Systematic Review \boldsymbol{A} # Risk Factors of Deaths Related to Road Traffic Crashes in World Health Organization Regions: A Systematic Review Alireza Razzaghi, Hamid Soori, Amir Kavousi¹, Alireza Abadi^{2,3}, Ardeshir Khosravi⁴, Abbas Alipour⁵ Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ¹Department of Epidemiology, Safety Promotion and Injury Prevention Research Center, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ²Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ³Department of health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ⁴Department of Statistics and Informatics, Iranian Ministry of Health and Medical Education, Tehran, Iran, ⁵Community Medicine Department, Medical Faculty, Mazandaran University of Medical Sciences, Sari, Iran #### ORCID: Alireza Razzaghi: http://orcid.org/0000-0003-1874-6364 Hamid Soori: http://orcid.org/0000-0002-3775-1831 Amir Kavousi: http://orcid.org/0000-0003-3922-0564 Alireza Abadi: http://orcid.org/0000-0003-2653-6623 Ardeshir Khosravi: http://orcid.org/0000-0003-2963-0674 Abbas Alipour: http://orcid.org/0000-0003-0781-3728 #### **Abstract** Background: Identification of risk factors involved in road traffic deaths (RTDs) could help policymakers and road traffic managers to adopt effective strategies and approaches for the prevention and control of these incidents, while the lack of accurate data on the risk factors of RTDs causes the problem to persist. This systematic review aimed at assessing the national studies regarding the risk factors of RTDs in the regions covered by the World Health Organization (WHO). Methods: This review study was conducted during 2008–2018 via searching in databases of PubMed, Science Direct, Scopus, Cochrane, Thomson Reuters, Web of Science, EMBASE, ProQuest, and Trip databases. Initially, a literature review was performed to find similar systematic reviews, followed by another literature review to retrieve the published or registered protocols. At the next stage, PECOTS was developed for the search strategy, followed by the quality assessment. The eligibility criteria in this study were the national-level studies about the risk factors related to RTDs, English-language studies, and studies published during 2008–2018. Results: In total, 169 articles were included in this study, with the highest and lowest number of the published articles in the United States and African countries, respectively. According to the reviewed studies, human factors accounted for the most common risk factors involved in RTDs. In the southeastern regions of Asia, the main road-related risk factor for RTDs was reported to be the type of roads. Furthermore, roadside departure to the right side and long roads were denoted in the national data of the Western Pacific region on the incidence of RTDs. Differences were observed between the six regions covered by the WHO in terms of the time-related risk factors for RTDs. Conclusions: Several risk factors have been reported for RTDs in the countries covered by the WHO, and each risk factor is considered to have various subcategories. Therefore, it could be concluded that there are different epidemiolo Keywords: Death, risk factors, road traffic accidents #### INTRODUCTION Road traffic accidents are considered to be a major health concern and cause of mortality across the world, especially in low-and middle-income countries. Road traffic deaths (RTDs) are reported to be the third leading cause of mortality. [1-3] The consistent and effective prevention of road traffic accidents and subsequent injuries need proper planning and comprehensive efforts. [4] Efforts to diminish the rate of road traffic accidents and Access this article online Quick Response Code: Website: www.archtrauma.com DOI: 10.4103/atr.atr_59_19 RTDs could be successful with access to accurate data on the epidemiology of road traffic injuries. Such data enable countries Address for correspondence: Prof. Hamid Soori, Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. E-mail: hsoori@vahoo.com This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com **How to cite this article:** Razzaghi A, Soori H, Kavousi A, Abadi A, Khosravi A, Alipour A. Risk factors of deaths related to road traffic crashes in World Health Organization regions: A systematic review. Arch Trauma Res 2019:8:57-86 Received: 13-07-2019, Accepted: 21-08-2019, Web Publication: 07-10-2019. Archive of SID to employ proper intervention to achieve their goals of preventing road traffic accidents and minimize associated injuries. [5] Adequate knowledge of the influential factors in road traffic accidents enables countries to progressively decrease the rate of RTDs. The success rate of the measures to prevent RTDs varies across the globe. According to statistics, the highest success rate in the reduction of RTDs has been achieved in middle-and high-income countries, while no reduction in RTDs has been reported in low-income countries. [6] The countries in Africa and southeastern Asia are reported to have the highest rate of RTDs (26.6 and 20.7 cases per 100,000, respectively). On the other hand, the lowest rate of RTDs has been reported in East Mediterranean countries and Western Pacific regions (18 and 16.9 cases per 100,000, respectively). Among the six regions covered by the World Health Organization (WHO), a descending trend in RTDs has been reported in the United States, Europe, and Western Pacific regions since 2013. [6] It is notable that there are differences in the rates of RTDs in the regions covered by the WHO. For instance, the rate of RTDs in the high-and low-income countries in the United States has been estimated at 11.8 and 18.3 cases per 100 000, respectively. In Africa, the rates of RTDs in low-and middle-income countries have been reported to be 29.3 and 23.6 cases per 100 000, respectively. In Europe, the rate of RTDs in middle-and high-income countries has been estimated 23.6 and 14.4 cases per 100 000, respectively. [6] The experience of the nations that have succeeded in the promotion of road safety and reduction of road accident injuries and RTDs shows that road traffic accidents are avoidable and preventable. Road traffic accidents are not inadvertent and are mainly caused by disruptions in the systemic interaction between humans, vehicles, roads and environmental factors. In high-income countries, injury surveillance systems make it possible to attain high-quality data regarding RTDs, road traffic accidents, and the associated risk factors. As a result, the risk factors involved in road traffic accidents could be properly recognized and be incorporated into prevention and control programs. However, many low-and middle-income countries lack sufficient, accurate epidemiological data regarding RTDs due to the absence of valid registry systems. Therefore, it is not possible to determine the incidence rate of road traffic injuries and identify the risk factors involved in RTDs directly and accurately.^[5] Several studies have been focused on the severity of road traffic accidents. The risk factors in this regard could be classified into four main categories, including human factors, vehicle-related factors, road-related factors, and environmental factors. Identification of the risk factors involved in RTDs could help policymakers and managers adopt effective strategies for the control and prevention of road traffic injuries and the associated outcomes. Lack of data on these risk factors makes it difficult for countries to properly recognize the problems and implement effective interventions in this regard. [6] This systematic review aimed at assessing the risk factors of RTDs based on the national studies conducted in this regard. #### **METHODS** This study was conducted during 2008–2018 via searching in databases PubMed, Science Direct, Scopus, Cochrane, Thomson Reuters, Web of Science, EMBASE, ProQuest, and Trip databases. Initially, a preliminary search was carried out to find similar systematic reviews, followed by the review of the literature to retrieve 3–5 related studies to collect the required data. In the PubMed database, the search of articles was done with no limitations, and the search resulted in five articles. However, the review of the titles and abstracts of these articles indicated that they were irrelevant to the research subject. The literature search resulted in four articles in the Scopus database, none of which were relevant to the research subject. A review of the literature was also conducted in PubMed, Scopus, and PROSPERO databases to retrieve published or registered similar protocols. At this stage, no relevant protocols were found in PubMed. To investigate the registered protocols, search for the relevant protocols was performed in the PROSPERO database using specific keywords, such as road accident risk factor. However, the search results showed no relevant protocols. To search for related articles, the PECOTS search strategy was adopted based on the sample populations, exposure, comparison, outcomes, and type of relevant studies. The inclusion criteria in this study were as follows: the national-level studies about the risk factors related to RTDs, English language studies, and the studies published during 2008–2018. The search strategy was developed, and the search for the articles Figure 1: The flowchart of searching in systematic review
Archive of SID was performed in PubMed, Science Direct, Scopus, Cochrane, Thomson Reuters, Web of Science, EMBASE, ProQuest, and Trip databases. Moreover, the references of relevant articles were reviewed. The search results were investigated to find the relevant articles in two phases of screening and selection. The screening was carried out based on the titles and abstracts of the articles, and the selection of relevant articles was performed based on the full-text review of the articles. The flowchart of the literature search process is depicted in Figure 1. Duplicate studies were determined based on the titles, abstracts, and authors of the articles. The research stages were completed by two independent researchers. In case of disagreement regarding the selection of the articles, consensus or expert opinions were applied. In addition, the reasons for the inclusion or exclusion of each article were recorded. The quality of the retrieved studies was assessed using the STROBE checklist for cross-sectional, cohort, and case—control studies by two researchers who were experts in the research projects regarding road traffic accidents. In case of disagreement, consensus or expert opinions were applied. The data of the selected studies were extracted by two subject experts independently. Considering the difference in the quality of the studies, the third-quartile STROBE score (≥15) was determined to synthesizing the studies with acceptable quality. ## RESULTS In total, 169 articles were included in the present study. The distribution of the included articles in the six regions covered by the WHO was as follows: 108 articles from America, 33 articles from Europe, 10 articles from the Western Pacific region, one article from Africa, nine articles from Eastern Mediterranean, and eight articles from Southeastern Asia. Moreover, various observational studies were detected among the retrieved articles. The distribution of the reviewed articles is presented in Table 1. Due to a large number of the studies (169 articles) to be presented in detail in a table, only the features of the selected cohort studies are shown in Table 2 considering the high evidential level of observational studies. The characteristics of all the reviewed articles are presented in the Appendix section. According to this systematic review, most of the studies regarding RTDs were conducted in the United States, followed by Europe, the Western Pacific region, East Mediterranean, Southeastern Asia, and Africa. The investigation of the risk factors involved in RTDs was performed based on the quality assessment of the reviewed studies. Only one article in this regard has been published in Africa, which was not considered acceptable in the quality assessment. Moreover, nine articles have been published in this regard in the East Mediterranean, one of which required qualification to be further reviewed. There were 4, 17, and 50 qualified articles published in Southeastern Asia, Europe, and the United States, respectively. According to the results of the present study, human factors were the most significant risk factor for RTDs in the reviewed studies. Some of the most important human factors have been reported to be age, male gender, education level, alcohol consumption, obesity, not using helmets by motorcyclists, driving without a driver's license, and high-speed driving. Obesity was reported to be a risk factor for RTDs in the United States and Europe. Moreover, ethnicity was considered to be a risk factor for RTDs only in the United States. In Southeastern Asia and the Western Pacific region, old age was reported to be a major risk factor for RTDs in motorcyclists. In the Middle East, the distraction of the driver was considered to be the only risk factor for RTDs. Some of the main road-related risk factors for RTDs were reported to be urban roads, unpaved roads, off-road driving, and poor road conditions, which were extracted from the national data of the United States. In European countries, these factors included divided roads, two-way roads, and poor roadway design, which contributed to RTDs. In the southeastern regions of Asia, the main road-related risk factor for RTDs was reported to be the type of roads (local roads, highways, and freeways). Furthermore, roadside departure to the right side and long roads were denoted in the national data of the Western Pacific region on the incidence of RTDs. The only qualified study in East Mediterranean contained no data on the road-related risk factors for RTDs. Environmental factors were considered to be among the risk factors involved in RTDs only in the United States. On the other hand, location-related factors were denoted in the United States (e.g., low-income areas), Europe (e.g., non-signalized zebra crosswalks, areas that were not built-up, geographic variations, and mid-block crosswalk location), Southeastern Asia, and Western Pacific region (e.g., interchange roads and rural areas). Differences were observed between the six regions covered by the WHO in terms of the time-related risk factors for RTDs. Some of these factors were reported to be as follows: the United | Table 1: Number and type of studies in 6 World Health Organization regions | | | | | | | | | | |--|----------------|------------------|-------------------------|----------------------|----------------|--|--|--|--| | Region | Total articles | Ecologic studies | Cross sectional studies | Case control studies | Cohort studies | | | | | | Americas | 108 | 1 | 95 | 2 | 10 | | | | | | Europe | 33 | 2 | 28 | - | 3 | | | | | | Southeast Asia Region | 8 | - | 8 | - | - | | | | | | Western Pacific | 10 | 1 | 9 | - | - | | | | | | Africa | 1 | - | 1 | - | - | | | | | | Eastern Mediterranean | 9 | - | 9 | - | - | | | | | | Table 2: The risk fac | tors related to road traffi | c crashes deaths in | cohort stud | lies | | |--|---|----------------------------------|----------------------|---|---| | Title | Author/year/country/region | Study design*/STROB
