. The numerical example via a six node network showed the 
performance of the proposed methodology for the shortest path. The examples were reported 
in two cases with the same rate parameter and different one, respectively.   
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