Score | Effect size
index | Categories independent variables considered | Summary findings
(influenced variable on
traffic crashes deaths) | | Risk factors for death
among older child and
teenaged motor vehicle
passengers ^[7] | Winston <i>et al.</i> /2008/USA/
Americas/ ^[7] | Retrospective cohort/22 | AOR | Person factors (age and
sex of driver, restraint
use, seating position),
vehicle factor, road factor,
environmental factors (day
of week, month, time of
day), law factors (speed
limit) | Person factors: Drivers
younger than 18 years,
restraint nonuse,
high-speed roads, speed
limit | | A matched-cohort analysis of belted front and rear seat occupants in newer and older model vehicles shows that gains in front occupant safety have outpaced gains for rear seat occupants ^[8] | Bilston <i>et al.</i> /2010/USA/
Americas/ ^[8] | Matched-cohort
approach/20 | RR | Vehicle characteristic | Risk to front seat
occupants in newer
vehicles decline | | The association of age, sex and helmet use with the risk of death for occupants of two-wheeled motor vehicles involved in traffic crashes in Spain ^[9] | Donate-López <i>et al.</i> /2010/
Spain/Europe/ ^[9] | rCoh/24 | ARR | Human factor (age,
sex, and helmet use for
occupants of two-wheeled
motor vehicles) | Age, sex, and helmet use | | Population density
and mortality among
individuals in motor
vehicle crashes ^[10] | Gedeborg <i>et al.</i> /2010/Sweden/
Europe/ ^[10] | Population-based cohort/-/22 | Mortality rates | Human factor (population density) | Crude mortality rates
were inversely related
to regional population
density | | Traffic crash victimizations of children and teenagers by drinking drivers age 21 and older[11] | Males/2010/USA/Americas/[11] | rCoh (not mentioned in study)/18 | RR | Victimizations of children
and teenagers by drinking
drivers age 21 and older | Drinking drivers aged 21 and older victimize 1.3 times more teenage drivers than vice versa and account for large majorities of passenger and nonoccupant alcohol-related crash victimizations of both children and teens | | The effect of earlier or automatic collision notification on traffic mortality by survival analysis ^[12] | Wu et al./2013/USA/
Americas/ ^[12] | Coh/12 | Survival
rates | EMS, vehicle factor: ACN | The results showed the benefits associated with earlier notifications (approximately 1.84% fatality reduction within a time frame of 6 h after a crash) | | Obesity and vehicle type as risk factors for injury caused by motor vehicle collision ^[13] | Donnelly <i>et al.</i> /2014/UK/
Europe/ ^[13] | rCC/18 | OR | Human factor (occupant
BMI class; underweight,
normal weight,
overweight, or obese) | It is found that obesity
was a risk factor for
mortality caused by
MVC (OR, 1.6; 95% CI,
1.2-2.0) | | Driver obesity and the risk of fatal injury during traffic collisions ^[14] | Rice and Zhu/2014/USA/
Americas/ ^[14] | Matched-pair cohort
study/16 | RRs | Human factor (obesity,
sex), human behavior
factor (driver seat
belt use), vehicle
factor (vehicle type
confidence
interval,
collision type, confidence
interval) | Estimated RRs raised for
underweight drivers, RR
increased with higher BMI
categories | | Table 2: Contd | | | | | | |---|---|------------------------------|-------------------|---|--| | Title | Author/year/country/region | Study design*/STROB
Score | Effect size index | Categories independent variables considered | Summary findings
(influenced variable on
traffic crashes deaths) | | Age, period, and cohort effects in motor vehicle mortality in the United States, 1980-2010: The role of sex, alcohol involvement, and position in vehicle ^[15] | Macinko <i>et al.</i> /2015/USA/
Americas/ ^[15] | Coh/16 | Rate | Human factor (role of sex,
alcohol involvement) and
position in vehicle, age,
period, and cohort effects
in motor vehicle mortality | Declines in MVC deaths
by position in the car
vary for men and women
by age and cohort over
time. Cohorts born before
1970 had higher risks
than those born later. New
technologies and public
policy efforts reduce
fatalities | | Helicopter transport
improves survival
following injury in the
absence of a time-saving
advantage ^[16] | Brown <i>et al.</i> /2016/USA/
Americas/ ^[16] | rCC/24 | AOR | Medical services: HEMS
compared with GEMS
transport across similar
prehospital transport times | HEMS had a survival
benefit over GEMS for
prehospital transport times
between 6 and 30 min | | The association between booster seat use and risk of death among motor vehicle occupants aged 4-8: A matched cohort study ^[17] | Rice et al./2009/USA/
Americas/ ^[17] | Matched cohort
study/15 | RRs | Human behavior
factor (booster seats and of
seatbelts) | Seatbelts, used with or
without booster seats,
are highly effective in
preventing death among
motor vehicle occupants
aged 4-8 years | | Mortality from road
traffic accidents
in Switzerland:
Longitudinal and spatial
analyses ^[18] | Spoerri/2011/Switzerland/
Europe/ ^[18] | Cohort/18 | Adjusted
HR | Human factor (population density) | RTA mortality increased with decreasing population density of study areas for motor vehicle occupants and motorcyclists | | Association between different restraint use and rear-seated child passenger fatalities: A matched cohort study ^[19] | Du/2008/USA/Americas/ ^[19] | Matched-cohort
design/18 | RR | Human factor (rear-seated child passengers use) | Restrained reduced the risk of death in rear-seated child passengers | ^{*}Study design: Coh: Cohort study, rCoh: Retrospective Cohort Study, CC: Case-control, CS: Cross-sectional, EMS: Emergency medical services, ACN: Automatic collision notification, CI: Confidence interval, RRs: Risk ratios, AOR: Adjusted odds ratio, HR: Hazard ratio, MCV: Motor Vehicle Crash, RTA: Road traffic accident, OR: Odds ratio, HEMS:Helicopter-based Emergency Medical Service, GEMS: Ground Emergency Medical Services, ARR: Adjusted rate ratio, BMI: Body mass index States (hour of the day, time of the accident, early-morning accidents, non-school night driving, driving in daylight hours), Europe (darkness [especially the lack of street lighting] and summertime), Southeastern Asia (time of the accident and motorcyclists involved in accidents at nighttime), and Western Pacific region (darkness hours). In terms of the law-related factors, the most significant influential factors in the incidence of RTDs were reported to be restraint, high gasoline prices, driver's license law, renewal of the driver's license, and alcohol consumption policies. In Europe, helmet legislation was denoted as the only law-related factor in this regard. According to the reviewed studies, the economic influential factors in the incidence of RTDs were mainly reported in the United States, Europe, Southeastern Asia, and the Western Pacific region. Table 3 shows the distribution of the influential factors in the incidence of RTDs. #### DISCUSSION According to the current systematic review, the epidemiological pattern of road traffic crashes (RTCs) and the associated consequences vary in the six regions covered by the WHO. Adequate knowledge of the risk factors involved in RTDs is essential to determining the priorities and implementing effective interventions. In the six regions covered by the WHO, available data are insufficient regarding the risk factors for RTDs in the low-and middle-income countries. According to these statistics, many countries in the world may be unable to reach their sustainable development goals in reducing RTDs up until the middle of 2020. Meanwhile, the number of vehicles has increased drastically across the world, with the rate of RTDs reaching from 135 cases per 100 vehicles in 2000 to 64 cases in 2016. Furthermore, the reduced rate of RTDs by 50% within the past 15 years could be due to progress in road safety although such progress is not considered acceptable considering the growing number of motor vehicles. [6] In low- and middle-income countries, there is a lack of systematic enforcement to collect data on RTDs. Human factors were the most significant risk factor for RTDs in the reviewed studies. From an epidemiological perspective and Table 3: The risk factors of road traffic accidents deaths extracted in national studies in World Health Organization regions | Risk factors/region | Americas | Europe | Southeast Asia region | Western Pacific | Africa | Eastern
Mediterranean | |---------------------------------|--|--|---|---|--------|--| | Human factors | Driver license compliance, driver drinking, system-restraint use (seatbelt), restraint nonuse, high-speed roads, speed driving, lower education, young male drivers, driver age, obesity, older age of road user, safety belt nonuse, high speed, male driver, ethnicity, adolescents, young and middle-aged road user, unrestrained, elderly road user, alcohol and drug use, nonhelmet use, new motorcycles, obesity, child occupants of motor vehicle | Older drivers, older age, male driver and seatbelt use, alcohol and drug use, lower education, unmarried men, speed driving, nonhelmet use, population density, obesity, male road users, changes in travel patterns | Male driver, older age, restrained drivers, lower education, male motorcycles drivers, older motorcycles, unlicensed motorcycles, nonhelmet use, alcohol and drug use | Speed driving,
older motorcycle
driver, late model
motorcycles,
alcohol and drug
use | - | Not maintaining
eyes on the road,
losing control of
the vehicle | | Road factors | Urban roads (vs. rural), dark
roads (vs. daylight), unpaved
roads, off-road crashes, road
surface condition | Divided road, two-way
road, roadway design | Road types in
city (local road,
highway, freeway) | Nonlevel roadway
profiles, roadside
departure to the
right side, road
length | - | - | | Crash factors | Motorist action before the crash, collisions with roadside objects, rollover crashes | - | Crash type | Speed-related crashes | - | - | | Environmental factor | Presence of snow and/or rain, | - | - | - | - | - | | Vehicle-related factor | Automobile (passenger) cars, vehicle damage, front seat occupants, air bags | Type of vehicle hitting the pedestrian, motorized two-wheeler | Two-wheels cars, buses | - | - | - | | Time related factor | Hour of crash time of the
accident, early morning crashes,
nonschool night driving,
driving in daylight hours | Night driving, street no lighting, summer time period | Hour of crash,
motorcycle night
driving | Night driving | - | - | | Location-related factor | Poorer areas | Unsignalized zebra
crosswalks, nonbuilt-up
areas, mid-block
crosswalk location,
geographic variation | Location of
crash, motorcycle
traffic separation,
nonurban
single-vehicle
accidents | Interchange
locations, rural
areas | - | - | | Laws | Restrained laws, higher
gasoline prices, adoption of a
graduated driver licensing law,
renewal driver license, alcohol
policies | Helmet legislation,
higher gasoline prices | | - | - | - | | Prehospital and hospital factor | Helicopter-based EMS and ground EMS facilities | - | - | - | - | - | | Economic factor | Socioeconomic status | Socioeconomic status | Deprived areas | Lower capita | - | - | EMS: Emergency medical
services based on the assessment of the causal network of injuries, the main influential factors in RTDs could be classified as the predisposing factors, enabling factors, precipitating factors, and reinforcing factors. Some of these factors (e.g., age, gender, marital status, and education level) are regarded as the predisposing factors, which may be essential to causality relationships although they may not be sufficient. Some of the interventional enforcements regarding these factors include proper training and alcohol consumption, which are modifiable. Causality networks are also affected by enabling factors, which facilitate the development of diseases and the associated outcomes. Some of these factors are income status, climatic conditions, and access to health services, which may play a key role in causality network and are rarely sufficient. Enabling factors are often modifiable, and their modification could prevent RTCs. Precipitating factors are also considered in the investigation of the causality network of diseases and the associated outcomes. These factors contribute to disease development and the occurrence of injuries. Due to the wide range of these factors, one factor may be prioritized and regarded as the necessity factor. Some key precipitating factors include exposure to special diseases, physical shocks, Archive of SID occupational stimulators, and knowledge. In road traffic accidents, each human, road-related, vehicle-related, and environmental factor could play the role of a precipitating factor. For instance, in human factors, driver distraction could be considered a precipitating factor. Among the other examples in this regard are road flows, vehicle defects, snowy/rainy weather, and road slippage, which could be regarded as precipitating factors. Reinforcing factors lead to the persistence of increased severity of diseases, as well as disabilities, impairments, and the subsequent behavioral patterns. These factors may be repeatable or consistent and not necessarily similar to predisposing, precipitating, and enabling factors. In terms of road traffic crash, some of these factors include incidental roads, poor awareness of road users regarding road safety, high-risk driving behaviors, motor vehicle defects, and low safety. According to the results of this systematic review in the regions covered by the WHO, human factors were the most common risk factors involved in RTDs; some of these factors were old age, male gender, low education level, alcohol consumption, obesity, not using safety helmets, driving without a driver's license, and high-speed driving. Obesity has been reported to be a risk factor for RTDs in the United States and Europe. Accordingly, the risk of RTDs is higher in obese individuals compared to overweight and underweight individuals, as well as those with normal weight. The epidemic of obesity in the United States and Europe is considered to be a major challenge, which could be considered a risk factor in the countries with the growing trend of obesity as well. Ethnicity has been reported to be a human risk factor for RTDs only in the United States. In addition, the beliefs of fatalism are reported to be more widespread in Hispanic and African populations. Based on this belief, when they are driving, they have no control over the probability of an accident, which exposed these individuals to a high risk of death due to fatal crash.^[80] In Southeastern Asia and the West Pacific region, old age of motorcyclists has been reported to be a risk factor for RTDs. On the other hand, the findings of a study conducted in France indicated that elderly drivers are at a lower risk in terms of the lost life year compared to middle-aged and young drivers.^[26] With respect to this association, some studies have denoted that attention deficits in elderly drivers play a pivotal role in road traffic crash.^[174] In an article published in the East Mediterranean region, driver distraction was reported to be a major risk factor for RTDs. Driver distraction mainly involves the driver not watching the road carefully while driving, which is often associated with the significant risk of road traffic crash.^[95] However, we only found one article regarding this risk factor, and further investigation is required to obtain detailed data in EMRO countries. Driver distraction could have various causes depending on time, place, and demographic characteristics; except age and gender, the mentioned demographic factors are all modifiable. Efficient planning on modifiable factors is essential to the prevention of road traffic crash and RTDs. Unfortunately, there were few qualified studies in this regard in Africa and East Mediterranean, while these regions mostly consist of low- and middle-income countries. These countries often lack effective registry systems for road traffic crash; this leads to numerous problems in planning and decision-making regarding road traffic crash. One of the limitations of the present study was that we only reviewed English articles. Moreover, we selected a specific publication period for the articles.^[6] ## Conclusions There are similarities in the findings regarding the influential factors in the incidence of RTDs in the countries covered by the WHO. In addition, variable patterns are observed in the subcategories of each of the main factors in this regard, indicating the differences in the epidemiological patterns of road traffic accidents and RTDs. Therefore, researchers, managers, and policymakers must pay special attention to these discrepancies in the analysis of the related data, as well as planning, policymaking, and implementation of the related interventions. ## **Acknowledgment** We acknowledged all the people who helped us in accessing to the full text of articles. ## Financial support and sponsorship This article is derived from PhD thesis, which is funded by Shahid Beheshti University of Medical Sciences and Iran National Science Foundation. #### **Conflicts of interest** There are no conflicts of interest. #### REFERENCES - Grimm M, Treibich C. Socio-Economic Determinants of Road Traffic Accident Fatalities in Low and Middle Income Countries. Vol. 504. International Institute of Social Studies of Erasmus University; 2010. p. 1-44. - Manan MM, Jonsson T, Várhelyi A. Development of a safety performance function for motorcycle accident fatalities on Malaysian primary roads. Saf Sci 2013;60:13-20. - Sarani R, Rahim S, Marjan JM, Voon WS. Predicting Malaysian road fatalities for year 2020. Transp Res Board 2012;p.12-42. - Peden M, Scurfield R, Sleet D, Mohan D, Hyder AA, Jarawan E, editors. World Report on Road Traffic Injury Prevention. World Health Organization; 2004. - Bhalla K, Sharaz S, Abraham J, Bartels D, Yeh P. Road Injuries in 18 Countries: Methods, Data Sources and Estimates of the National Incidence of Road Injuries. Harvard Public Health; 2011. - World Health Organization. Global Status Report on Road Safety. World Health Organization; 2018. - Winston FK, Kallan MJ, Senserrick TM, Elliott MR. Risk factors for death among older child and teenaged motor vehicle passengers. Arch Pediatr Adolesc Med 2008;162:253-60. - Bilston LE, Du W, Brown J. A matched-cohort analysis of belted front and rear seat occupants in newer and older model vehicles shows Archive of SID - that gains in front occupant safety have outpaced gains for rear seat occupants. Accid Anal Prev 2010;42:1974-7. - Donate-López C, Espigares-Rodríguez E, Jiménez-Moleón JJ, Luna-del-Castillo Jde D, Bueno-Cavanillas A, Lardelli-Claret P. The association of age, sex and helmet use with the risk of death for occupants of two-wheeled motor vehicles involved in traffic crashes in Spain. Accid Anal Prev 2010;42:297-306. - Gedeborg R, Thiblin I, Byberg L, Melhus H, Lindbäck J, Michaelsson K. Population density and mortality among individuals in motor vehicle crashes. Inj Prev 2010;16:302-8. - Males M. Traffic crash victimizations of children and teenagers by drinking drivers age 21 and older. J Stud Alcohol Drugs 2010;71:351-6. - Wu J, Subramanian R, Craig M, Starnes M, Longthorne A. The effect of earlier or automatic collision notification on traffic mortality by survival analysis. Traffic Inj Prev 2013;14 Suppl: S50-7. - Donnelly JP, Griffin RL, Sathiakumar N, McGwin G Jr. Obesity and vehicle type as risk factors for injury caused by motor vehicle collision. J Trauma Acute Care Surg 2014;76:1116-21. - Rice TM, Zhu M. Driver obesity and the risk of fatal injury during traffic collisions. Emerg Med J 2014;31:9-12. - Macinko J, Silver D, Bae JY. Age, period, and cohort effects in motor vehicle mortality in the United States, 1980-2010: The role of sex, alcohol involvement, and position in vehicle. J Safety Res 2015;52:47-57. - Brown JB, Gestring ML, Guyette FX, Rosengart MR, Stassen NA, Forsythe RM, et al. Helicopter transport improves survival following injury in the absence of a time-saving advantage. Surgery 2016;159:947-59. - Rice TM, Anderson CL, Lee AS. The association between booster seat use and risk of death among motor vehicle occupants aged 4-8: A matched cohort study. Inj Prev 2009;15:379-83. - Spoerri A, Egger M, von Elm E, Swiss National Cohort Study. Mortality from road traffic accidents in Switzerland: Longitudinal and spatial analyses. Accid Anal Prev 2011;43:40-8. - Du W, Hayen A, Bilston L, Hatfield J, Finch C, Brown J. Association between different restraint use and rear-seated child passenger fatalities: A matched cohort study. Arch Pediatr Adolesc Med 2008;162:1085-9. - Awadzi KD, Classen S, Hall A, Duncan RP, Garvan CW. Predictors of injury among younger and older adults in fatal motor vehicle crashes. Accid Anal Prev 2008;40:1804-10. - Eksler V, Lassarre S. Evolution of road risk disparities at small-scale level: Example of Belgium. J Safety Res 2008;39:417-27. - Eluru N, Bhat CR, Hensher DA. A mixed generalized ordered response model for examining pedestrian and bicyclist
injury severity level in traffic crashes. Accid Anal Prev 2008;40:1033-54. - Factor R, Mahalel D, Yair G. Inter-group differences in road-traffic crash involvement. Accid Anal Prev 2008;40:2000-7. - Gray RC, Quddus MA, Evans A. Injury severity analysis of accidents involving young male drivers in great Britain. J Safety Res 2008;39:483-95. - Kvarnstrand L, Milsom I, Lekander T, Druid H, Jacobsson B. Maternal fatalities, fetal and neonatal deaths related to motor vehicle crashes during pregnancy: A national population-based study. Acta Obstet Gynecol Scand 2008;87:946-52. - Lafont S, Amoros E, Gadegbeku B, Chiron M, Laumon B. The impact of driver age on lost life years for other road users in France: A population based study of crash-involved road users. Accid Anal Prev 2008;40:289-94. - Leigh JP, Geraghty EM. High gasoline prices and mortality from motor vehicle crashes and air pollution. J Occup Environ Med 2008;50:249-54. - Farmer P, Howard A, Rothman L, Macpherson A. Booster seat laws and child fatalities: A case-control study. Inj Prev 2009;15:348-50. - Friedman LS, Hedeker D, Richter ED. Long-term effects of repealing the national maximum speed limit in the United States. Am J Public Health 2009;99:1626-31. - Hyatt E, Griffin R, Rue LW 3rd, McGwin G Jr. The association between price of regular-grade gasoline and injury and mortality rates among occupants involved in motorcycle – And automobile-related motor vehicle collisions. Accid Anal Prev 2009;41:1075-9. - Kposowa AJ, Breault KD. Motor vehicle deaths among men: Marital status, gender and social integration. Int J Mens Health 2009;8:129-42. - Lardelli-Claret P, Espigares-Rodríguez E, Amezcua-Prieto C, Jiménez-Moleón JJ, Luna-del-Castillo Jde D, Bueno-Cavanillas A. Association of age, sex and seat belt use with the risk of early death in drivers of passenger cars involved in traffic crashes. Int J Epidemiol 2009;38:1128-34. - Neeley GW, Richardson LE Jr. The effect of state regulations on truck-crash fatalities. Am J Public Health 2009;99:408-15. - Traynor TL. The impact of state level behavioral regulations on traffic fatality rates. J Safety Res 2009;40:421-6. - Wilson FA, Stimpson JP, Hilsenrath PE. Gasoline prices and their relationship to rising motorcycle fatalities, 1990-2007. Am J Public Health 2009;99:1753-8. - Yan X, Radwan E, Mannila KK. Analysis of truck-involved rear-end crashes using multinomial logistic regression. Adv Transp Stud 2009;17:39-52. - Farmer CM, Wells JK. Effect of enhanced seat belt reminders on driver fatality risk. J Safety Res 2010;41:53-7. - Impinen A, Mäkelä P, Karjalainen K, Rahkonen O, Lintonen T, Lillsunde P, et al. High mortality among people suspected of drunk-driving. An 18-year register-based follow-up. Drug Alcohol Depend 2010;110:80-4. - Karjalainen K, Lintonen T, Impinen A, Mäkelä P, Rahkonen O, Lillsunde P, et al. Mortality and causes of death among drugged drivers. J Epidemiol Community Health 2010;64:506-12. - Lunevicius R, Herbert HK, Hyder AA. The epidemiology of road traffic injuries in the republic of Lithuania, 1998-2007. Eur J Public Health 2010;20:702-6. - McCartt AT, Teoh ER, Fields M, Braitman KA, Hellinga LA. Graduated licensing laws and fatal crashes of teenage drivers: A national study. Traffic Inj Prev 2010;11:240-8. - Ouimet MC, Simons-Morton BG, Zador PL, Lerner ND, Freedman M, Duncan GD, et al. Using the U.S. National household travel survey to estimate the impact of passenger characteristics on young drivers' relative risk of fatal crash involvement. Accid Anal Prev 2010;42:689-94. - Sivak M, Schoettle B. Toward understanding the recent large reductions in U.S. Road fatalities. Traffic Inj Prev 2010;11:561-6. - Teoh ER, Campbell M. Role of motorcycle type in fatal motorcycle crashes. J Safety Res 2010;41:507-12. - Bambach MR, Grzebieta RH, Olivier J, McIntosh AS. Fatality risk for motorcyclists in fixed object collisions. J Transp Saf Secur 2011;3:222,35 - Castillo-Manzano JI, Castro-Nuño M, Pedregal DJ. Can fear of going to jail reduce the number of road fatalities? The Spanish experience. J Safety Res 2011;42:223-8. - Chang DC, Eastman B, Talamini MA, Osen HB, Tran Cao HS, Coimbra R. Density of surgeons is significantly associated with reduced risk of deaths from motor vehicle crashes in US counties. J Am Coll Surg 2011;212:862-6. - Daniello A, Gabler HC. Fatality risk in motorcycle collisions with roadside objects in the United States. Accid Anal Prev 2011;43:1167-70. - Fell JC, Jones K, Romano E, Voas R. An evaluation of graduated driver licensing effects on fatal crash involvements of young drivers in the United States. Traffic Inj Prev 2011;12:423-31. - Huang WS, Lai CH. Survival risk factors for fatal injured car and motorcycle drivers in single alcohol-related and alcohol-unrelated vehicle crashes. J Safety Res 2011;42:93-9. - Lemp JD, Kockelman KM, Unnikrishnan A. Analysis of large truck crash severity using heteroskedastic ordered probit models. Accid Anal Prev 2011;43:370-80. - Lopez-Charneco M, Conte-Miller MS, Davila-Toro F, García-Rivera EJ, Zavala DE, Torres Y, et al. Motor vehicle accident fatalities trends, Puerto Rico 2000-2007. J Forensic Sci 2011;56:1222-6. - Sarkar S, Tay R, Hunt JD. Logistic regression model of risk of fatality in vehicle-pedestrian crashes on national highways in Bangladesh. Transp Res Rec 2011;2264:128-37. - Chu HC. An investigation of the risk factors causing severe injuries in crashes involving gravel trucks. Traffic Inj Prev 2012;13:355-63. - Eluru N, Bagheri M, Miranda-Moreno LF, Fu L. A latent class modeling approach for identifying vehicle driver injury severity factors at highway-railway crossings. Accid Anal Prev 2012;47:119-27. - 56. Jehle D, Gemme S, Jehle C. Influence of obesity on mortality of drivers in severe motor vehicle crashes. Am J Emerg Med 2012;30:191-5. - Jou RC, Yeh TH, Chen RS. Risk factors in motorcyclist fatalities in Taiwan. Traffic Inj Prev 2012;13:155-62. - Lyon JD, Pan R, Li J. National evaluation of the effect of graduated driver licensing laws on teenager fatality and injury crashes. J Safety Res 2012;43:29-37. - Nagata T, Takamori A, Berg HY, Hasselberg M. Comparing the impact of socio-demographic factors associated with traffic injury among older road users and the general population in Japan. BMC Public Health 2012;12:887 - Rolison JJ, Hewson PJ, Hellier E, Husband P. Risk of fatal injury in older adult drivers, passengers, and pedestrians. J Am Geriatr Soc 2012;60:1504-8. - Theofilatos A, Graham D, Yannis G. Factors affecting accident severity inside and outside urban areas in Greece. Traffic Inj Prev 2012;13:458-67. - Travis LL, Clark DE, Haskins AE, Kilch JA. Mortality in rural locations after severe injuries from motor vehicle crashes. J Safety Res 2012;43:375-80. - Voas RB, Torres P, Romano E, Lacey JH. Alcohol-related risk of driver fatalities: An update using 2007 data. J Stud Alcohol Drugs 2012;73:341-50. - Bose D, Arregui-Dalmases C, Sanchez-Molina D, Velazquez-Ameijide J, Crandall J. Increased risk of driver fatality due to unrestrained rear-seat passengers in severe frontal crashes. Accid Anal Prev 2013;53:100-4. - Drucker C, Gerberich SG, Manser MP, Alexander BH, Church TR, Ryan AD, et al. Factors associated with civilian drivers involved in crashes with emergency vehicles. Accid Anal Prev 2013;55:116-23. - Kaimila B, Yamashina H, Arai A, Tamashiro H. Road traffic crashes and fatalities in Japan 2000-2010 with special reference to the elderly road user. Traffic Inj Prev 2013;14:777-81. - Meehan WP 3rd, Lee LK, Fischer CM, Mannix RC. Bicycle helmet laws are associated with a lower fatality rate from bicycle-motor vehicle collisions. J Pediatr 2013;163:726-9. - Silver D, Macinko J, Bae JY, Jimenez G, Paul M. Variation in U.S. Traffic safety policy environments and motor vehicle fatalities 1980-2010. Public Health 2013;127:1117-25. - Stimpson JP, Wilson FA, Muelleman RL. Fatalities of pedestrians, bicycle riders, and motorists due to distracted driving motor vehicle crashes in the U.S 2005-2010. Public Health Rep 2013;128:436-42. - Tefft BC. Impact speed and a pedestrian's risk of severe injury or death. Accid Anal Prev 2013;50:871-8. - Wenzel T. The effect of recent trends in vehicle design on U.S. Societal fatality risk per vehicle mile traveled, and their projected future relationship with vehicle mass. Accid Anal Prev 2013;56:71-81. - Zhu M, Zhao S, Gurka KK, Kandati S, Coben JH. Appalachian versus non-Appalachian U.S. Traffic fatalities, 2008-2010. Ann Epidemiol 2013;23:377-80. - Fell JC. Update: Repeat DWI offenders involvement in fatal crashes in 2010. Traffic Inj Prev 2014;15:431-3. - French MT, Gumus G. Macroeconomic fluctuations and motorcycle fatalities in the U.S. Soc Sci Med 2014;104:187-93. - Jiménez-Mejías E, Onieva-García MÁ, Robles-Martín J, Martínez-Ruiz V, Luna-Del-Castillo Jde D, Lardelli-Claret P. Why has the pedestrian death rate decreased in Spain between 1993 and 2011? An application of the decomposition method. Inj Prev 2014;20:416-20. - Ossiander EM, Koepsell TD, McKnight B. Crash fatality and vehicle incompatibility in collisions between cars and light trucks or vans. Inj Prev 2014:20:373-9. - Stimpson JP, Wilson FA, Araz OM, Pagan JA. Share of mass transit miles traveled and reduced motor vehicle fatalities in major cities of the United States. J Urban Health 2014;91:1136-43. - Tefft BC. Driver license renewal policies and fatal crash involvement rates of older drivers, United States, 1986-2011. Inj Epidemiol 2014;1:25. - 79. Teoh ER. How have changes in front air bag designs affected frontal - crash death rates? An update. Traffic Inj Prev 2014;15:606-11. - Torres P, Romano E, Voas RB, de la Rosa M, Lacey JH. The relative risk of involvement in fatal crashes as a function of race/ethnicity and blood alcohol concentration. J Safety Res 2014;48:95-101. - 81. Bakhtiyari M, Delpisheh A, Monfared AB, Kazemi-Galougahi MH, Mehmandar MR, Riahi M, *et al.* The road traffic crashes as a
neglected public health concern; an observational study from Iranian population. Traffic Inj Prev 2015;16:36-41. - 82. Bandi P, Silver D, Mijanovich T, Macinko J. Temporal trends in motor vehicle fatalities in the United States, 1968 to 2010 A joinpoint regression analysis. Inj Epidemiol 2015;2:4. - Bouaoun L, Haddak MM, Amoros E. Road crash fatality rates in France: A comparison of road user types, taking account of travel practices. Accid Anal Prev 2015;75:217-25. - 84. Cicchino JB. Why have fatality rates among older drivers declined? The relative contributions of changes in survivability and crash involvement. Accid Anal Prev 2015;83:67-73. - Ewing R, Hamidi S. Urban sprawl as a risk factor in motor vehicle occupant and pedestrian fatalities: Update and refinement. Transp Res Rec 2015;2513:40-7. - Farmer CM, Lund AK. The effects of vehicle redesign on the risk of driver death. Traffic Inj Prev 2015;16:684-90. - Fogarty AW, Liu C. Temporal trends in the associations between age, sex and socioeconomic status after death from motor vehicle collisions in England and Wales: 1960-2009. Emerg Med J 2015;32:203-6. - Harper S, Charters TJ, Strumpf EC. Trends in socioeconomic inequalities in motor vehicle accident deaths in the United States, 1995-2010. Am J Epidemiol 2015;182:606-14. - Lee LK, Farrell CA, Mannix R. Restraint use in motor vehicle crash fatalities in children 0 year to 9 years old. J Trauma Acute Care Surg 2015;79:S55-60. - Lee LK, Monuteaux MC, Burghardt LC, Fleegler EW, Nigrovic LE, Meehan WP, et al. Motor vehicle crash fatalities in states with primary versus secondary seat belt laws: A time-series analysis. Ann Intern Med 2015;163:184-90. - 91. Martínez-Ruiz V, Jiménez-Mejías E, Amezcua-Prieto C, Olmedo-Requena R, Luna-del-Castillo Jde D, Lardelli-Claret P. Contribution of exposure, risk of crash and fatality to explain age And sex-related differences in traffic-related cyclist mortality rates. Accid Anal Prev 2015;76:152-8. - Yasmin S, Eluru N, Pinjari AR. Analyzing the continuum of fatal crashes: A generalized ordered approach. Anal Methods Accid Res 2015;7:1-15. - 93. Yeo J, Park S, Jang K. Effects of urban sprawl and vehicle miles traveled on traffic fatalities. Traffic Inj Prev 2015;16:397-403. - Andrade SS, Mello-Jorge MH. Mortality and potential years of life lost by road traffic injuries in Brazil, 2013. Rev Saude Publica 2016;50:59. - Bakhtiyari M, Mehmandar MR, Riahi SM, Mansournia MA, Sartipi M, Bahadorimonfared A. Epidemiologic pattern of fatal traffic injuries among Iranian drivers; 2004-2010. Iran J Public Health 2016;45:503-14. - Bénié Bi Vroh J, Tiembre I, Ekra DK, Ano Ama MN, Ka OM, Ncho Dagnan S, et al. Determinants of fatal road traffic injuries in Côte d'Ivoire from 2002 to 2011 Sante Publique 2016;28:647-53. - 97. Bhatti JA, Nathens AB, Redelmeier DA. Driver's obesity and road crash risks in the United States. Traffic Inj Prev 2016;17:604-9. - Bin Islam M, Hernandez S. Fatality rates for crashes involving heavy vehicles on highways: A random parameter Tobit regression approach. J Transp Saf Secur 2016;8:247-65. - Boufous S, Olivier J. Recent trends in cyclist fatalities in Australia. Inj Prev 2016;22:284-7. - Brazil N, Kirk DS. Uber and metropolitan traffic fatalities in the United States. Am J Epidemiol 2016;184:192-8. - Brazinova A, Majdan M. Road traffic mortality in the Slovak Republic in 1996-2014. Traffic Inj Prev 2016;17:692-8. - 102. Chang YS, Lee WJ, Lee JH. Are there higher pedestrian fatalities in larger cities?: A scaling analysis of 115 to 161 largest cities in the United States. Traffic Inj Prev 2016;17:720-8. - 103. Denning GM, Jennissen CA. All-terrain vehicle fatalities on paved roads, unpaved roads, and off-road: Evidence for informed roadway safety warnings and legislation. Traffic Inj Prev 2016;17:406-12. ## Archive of SID - 104. El-Menyar A, Consunji R, Asim M, Abdelrahman H, Zarour A, Parchani A, et al. Underutilization of occupant restraint systems in motor vehicle injury crashes: A quantitative analysis from Qatar. Traffic Inj Prev 2016;17:284-91. - 105. Gopaul CD, Singh-Gopaul A, Sutherland JM, Rostant L, Ebi KL, Chadee DD. The epidemiology of fatal road traffic collisions in Trinidad and Tobago, West Indies (2000-2011). Glob Health Action 2016;9:32518. - 106. Huang Y, Liu C, Pressley JC. Child restraint use and driver screening in fatal crashes involving drugs and alcohol. Pediatrics 2016;138. pii: e20160319. - Tavakoli Kashani A, Rabieyan R, Besharati MM. Modeling the effect of operator and passenger characteristics on the fatality risk of motorcycle crashes. J Inj Violence Res 2016;8:35-42. - 108. Matsui Y, Oikawa S, Sorimachi K, Imanishi A, Fujimura T. Association of impact velocity with risks of serious injuries and fatalities to pedestrians in commercial truck-pedestrian accidents. Stapp Car Crash J 2016;60:165-82. - 109. Onieva-García MÁ, Martínez-Ruiz V, Lardelli-Claret P, Jiménez-Moleón JJ, Amezcua-Prieto C, de Dios Luna-Del-Castillo J, et al. Gender and age differences in components of traffic-related pedestrian death rates: Exposure, risk of crash and fatality rate. Inj Epidemiol 2016;3:14. - 110. PulidoJ, BarrioG, Hoyos J, Jiménez-Mejías E, Martín-Rodríguez Mdel M, Houwing S, et al. The role of exposure on differences in driver death rates by gender and age: Results of a quasi-induced method on crash data in Spain. Accid Anal Prev 2016;94:162-7. - 111. Saha S, Schramm P, Nolan A, Hess J. Adverse weather conditions and fatal motor vehicle crashes in the United States, 1994-2012. Environ Health 2016;15:104. - 112. Shults RA, Williams AF. Graduated driver licensing night driving restrictions and drivers aged 16 or 17 years involved in fatal night crashes – United States, 2009-2014. MMWR Morb Mortal Wkly Rep 2016;65:725-30. - Truong LT, Kieu LM, Vu TA. Spatiotemporal and random parameter panel data models of traffic crash fatalities in Vietnam. Accid Anal Prev 2016;94:153-61. - 114. Vanlaar W, Mainegra Hing M, Brown S, McAteer H, Crain J, McFaull S. Fatal and serious injuries related to vulnerable road users in Canada. J Safety Res 2016;58:67-77. - Zhu M, Zhao S, Long DL, Curry AE. Association of graduated driver licensing with driver, non-driver, and total fatalities among adolescents. Am J Prev Med 2016;51:63-70. - Besharati MM, Tavakoli Kashani A. Which set of factors contribute to increase the likelihood of pedestrian fatality in road crashes? Int J Inj Contr Saf Promot 2018;25:247-56. - Dong C, Nambisan SS, Clarke DB, Sun J. Exploring the effects of state highway safety laws and sociocultural characteristics on fatal crashes. Traffic Inj Prev 2017;18:299-305. - 118. Farmer CM. Relationship of traffic fatality rates to maximum state speed limits. Traffic Inj Prev 2017;18:375-80. - 119. Hadland SE, Xuan Z, Sarda V, Blanchette J, Swahn MH, Heeren TC, et al. Alcohol policies and alcohol-related motor vehicle crash fatalities among young people in the US. Pediatrics 2017;139. pii: e20163037. - 120. Hamidun R, Roslan A, Sarani R. Exploring factors for pedestrian fatalities at junctions in Malaysia. Pertanika J Soc Sci Hum 2017;25:1833-40. - 121. Joseph B, Hadeed S, Haider AA, Ditillo M, Joseph A, Pandit V, *et al.* Obesity and trauma mortality: Sizing up the risks in motor vehicle crashes. Obes Res Clin Pract 2017;11:72-8. - 122. Kashani AT, Besharati MM. Fatality rate of pedestrians and fatal crash involvement rate of drivers in pedestrian crashes: A case study of Iran. Int J Inj Contr Saf Promot 2017;24:222-31. - Li G, Chihuri S, Brady JE. Role of alcohol and marijuana use in the initiation of fatal two-vehicle crashes. Ann Epidemiol 2017;27:342-70. - 124. Lombardi DA, Horrey WJ, Courtney TK. Age-related differences in fatal intersection crashes in the United States. Accid Anal Prev 2017;99:20-9. - McDonald NC. Trends in automobile travel, motor vehicle fatalities, and physical activity: 2003-2015. Am J Prev Med 2017;52:598-605. - Noland RB, Zhou Y. Has the great recession and its aftermath reduced traffic fatalities? Accid Anal Prev 2017;98:130-8. - Plevin RE, Kaufman R, Fraade-Blanar L, Bulger EM. Evaluating the potential benefits of advanced automatic crash notification. Prehosp Disaster Med 2017;32:156-64. - 128. Robertson L. Climate change, weather and road deaths. Inj Prev 2018;24:232-5. - 129. Schepers P, Stipdonk H, Methorst R, Olivier J. Bicycle fatalities: Trends in crashes with and without motor vehicles in the Netherlands. Transp Res Part F Traffic Psychol Behav 2017;46:491-9. - Wang Y, Liang L, Evans L. Fatal crashes involving large numbers of vehicles and weather. J Safety Res 2017;63:1-7. - 131. Wolf LL, Chowdhury R, Tweed J, Vinson L, Losina E, Haider AH, et al. Factors associated with pediatric mortality from motor vehicle crashes in the United States: A state-based analysis. J Pediatr 2017;187:295-302.e3. - Goel R. Modelling of road traffic fatalities in India. Accid Anal Prev 2018;112:105-15. - 133. Jeppsson H, Östling M, Lubbe N. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of vacuum emergency braking. Accid Anal Prev 2018;111:311-20. - 134. Lee JM. Mandatory helmet legislation as a policy tool for reducing motorcycle fatalities: Pinpointing the efficacy of universal helmet laws. Accid Anal Prev 2018;111:173-83. - Martin JL, Wu D. Pedestrian fatality and impact speed squared: Cloglog modeling from French national data. Traffic Inj Prev 2018;19:94-101. - 136. Prato CG, Kaplan S, Patrier A, Rasmussen TK. Considering built environment and spatial correlation in modeling pedestrian injury severity. Traffic Inj Prev 2018;19:88-93. - 137. Ramstedt M. Alcohol and fatal accidents in the United States A time series analysis for 1950-2002. Accid Anal Prev 2008;40:1273-81. - 138. Houston DJ, Richardson LE. Motorcyclist fatality rates and mandatory helmet-use laws. Accid Anal Prev 2008;40:200-8. - Rosén E, Sander U. Pedestrian fatality risk as a function of car impact speed.
Accid Anal Prev 2009;41:536-42. - Arranz JM, Gil AI. Traffic accidents, deaths and alcohol consumption. Appl Econ 2009;41:2583-95. - 141. Romano E, Kelley-Baker T, Voas RB. Female involvement in fatal crashes: Increasingly riskier or increasingly exposed? Accid Anal Prev 2008;40:1781-8. - 142. Malyshkina NV, Mannering FL. Analysis of the effect of speed limit increases on accident-injury severities. Transp Res Rec 2008;1:122-7. - 143. Cheung I, McCartt AT. Declines in fatal crashes of older drivers: Changes in crash risk and survivability. Accid Anal Prev 2011;43:666-74. - 144. Nakahara S, Ichikawa M. Effects of high-profile collisions on drink-driving penalties and alcohol-related crashes in Japan. Inj Prev 2011;17:182-8. - Goldstein GP, Clark DE, Travis LL, Haskins AE. Explaining regional disparities in traffic mortality by decomposing conditional probabilities. Inj Prev 2011;17:84-90. - 146. Kweon YJ, Lee J. Potential risk of using general estimates system: Bicycle safety. Accid Anal Prev 2010;42:1712-7. - 147. Chandran A, Sousa TR, Guo Y, Bishai D, Pechansky F; Vida No Transito Evaluation Team. Road traffic deaths in Brazil: Rising trends in pedestrian and motorcycle occupant deaths. Traffic Inj Prev 2012;13 Suppl 1:11-6. - 148. Males MA. Poverty as a determinant of young drivers' fatal crash risks. J Safety Res 2009;40:443-8. - Brady JE, Li G. Prevalence of alcohol and other drugs in fatally injured drivers. Addiction 2013;108:104-14. - 150. Mannix R, Fleegler E, Meehan WP 3rd, Schutzman SA, Hennelly K, Nigrovic L, *et al.* Booster seat laws and fatalities in children 4 to 7 years of age. Pediatrics 2012;130:996-1002. - 151. Viano DC, Parenteau CS. Fatalities of children 0-7 years old in the second row. Traffic Inj Prev 2008;9:231-7. - 152. Wilson FA, Stimpson JP. Trends in fatalities from distracted driving in the United States, 1999 to 2008. Am J Public Health 2010;100:2213-9. - 153. Consunji RJ, Peralta RR, Al-Thani H, Latifi R. The implications of the relative risk for road mortality on road safety programmes in Qatar. Inj Prev 2015;21:e105-8. - 154. Chang K, Wu CC, Ying YH. The effectiveness of alcohol control policies on alcohol-related traffic fatalities in the United States. Accid Anal Prev 2012;45:406-15. - 155. Morrisey MA, Grabowski DC. Gas prices, beer taxes and GDL programmes: Effects on auto fatalities among young adults in the US. Appl Econ 2011;43:3645-54. - 156. Desai A, Bekelis K, Zhao W, Ball PA. Increased population density of neurosurgeons associated with decreased risk of death from motor vehicle accidents in the United States. J Neurosurg 2012;117:599-603. - 157. Cotti C, Tefft N. Decomposing the relationship between macroeconomic conditions and fatal car crashes during the great recession: Alcohol-and non-alcohol-related accidents. B E J Econom Anal Policy 2011;11:35-50. - 158. Masten SV, Foss RD, Marshall SW. Graduated driver licensing and fatal crashes involving 16- to 19-year-old drivers. JAMA 2011;306:1098-103. - 159. Hanna CL, Laflamme L, Bingham CR. Fatal crash involvement of unlicensed young drivers: County level differences according to material deprivation and urbanicity in the United States. Accid Anal Prev 2012;45:291-5. - 160. Bakhtiyari M, Mehmandar MR, Mirbagheri B, Hariri GR, Delpisheh A, Soori H. An epidemiological survey on road traffic crashes in Iran: Application of the two logistic regression models. Int J Inj Contr Saf Promot 2014;21:103-9. - 161. Park K, Hwang SS, Lee JS, Kim Y, Kwon S. Individual and areal risk factors for road traffic injury deaths: Nationwide study in South Korea. Asia Pac J Public Health 2010;22:320-31. - 162. Denning GM, Harland KK, Ellis DG, Jennissen CA. More fatal all-terrain vehicle crashes occur on the roadway than off: Increased risk-taking characterises roadway fatalities. Inj Prev 2013;19:250-6. - 163. Cummins JS, Koval KJ, Cantu RV, Spratt KF. Do seat belts and air bags reduce mortality and injury severity after car accidents? Am J Orthop (Belle Mead NJ) 2011;40:E26-9. - 164. Romano E, Voas RB. Drug and alcohol involvement in four types of fatal crashes. J Stud Alcohol Drugs 2011;72:567-76. - 165. Bogstrand ST, Larsson M, Holtan A, Staff T, Vindenes V, Gjerde H. Associations between driving under the influence of alcohol or drugs, speeding and seatbelt use among fatally injured car drivers in Norway. Accid Anal Prev 2015;78:14-9. - 166. Carpenter D, Pressley JC. Graduated driver license nighttime compliance in US teen drivers involved in fatal motor vehicle crashes. Accid Anal Prev 2013;56:110-7. - 167. Oh C, Kang YS, Youn Y, Konosu A. Development of probabilistic pedestrian fatality model for characterizing pedestrian-vehicle collisions. Int J Automot Technol 2008;9:191-6. - 168. Zhu M, Zhao S, Coben JH, Smith GS. Why more male pedestrians die in vehicle-pedestrian collisions than female pedestrians: A decompositional analysis. Inj Prev 2013;19:227-31. - 169. Keall MD, Newstead S. Analysis of factors that increase motorcycle rider risk compared to car driver risk. Accid Anal Prev 2012;49:23-9. - 170. Zhu M, Cummings P, Zhao S, Coben JH, Smith GS. The association of graduated driver licensing with miles driven and fatal crash rates per miles driven among adolescents. Inj Prev 2015;21:e23-7. - 171. Olszewski P, Szagała P, Wolański M, Zielińska A. Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland. Accid Anal Prev 2015;84:83-91. - 172. Prato CG, Gitelman V, Bekhor S. Mapping patterns of pedestrian fatal accidents in Israel. Accid Anal Prev 2012;44:56-62. - 173. Kusano KD, Gabler HC. Comprehensive target populations for current active safety systems using national crash databases. Traffic Inj Prev 2014;15:753-61. - 174. Daigneault G, Joly P, Frigon JY. Executive functions in the evaluation of accident risk of older drivers. J Clin Exp Neuropsychol 2002;24:221-38. | Number | | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | |--------|---|---|---|--------------------|--|---| | 1 | Predictors of injury
among younger
and older adults in
fatal motor vehicle
crashes ^[20] | Awadzi et al./2008/
USA/Americas/ ^[20] | CS/multinomial logistic regression/23 | OR | Person variables,
vehicle variables,
environment variables | Person factors: Age, gender, driver license compliance, driver drinking, system-restraint use (seatbelt). Vehicle factors: Compared to drivers in SUVs, drivers in automobile (passenger) cars had a higher risk of fatality. Collision with a fixed object, rollover crashes. Environment factor: Hour of day, road surface condition, and driving in daylight hours | | 2 | Evolution of road
risk disparities
at small-scale
level: Example of
Belgium ^[21] | Eksler and
Lassarre/2008/
BELGIUM/Europe/ | CS (not mentioned in article)/spatiotemporal Bayesian models/14 | Rate | Spatial and time trend factors | Spatial effect | | 3 | A mixed
generalized ordered
response model
for examining
pedestrian and
bicyclist injury
severity level in
traffic crashes ^[22] | Eluru et al./2008/
USA/Americas/ ^[22] | CS (not mentioned
in article)/MGORL
model/12 | Mean | Person factors (age, sex, alcohol consumption), vehicle factors, road factors, environmental factors, crash characteristics | Person factors: (the elderly are more injury-prone) The speed limit on the roadway (higher speed limits lead to higher injury severity levels). Crash characteristics: Location of crashes (those at signalized intersections are less severe than those elsewhere). Environmental factors: Time-of-day (darker periods) | | 4 | Inter-group
differences in
road-traffic crash
involvement ^[23] | Factor et al./2008/
Israeli/Europe/ ^[23] | CS/logistic regression/15 | OR | Person factors: Age,
Marital status, years of
schooling, household
social class, place
of work, religion,
continent of origin,
traveled distance.
Economic factor:
Asset index | Person factors: Sex, age, race, education, socioeconomic status | | 5 | Injury severity
analysis of
accidents involving
young male drivers
in Great Britain ^[24] | Gray et al./2008/
UK/Europe/ ^[24] | CS (not mentioned in article)/Ordered probit models/10 | Rate | Road factors,
environmental factors | Environmental factors: Darkness, fine no high winds, end of the week, road factors: on the main road, when a vehicle has skidded, passing the site of previous accident | | 6 | Maternal fatalities,
fetal and neonatal
deaths related to
motor vehicle
crashes during
pregnancy:
A national
population-based
study ^[25] | Kvarnstrand et al./2008/Swedish/
Europe/ ^[25] | CS (not mentioned in article)/-/13 | OR | Person factors:
pregnant women,
fetuses, and neonates | Person factors: MVCs during pregnancy were a significant cause of maternal fatalities, fetal and neonatal deaths | | 7 | The impact of
driver age on
lost life years
for other road
users in
France:
A population
based study of
crash-involved road
users ^[26] | Lafont et al./2008/
France/Europe/ ^[26] | Population-based CS study/-/19 | Lost life
years | Person factors: Age of
drivers | Person factors: Older drivers are responsible for the lowest rate of lost life years | Contd... www.SID.ir | Append | ix Table 1: Contd | | | | | | |--------|---|--|---|-------------------|--|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 8 | High gasoline
prices and mortality
from motor vehicle
crashes and air
pollution ^[27] | Leigh and
Geraghty/2008/
USA/Americas/ ^[27] | CS (not mentioned in article)/Monte Carlo simulation/11 | Percent | Laws factors: Gas prices | Laws factors: 50% increases in price lead to 95% of the reduction in combined deaths | | 9 | Risk factors for
death among older
child and teenaged
motor vehicle
passengers ⁽⁷⁾ | Winston et al./2008/
USA/Americas/ ^[7] | Retrospective cohort//22 | AOR | Person factors (age
and sex of driver,
restraint use, seating
position), vehicle
factor, road factor,
environmental
factors (day of week,
month, time of day),
laws factors (speed
limit) | Person factors: drivers younger
than 18 years, restraint nonuse,
high-speed roads, speed limit | | 10 | Booster seat laws
and child fatalities:
A case-control
study ^[28] | Farmer et al./2009/
USA/Americas/ ^[28] | Case-control/general
linear model/21 | OR | Law-related
factors (booster
seat laws), crash
characteristics | Laws factors (restrained) | | 11 | Long-term effects
of repealing the
national maximum
speed limit in the
United States ^[29] | Friedman
et al./2009/USA/
Americas/ ^[29] | CS (not mentioned in paper)/-/12 | Percent | Law-related factors | Law-related factors | | 12 | The association
between price
of regular-grade
gasoline and injury
and mortality rates
among occupants
involved in
motorcycle-and
automobile-related
motor vehicle
collisions ^[30] | Hyatt et al./2009/
USA/Americas/ ^[30] | CS (not mentioned
in paper)/time-series
analysis/18 | ARR | Law-related factors:
Gasoline prices | Law-related factors: Higher gasoline prices were associated with increased motorcycle-related deaths | | 13 | Motor vehicle
deaths among men:
marital status,
gender and social
integration ^[31] | Kposowa and
Breault/2009/USA/
Americas/[31] | CS (not mentioned in paper)/-/22 | HR | Person factors | Person factors: Education | | 14 | Association of age, sex and seat belt use with the risk of early death in drivers of passenger cars involved in traffic crashes ^[32] | Lardelli-Claret
et al./2009/Spain/
Europe/ ^[32] | CS (not mentioned in
paper)/poisson multiple
regression models/16 | RR | Person factors: Age, sex, and seatbelt use | Person factors: Age, sex, and seatbelt use with risk of death | | 15 | The effect of
state regulations
on truck-crash
fatalities ^[33] | Neeley and
Richardson/2009/
USA/Americas/ ^[33] | CS/time-series regression model/8 | Rate of fatality | Person factors: Speedy driving | Person factors: Significant
association between speedy
driving and fatalities | | 16 | The impact of state
level behavioral
regulations on
traffic fatality
rates ^[34] | Traynor/2009/USA/
Americas/ ^[34] | CS (not mentioned in
paper)/time fixed effect
model/10 | Fatality
rates | Person factors,
law-related factors:
DUI laws | Law-related factors: Licensing
and DUI policies significantly
reduce traffic fatality rates, while
stricter seatbelt enforcement
policies have a statistically
insignificant negative impact on
fatality rates | | Append | ix Table 1: Contd | | | | | | |--------|---|--|--|---------------------------------|--|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 17 | Gasoline prices and their relationship to rising motorcycle fatalities, 1990-2007 ^[35] | | CS (not mentioned
in paper)/an ARIMA
regression/11 | Fatality rate | Economic factor: Fuel prices | Fuel costs | | 18 | Analysis of
truck-involved
rear-end crashes
using multinomial
logistic
regression ^[36] | Yan et al./2009/
USA/Americas/ ^[36] | CS (not mentioned in
paper)/multi nominal
logistic regression/10 | OR | Environmental factors,
driver characteristics,
road characteristics | Lighting condition, divided/
undivided highway, day of
week, alcohol use, driver age,
and gender are also significantly
associated with fatal truck
rear-end
collision | | 19 | Effect of enhanced seat belt reminders on driver fatality risk ^[37] | Farmer and
Wells/2010/USA/
Americas/ ^[37] | CS (not mentioned in paper)/-/10 | Fatality rates | Vehicle characteristics:
Seatbelt reminders on
driver fatality risk | Combining all manufacturers, enhanced belt reminders reduced fatality risk | | 20 | High mortality
among people
suspected of
drunk-driving.
An 18-year
register-based
follow-up ^[38] | Impinen <i>et al.</i> /2010/
Finland/Europe/ ^[38] | CS (not mentioned in
paper)/Cox-regression
model/18 | Mortality rate | Driver characteristics (DUI), person factors | Being male and of higher age increased the risk of death. The lowest blood alcohol levels more harmful. Drivers with a lower level of education, married men were safer than others | | 21 | Mortality and causes of death among drugged drivers ^[39] | Karjalainen
et al./2010/Finland/
Europe/ ^[39] | CS (not mentioned in paper)/Cox regression models/15 | HR | Driver behavior:
DUID | DUID had almost ten times as
high risk of death compared to
general Finnish population | | 22 | The epidemiology
of road traffic
injuries in the
Republic of
Lithuania, 1998-
2007 ^[40] | Lunevicius <i>et al.</i> /2010/
Lithuania/Europe/ ^[40] | CS (not mentioned in paper)/-/5 | Incidence
mortality
rates | Driver behavior:
alcohol | Alcohol remains a prominent risk factor of traffic death | | 23 | Traffic crash victimizations of children and teenagers by drinking drivers age 21 and older ^[11] | Males/2010/US/
Americas/[11] | CS (not mentioned in paper)/-/- | - | Victimizations of
children and teenagers
by drinking drivers
age 21 and older | Drinking drivers age 21 and older victimize 1.3 times more teenage drivers than vice versa and account for large majorities of passenger and no occupant alcohol-related crash victimizations of both children and teens | | 24 | Graduated
licensing laws and
fatal crashes of
teenage drivers: a
national
study ^[41] | Anne et al./2010/
USA/Americas/ ^[41] | CS (not mentioned
in paper)/Poisson
regression/15 | Mortality rates | Laws factors:
Graduated driver
licensing laws | Compared with licensing laws rated poor, laws rated good were associated with 30 percent lower fatal crash rates among 15-17-year-olds | | 25 | Using the U. S. National Household Travel Survey to estimate the impact of passenger characteristics on young drivers' relative risk of fatal crash involvement ^[42] | Ouimet et al./2010/
USA/Americas/ ^[42] | CS (not mentioned in paper)/-/18 | RR | Person factors | The highest risk was found for young male drivers | Contd... | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | |--------|---|--|--|-------------------|---
--| | 26 | Toward
understanding
the recent large
reductions in U. S.
road fatalities ^[43] | Sivak and
Schoettle/2010/
USA/Americas/ ^[43] | Cross sectional study (not mentioned in the article)/-/13 | Rate | Driver- related factors,
environmental factors,
car-related factors | Fatal accidents on rural interstates
Local roads/streets increased
fatality, front-to-side fatal
collisions declined more than all
fatal collisions | | | | | | RR | | Roads with a speed limit of 50 mph or higher showed reductions. The involvement of heavy trucks was reduced more than the involvement of all vehicles. Among driver-related factors, inattentive driving (talking, eating, and using cell phones) showed a large increase. | | 27 | Role of motorcycle
type in fatal
motorcycle
crashes ^[44] | Teoh and
Campbel/2011/
USA/Americas/ ^[44] | CS (not mentioned
in article)/Poisson
regression/13 | RR | Vehicle-related factors | Driver death rates for super
sport motorcycles were more
than those for cruiser/standard
motorcycles | | 28 | Fatality risk for
motorcyclists
in fixed object
collisions ^[45] | Bambach
et al./2011/
Australia/Western
Pacific/ ^[45] | CS (not mentioned
in article)/logistic
regression/18 | OR | Environmental factors, driver-related factors | Increased travel speed, older motorcyclists, speed-related crashes, late model motorcycles, darkness, interchange locations, nonlevel roadway profiles, and roadside departure to the right side are all associated with an increase in the likelihood of fatality | | 29 | Can fear of going
to jail reduce
the number of
road fatalities?
The Spanish
experience ^[46] | Castillo-Manzano <i>et al.</i> /2011/Spanish/
Europe ^[46] | CS (not mentioned in article)/-/9 | Rate | Economic factors, consumption of gasoline | This reform has reduced Spanish road fatalities | | 30 | Density of surgeons is significantly associated with reduced risk of deaths from motor vehicle crashes in US Counties ^[47] | Chang et al./2011/
USA/Americas/ ^[47] | CS (not mentioned in article)/multiple linear regression/11 | Rate | Medical services:
Surgeon availability | Higher density of surgeons is associated with significant reduction in deaths from motor vehicle crashes | | 31 | Fatality risk
in motorcycle
collisions with
roadside objects in
the United States ^[48] | Daniello and
Gabler/2011/USA/
Americas/ ^[48] | CS (not mentioned in article)/-/16 | RR | Environmental factors:
Roadside objects | Collisions with roadside objects | | 32 | An evaluation of
graduated driver
licensing effects
on fatal crash
involvements of
young drivers in
the United States ^[49] | Fell et al./2011/
USA/Americas/ ^[49] | CS (not mentioned in article)/-/18 | Crash rates | Laws factors:
Graduated driver
licensing laws | The adoption of a graduated driver licensing law of average strength was associated with a significant decrease in fatal crash | | 33 | Survival risk
factors for fatal
injured car and
motorcycle
drivers in single
alcohol-related and
alcohol-unrelated
vehicle crashes ^[50] | Huang and
Lai/2011/Taiwan/
Southeast Asia/ ^[50] | CS study (not mentioned in article)/cox regression models/21 | Death ratios | Environmental factors, person factors | The factors that influence the risk of death overtime in a motor-vehicle accident involving alcohol depended on different elements (variables: sex, age, restrained, crash type, hour, road types in city (local road, highway, freeway), location (motorcycle traffic separation) | | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | |--------|--|---|---|-------------------|---|--| | 34 | Analysis of
large truck crash
severity using
heteroskedastic
ordered probit
models ^[51] | Lemp et al./2011/
USA/Americas/ ^[51] | CS (not mentioned in
paper)/heteroskedastic
ordered probit models/14 | Ratio | Environmental factors,
driver factors, vehicle
factors | Nonbright lighting conditions, the snowy or icy, fog road The numbers of involved passenger vehicle and truck occupants increase the likelihood of a fatal outcome The number of truck trailers increase the fatality | | 35 | Motor vehicle accident fatalities trends, Puerto Rico 2000-2007 ^[52] | Lopez
-Charneco/2011/
Puerto Rico/
Americas/ ^[52] | CS (not mentioned
in article)/join point
regression analysis/8 | Mortality rate | Person factors,
environmental factors | Young adults (20-24 years) had a higher risk of MVAF | | 36 | Logistic regression
model of risk
of fatality in
vehicle-pedestrian
crashes on national
highways in
Bangladesh ^[53] | Sarkar et al./2011/
Bangladesh/
Southeast Asia/ ^[53] | CS (not mentioned in
article)/logistic regression
model/13 | OR | Person factors,
road users,
environmental factors | Elderly pedestrians and young pedestrians increased the likelihood of a fatality Pedestrians who crossed the road Pedestrian collisions with trucks, buses, baby taxis or tempos (autorickshaws), and tractors Crashes occurring at locations with no traffic control, stop control, and pedestrian crossings had a higher risk of a fatality Collisions during the rainy season | | 37 | An investigation
of the risk factors
causing severe
injuries in crashes
involving gravel
trucks ^[54] | Chu/2012/Taiwan/
Southeast Asia/ ^[54] | CS (not mentioned in
article)/binary logit
model/8 | Rate | Driver factors, road factors | Lack of driver awareness,
geometric improvements to roads
or intersections,
runs in a day | | 38 | A latent class modeling approach for identifying vehicle driver injury severity factors at highway-railway crossings ^[55] | Eluru et al./2012/
USA/Americas/ ^[55] | CS (not mentioned
in article)/Latent
segmentation-based
ordered
response model/17 | Rate | Accident characteristics: Highway-railway crossing attributes Driver demographics including gender, age, vehicle occupancy, vehicle type Environmental factors (weather, lighting conditions, time of day, etc.) Crossing characteristics (Annual traffic on the highway, railway traffic, etc.) Crossing safety equipment (presence of gates, traffic signals, watchmen, etc.) | The key influencing factors include driver age, time of the accident, presence of snow and/or rain, vehicle role in the crash, and motorist action before the crash | | 39 | Influence of
obesity on
mortality of drivers
in severe motor
vehicle crashes ^[56] | Jehle et al./2012/
USA/Americas/ ^[56] | CS (not mentioned in
article)/multiple logistic
regression model/20 | OR | Person factors:
Obesity of drivers | Increased risk of death for moderately obese, morbidly obese | | Append | ix Table 1: Contd | | | | | | |--------|---|---|--|-------------------|--|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 40 | Risk factors in
motorcyclist
fatalities in
Taiwan ^[57] | Jou et al./2012/
Taiwan/Southeast
Asia/ ^[57] | CS (not mentioned in article)/logistic regression model/15 | OR | Person factors,
driver behavior,
road conditions | Male, older, unlicensed, not wearing a helmet, riding after drinking, and driving heavy (i.e., above 550 cc) motorcycles. Motorcyclists involved in nighttime, nonurban single-vehicle accidents have a higher risk of death | | 41 | National evaluation
of the effect of
graduated driver
licensing laws
on teenager
fatality and injury
crashes ^[58] | Lyon et al./2012/
USA/Americas/ ^[58] | CS (not mentioned
in
article)/negative binomial
generalized linear
model/14 | Rate | Driver factors: GDL;
environmental factors | Age, nighttime | | 42 | Comparing
the impact of
socio-demographic
Factors associated
with traffic injury
among older road
users and the
general population
in Japan ^[59] | Nagata et al./2012/
Japan/Western
Pacific/ ^[59] | Ecological study/
multivariate regression
modeling/18 | Rate | Person factors,
economic factors,
road factors,
medical/cultural
factors | Income per capita, total road length, alcohol consumption per person | | 43 | Risk of fatal injury
in older adult
drivers, passengers,
and pedestrians ^[60] | Rolison <i>et al.</i> /2012/
Britain/Europe/ ^[60] | Ecological study/log-link modeling/17 | OR | Person factors | Aged 70 and older has highest fatality for pedestrians and passenger | | 44 | Factors affecting accident severity inside and outside urban areas in Greece ^[61] | Theofilatos et al./2012/Greece/
Europe/ ^[61] | CS (not mentioned in article)/linear regression models/13 | OR | Person factors, collision factors | Young driver age, bicycles intersections, collision with fixed objects, urban areas | | 45 | Mortality in rural
locations after
severe injuries
from motor vehicle
crashes ^[62] | Travis et al./2012/
USA/Americas/ ^[62] | CS (not mentioned in article)/-/21 | OR | Person factors,
driver behavior,
environmental factors,
vehicle factors,
environmental factors | Older age, safety belt nonuse, vehicle damage, high speed, and early morning crashes | | 46 | Alcohol-related risk
of driver fatalities:
An update using
2007 data ^[63] | Voas et al./2012/
USA/Americas/ ^[63] | CS (not mentioned in article)/linear regression/19 | RR | Person factors | Male driver | | 47 | Increased risk of
driver fatality due
to unrestrained
rear-seat passengers
in severe frontal
crashes ^[64] | Bose et al./2013/
USA/Americas/ ^[64] | CS (not mentioned in article)/multivariate logistic regression/13 | OR | Road user behavior:
Unrestrained rear-seat
passengers | Unrestrained passenger | | 48 | Factors associated
with civilian
drivers involved
in crashes with
emergency
vehicles ^[65] | Drucker et al./2013/
USA/Americas/ ^[65] | CS/Multivariate logistic regression/17 | OR | Driver factors,
roadway factors,
environmental factors,
crash factors | Urban roads (vs. rural), dark
roads (vs. daylight) | | 49 | Road traffic crashes
and fatalities in
Japan 2000-2010
with special
reference to the
elderly road user ^[66] | Kaimila <i>et al.</i> /2013/
Japan/Western
Pacific/ ^[66] | CS (not mentioned
in article)/fatal crash
rates/14 | Fatal crash rates | Person factors | Elderly pedestrians | | Appena | ix Table 1: Contd | ••• | | | | | |--------|--|---|---|----------------------|--|---| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size
index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 50 | Bicycle helmet
laws are associated
with a lower
fatality rate from
bicycle-motor
vehicle collisions ^[67] | Meehan et al./2013/
USA/Americas/ ^[67] | CS study/poisson
multivariate regression
model/12 | Fatality
rates | Law factors: Bicycle
helmet legislation | Bicycle helmet safety laws are
associated with a lower incidence
of fatalities | | 51 | Variation in U. S.
traffic safety policy
environments and
motor vehicle
fatalities 1980-
2010 ^[68] | Silver <i>et al.</i> /2013/
USA/Americas ^[68] | Repeated CS time series
design/fixed effects
regression models/19 | fatality rate | Road user behavior,
law factors | Alcohol consumption was strongly associated with higher MVC death rates | | 52 | Fatalities of Pedestrians, bicycle riders, and motorists due to distracted driving motor vehicle crashes in the U. S., 2005-2010 ^[69] | Stimpson <i>et al.</i> /2013/USA/
Americas/ ^[69] | CS (not mentioned in article)/model not used/13 | Fatality rate | Road user behavior | Distracted drivers are the cause
of an increasing share of fatalities
among pedestrians and bicycle
riders | | 53 | Impact speed and
a pedestrian's risk
of severe injury or
death ^[70] | Tefft/2013/USA/
Americas/ ^[70] | CS (not mentioned in article)/multivariable logistic regression/22 | OR | Person factors | Older pedestrian | | 54 | The effect of recent trends in vehicle design on U. S. societal fatality risk per vehicle mile traveled, and their projected future relationship with vehicle mass ^[71] | Wenzel/2013/USA/
Americas/ ^[71] | CS (not mentioned in article)/ logistic regression/12 | Fatality rate | Vehicle type | shifting light truck drivers into
safer, car-based vehicles, such
as sedans, CUVs, and minivans,
would result in reductions in
fatalities | | 55 | Appalachian versus non-Appalachian U. S. traffic fatalities, 2008e2010 ^[72] | Zhu <i>et al.</i> /2013/
USA/Americas/ ^[72] | CS (not mentioned
in article)/Poisson
regression/11 | RR | Person factors:
Appalachia and the
non-Appalachian
United States | The Appalachian traffic fatality rate was higher than the non-Appalachian rate | | 56 | Update: Repeat
DWI offenders
involvement in
fatal crashes in
2010 ^[73] | Fell et al./2014/
USA/Americas/[⁷³] | CS (not mentioned in article)/-/7 | Percent | Driver Behavior:
driving-while
-intoxicated or DUI
and crash fatality | Drivers with prior DWI convictions are overrepresented in fatal crashes | | 57 | Macroeconomic fluctuations and motorcycle fatalities in the U. S. ^[74] | French and
Gumus/2014/USA/
Americas/ ^[74] | CS/Regression model/14 | Fatality rate | Economic factor | The estimates suggest that an increase in real income per capita is associated with motorcycle fatality rate | | 58 | Why has the pedestrian death rate decreased in Spain between 1993 and 2011? An application of the decomposition method ^[75] | Jiménez-Mejías
et al./2014/Spain/
Europe/ ^[75] | CS (not mentioned
in article)/Poisson
regression/11 | Death rates | Collision factor | Collision rates were the most important determinants of the reduction in pedestrian collision death rates | | 59 | Crash fatality
and vehicle
incompatibility in
collisions between
cars and light
trucks or vans ^[76] | Ossiander
et al./2014/USA/
Americas/ ^[76] | Case control study/
logistic regression/ | OR | Vehicle type: LTV on fatality crash | Occupants of vehicles colliding with any type of LTVs were at higher risk of death | | Append | ix Table 1: Contd | | | | | | |--------|--|--|--|--------------------------------|---|---| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 60 | A matched-cohort
analysis of belted
front and rear seat
occupants in newer
and older model
vehicles shows
that gains in front
occupant safety
have outpaced
gains for rear seat | Bilston <i>et al.</i> /2010/
USA/Americas/ ^[8] | Matched-cohort
approach/Poisson
regression/20 | RR | Vehicle characteristic | Risk to front seat occupants in newer vehicles decline | | 61 | occupants ^[8] Share of mass transit miles traveled and reduced motor vehicle fatalities in major cities of the United States ^[77] | Stimpson
et al./2014/USA/
Americas/ ^[77] | Cross sectional study (not
mentioned in article)/
structural equation
model/11 | Fatality rate | Transit type: an increasing share of mass transit use | An increasing share of mass
transit miles traveled per capita
was associated with reduced
motor vehicle fatalities | | 62 | Driver license renewal policies and fatal crash involvement rates of older drivers, United States, 1986-2011 ^[78] | Tefft/2014/USA/
Americas/[78] | CS (not mentioned in
article)/generalized
estimating equations
with a first-order
autoregressive correlation
structure/23 | Ratios of
relative
risks | Laws factors: state
driver license renewal
laws | Mandatory in-person renewal
driver license was associated
with reduction in the fatal crash
involvement rates | | 63 | How changes have
in front air bag
designs affected
frontal crash death
rates? An
update ^[79] | Teoh/2014/USA/
Americas/ ^[79] | CS (not mentioned in article)/Poisson marginal structural models/21 | Death rates | Vehicle type: Front Air
Bag Designs | Air bags were associated with frontal crash death rates for both drivers
and right-front passengers | | 64 | The relative risk of involvement in fatal crashes as a function of race/ethnicity and blood alcohol concentration ^[80] | Torres et al./2014/
USA/Americas/ ^[80] | CS (not mentioned in article)/logistic regression models/18 | OR | Race/ethnicity factor,
road user behavior:
blood alcohol
concentration | Hispanic and African-American drivers were less likely to be involved in single-vehicle | | 65 | The road traffic
crashes as a
neglected public
health concern;
an observational
study from Iranian
population ^[81] | Bakhtiyari
et al./2015/
Iran/Eastern
Mediterranean/[81] | CS (not mentioned in article)/-/14 | OR | Human factors | Alcohol consumption was the most significant human risk facto in traffic crashes within cities | | 66 | Temporal
trends in motor
vehicle fatalities
in the United
States, 1968
to 2010-a joint
point regression
analysis ^[82] | Bandi <i>et al.</i> /2015/
USA/Americas/ ^[82] | CS (not mentioned in article)/ Join-point regression/16 | Average
annual
Percent | Human factors | Adolescents, young, and middle-aged adults occurred to a larger degree in males than in females | | 67 | Road crash fatality rates in France: A comparison of road user types, taking account of travel practices[83] | Bouaoun <i>et al.</i> /2015/
France/Europe/ ^[83] | CS (not mentioned in article)/poisson regression/15 | Fatality
rates | Modes of transport | Risks for motorized two-wheeler
users are extremely high
compared to other types of road
user, age, sex | | Append | ix Table 1: Contd | | | | | | |--------|---|---|--|-------------------------|---|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 68 | Why have fatality rates among older drivers declined? The relative contributions of changes in survivability and crash involvement ^[84] | Cicchino/2015/
USA/Americas/ ^[84] | CS (not mentioned in article)/decomposition method/15 | Rate | VMT | Changes in travel patterns and roadway design | | 69 | Urban sprawl as a risk factor in motor vehicle occupant and pedestrian fatalities ^[85] | Ewing and
Hamidi/2015/USA/
Americas/ ^[85] | CS (not mentioned in article)/multilevel modeling/8 | Fatality rate | Environment factor:
Urban Sprawl | Sprawl was found to be
associated with significantly
higher traffic fatality rates | | 70 | The effects of
vehicle redesign on
the risk of driver
death ^[86] | Farmer and
Lund/2015/USA/
Americas/[86] | CS (not mentioned in article)/-/14 | Relative
risk | Vehicle factor: Vehicle
Redesign | Vehicle redesign | | 71 | Temporal trends
in the associations
between age, sex
and socioeconomic
status after death
from motor
vehicle collisions
in England and
Wales: 1960-
2009 ^[87] | Fogarty and
Liu/2015/UK/
Europe/ ^[87] | CS/logistic regression/8 | OR | Human factors | Job: Individuals in non-manual occupations were more likely to die, sex: Women had a higher risk of dying at above the annual median | | 72 | Trends in socioeconomic inequalities in motor vehicle accident deaths in the United States, 1995-2010 ^[88] | Harper <i>et al.</i> /2015/
Canada/Americas/ ^[88] | CS (not mentioned in article)/negative binomial regression models/19 | Rate | Human factors | Education: It is found that mortality increases among the least educated | | 73 | Restraint use in motor vehicle crash fatalities in children 0 year to 9 years old ^[89] | Lee et al./2015/
USA/Americas/ ^[89] | CS (not mentioned in article)/-/13 | Rate | Human behavior:
restraint use | Restraint use among children | | 74 | Motor vehicle crash
fatalities in states
with primary versus
secondary seat belt
laws ^[90] | Lee et al./2015/
USA/Americas/[90] | CS/multivariate regression model/14 | Incidence rate ratio | laws factors: seat belt laws | Seat belt laws | | 75 | Contribution of
exposure, risk of
crash and fatality
to explain age
and sex-related
differences in
traffic-related
cyclist mortality
rates ^[91] | Martínez-Ruiz
et al./2015/Spain/
Europe/ ^[91] | ecological study/
decomposition and
quasi-induced exposure
methods/20 | Mortality
rate ratio | Human factors | Age: death rates increased with age, sex: Males had higher death rates than females | | 76 | Analyzing the
continuum of
fatal crashes:
A generalized
ordered approach ^[92] | Yasmin et al./2015/
USA/Americas/ ^[92] | CS (not mentioned in article)/MGOL model/12 | Rate | Driver characteristics,
vehicle characteristics,
roadway design,
environmental factors,
crash characteristics | Vehicle age, speed limit, lighting conditions and weather conditions | | Append | ix Table 1: Contd | | | | | | |--------|--|---|--|----------------------|---|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 77 | Effects of urban
sprawl and vehicle
miles traveled on
traffic fatalities ^[93] | Yeo et al./2015/
USA/Americas/ ^[93] | CS (not mentioned in article)/path analysis/7 | VMT per capita | Environmental factors: urban sprawl | Urban sprawl is associated with higher numbers of traffic fatalities | | 78 | Mortality and potential years of life lost by road traffic injuries in Brazil, 2013 ^[94] | Andrade and
Mello-Jorge/2015/
Brazil/Americas/ ^[94] | CS (not mentioned in article/-/13 | mortality
rates | Human factors | Sex, black race/skin color, age (young adults) | | 79 | Epidemiologic
pattern of
fatal traffic
injuries among
Iranian Drivers;
2004-2010 ^[95] | Bakhtiari
et al./2016/
Iran/Eastern
Mediterranean/ ^[95] | CS (not mentioned in article) /nominal logistic regression/11 | OR | Human factors | Fatigue and sleepiness | | 80 | Determinants of fatal road traffic injuries in Côte d'Ivoire from 2002 to 2011 ^[96] | Bénié Bi Vroh
et al./2016/Côte
d'Ivoire/Africa/ ^[96] | CS/Logistic regression/10 | OR | Human factors,
vehicle factors | Age (under the age of 18), speed driving, dangerous overtaking, mechanical failure, rural areas | | 81 | Driver's obesity
and road crash
risks in the United
States ^[97] | Bhatti et al./2016/
USA/Americas/[97] | CS (not mentioned in article) /nominal logistic regression/10 | AOR | Human factors: obesity | Obese drivers had significantly higher risks for fatality | | 82 | Fatality rates for
crashes involving
heavy vehicles
on highways:
A random
parameter tobit
regression
approach ^[98] | Bin Islam and
Hernandez/2016/
USA/Americas/ ^[98] | CS (not mentioned in
paper)/random parameters
tobit regression
model (fixed-and
random-parameters tobit
models)/11 | Fatality rate | Human factors,
Vehicle factors,
Environmental factors,
Road factors | Spatial characteristics, road
and environmental attributes,
vehicle configuration, drivers and
passenger attributes | | 83 | Recent trends in cyclist fatalities in Australia ^[99] | Boufous and
Olivier/2016/
Australia/western
Pacific/ ^[99] | CS (not mentioned in article)/Poisson regression modeling/9 | Rate | Human factors | Age | | 84 | Uber and
metropolitan traffic
fatalities in the
United States ^[100] | Brazil and
Kirk/2016/USA/
Americas/[100] | CS (not mentioned in article)/negative binomial and Poisson regression models/- | Incidence rate ratio | Human factors | Drunk driving | | 85 | Road traffic
mortality in the
Slovak Republic in
1996-2014 ^[101] | Brazinova and
Majdan/2016/Slovak
Republic/Europe/ ^[101] | CS (not mentioned in article)/Join point regression/ | Rate | Road user type,
Human factor | Motor vehicle users (other than
motorcyclists) and pedestrians
have the highest mortality rates
among road user groups | | 86 | Are there higher pedestrian fatalities in larger cities?: A scaling analysis of 115 to 161 largest cities in the U. S. A ^[102] | Chang et al./2016/
USA/Americas/ ^[102] | CS (not mentioned
in article)/panel data
analysis of bivariate
model and panel data
analysis of multivariate
model/14 | Rate | Human
factor: (population
size), Economic
factor: income per
capita | Pedestrian fatalities increase
linearly to population increase,
increase in income per capita is
expected to increase the number
of total fatality | | 87 |
All-terrain
vehicle fatalities
on paved roads,
unpaved roads, and
off-road: Evidence
for informed
roadway safety
warnings and
legislation ^[103] | Denning and
Jennissen/2016/
USA/Americas/ ^[103] | CS/Multivariable logistic regression analysis/18 | OR | Human factor, Road type | Unpaved roads were involved in
the majority of roadway fatalities,
fatality among males is higher
than female | | Append | ix Table 1: Contd | | | | | | |--------|---|---|---|----------------------------------|---|---| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 88 | Underutilization
of occupant
restraint systems
in motor vehicle
injury crashes:
A quantitative
analysis from
Qatar ^[104] | El-Menyar
et al./2016/
Qatar/Eastern
Mediterranean ^[104] | CS/multivariate regression analysis/14 | RR | Human behavior
factor: use seat belt,
Human factor | Unrestrained males had increase in mortality, young males | | 89 | The epidemiology
of fatal road
traffic collisions
in Trinidad and
Tobago, West Indies
[2000-2011] ^[105] | Gopaul et al./2016/
Trinidad and
Tobago/Americas/
[105] | CS (not mentioned in article)/-/12 | Percent | Human factor, road factor, road user factor | Sex: Men, fatalities among
drivers were higher than
pedestrians, most fatalities
occurred at weekends | | 90 | Child restraint
use and driver
screening in fatal
crashes involving
drugs and
alcohol ^[106] | Huang et al./2016/
USA/Americas/ ^[106] | CS (not mentioned in article)/mixed effect multivariable logistic regression/22 | OR | Human behavior
factor: Child-restraint
use | Mortality was more among
unrestrained versus restrained and
was higher in front-seated than
rear-seated passengers | | 91 | Modeling the effect of operator and passenger characteristics on the fatality risk of motorcycle crashes ^[107] | Kashani <i>et al.</i> /2016/
Iran/Eastern
Mediterranean/ ^[107] | CS (not mentioned in article)/binomial logistic regression/10 | Rate | Human
factor (Passenger
characteristics),
Environmental factor | Number of pillion passengers carried, darkness, on curves, in rural areas and on highways, then the crash would be more likely to be fatal, the head-on collisions, older operators, unlicensed operators and not using a safety helmet increase the fatality in a motorcycle crash | | 92 | Association of impact velocity with risks of serious injuries and fatalities to pedestrians in commercial truck-pedestrian accidents[108] | Matsui <i>et al.</i> /2016/
Japan/Western
Pacific/ ^[108] | CS (not mentioned in article) /linear regression/10 | Rate | Vehicle factor,
environmental factor | Fatality risk strongly associated with vehicle class, pedestrian fatalities at nighttime was significantly higher | | 93 | Gender and age
differences in
components of
traffic-related
pedestrian death
rates: exposure,
risk of crash and
fatality rate ^[109] | Onieva-García
et al./2016/Spain/
Europe/ ^[109] | CS (not mentioned in article)/decomposition model/16 | Mortality
rate ratio | Human factor: Age
and gender | Death rates increased with age.
Males had higher death rates than
females | | 94 | The role of exposure on differences in driver death rates by gender and age: Results of a quasi-induced method on crash data in Spain ^[110] | Pulido <i>et al.</i> /2016/
Spain/Europe/ ^[110] | CS (not mentioned in
article)/constructed
Poisson regression
models/15 | Adjusted
death rate
ratios | Human factor: Age
and gender | Death rates increased with age.
Males had higher death rates than
females | | 95 | Adverse weather conditions and fatal motor vehicle crashes in the United States, 1994-2012[111] | Saha et al./2016/
USA/Americas/ ^[111] | CS (not mentioned in article)/ARCGIS/10 | Rate | Environmental factor | Adverse weather-related fatalities | | Append
Number | ix Table 1: Contd |
Author/Year/ | Study design*/model | Effect size | Categories | Summary findings (influenced | |------------------|---|---|--|-------------|---|---| | | | Country/Region | which was used/STROB score | | independent
variables considered | variable on traffic crashes deaths) | | 96 | Graduated driver licensing night driving restrictions and drivers aged 16 or 17 years involved in fatal night crashes-United States, 2009-2014[112] | Shults and
Williams/2016/
USA/Americas/ ^[112] | Cross sectional study (not mentioned in article)/-/11 | Percent | Environmental factor | More crashed during the night hours | | 97 | Spatiotemporal and
random parameter
panel data models
of traffic crash
fatalities in
Vietnam ^[113] | Truong et al./2016/
Vietnam/Europe/[113] | CS (not mentioned in article)/RENB and RPNB panel data models/9 | Rates | Environmental factor | Traffic crash fatalities tend to be
higher in provinces with greater
numbers of level crossings,
passenger distance traveled and
road lengths are also positively
associated with fatalities | | 98 | Fatal and serious
injuries related to
vulnerable road
users in Canada ^[114] | Vanlaar <i>et al.</i> /2016/
Canada/Americas/ | CS (not mentioned in article) /regression models/19 | OR | Human factor, | Age: Elderly (76 years or older), alcohol, and drug use | | 99 | Association of
graduated driver
licensing with
driver, non-driver,
and total
fatalities among
adolescents ^[115] | Zhu et al./2016/
USA/Americas/[115] | CS (not mentioned in article)/longitudinal analyses/16 | Rate ratio | Human behavior
factor: Graduated
driver licensing with
driver, nondriver | GDL systems were generally
not associated with increased
fatalities as passengers,
pedestrians, or bicyclists | | 100 | Which set of
factors contribute
to increase the
likelihood of
pedestrian fatality
in road crashes? ^[116] | Besharati
and Tavakoli
Kashani/2017/
Iran/Eastern
Mediterranean/[116] | CS (not mentioned in article)/multivariate modeling/12 | | Human behavior factor | Jaywalking, waiting beside
the road on poorly illuminated
locations, rural roads
substantially increased the fatality
risk of pedestrian | | 101 | Exploring
the effects of
state highway
safety laws and
sociocultural
characteristics on
fatal crashes ^[117] | Dong et al./2017/
USA/Americas/ ^[117] | Cross sectional study (not
mentioned in article)/
zero truncated negative
binomial (ZTNB)
regression models/11 | Rate | Law factors | Law and regulation-related
factors, the use of speed cameras,
no handheld cell phone ban,
limited handheld cell phone ban,
and no text-messaging ban | | 102 | Relationship of
traffic fatality rates
to maximum state
speed limits ^[118] | Farmer/2017/USA/
Americas/[118] | CS (not mentioned in article)/Poisson regression/12 | Rate | Law factors: Speed limits | Speed limits | | 103 | alcohol policies
and alcohol-related
motor vehicle crash
fatalities among
young people in the
US[119] | Hadland et al./2017/
USA/Americas/ ^[119] | CS (not mentioned in article) /logistic regression/22 | OR | Law factor: Alcohol policy | Alcohol policies | | 104 | Exploring factors
for pedestrian
fatalities at
junctions in
Malaysia ^[120] | Hamidun
et al./2017/
Malaysia/Western
Pacific/ ^[120] | CS (not mentioned in article)/logistic regression model/7 | OR | Human factor,
environmental factor,
crash type | Age, injuries sustained to their
head or neck, involvement of
heavy vehicles, and location of
accidents | | 105 | Obesity and trauma
mortality: sizing up
the risks in motor
vehicle crashes ^[121] | Joseph et al./2017/
USA/Americas/[121] | CS (not mentioned in article) /Multivariate logistic regression/23 | OR | Human factor:
Obesity (BMI≥40) | Motorists with morbid obesity are at greater risk of MVC | | Append | ix Table 1: Contd | | | | | | |--------|--|---|---|-------------------------
---|---| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 106 | Fatality rate of pedestrians and fatal crash involvement rate of drivers in pedestrian crashes: a case study of Iran ^[122] | Kashani and
Besharati/2017/
Iran/Eastern
Mediterranean/[122] | CS (not mentioned in article) /Clustering analysis/11 | Rate | Human factor, | Age | | 107 | Role of alcohol
and marijuana use
in the initiation of
fatal two-vehicle
crashes ^[123] | Li <i>et al.</i> /2017/USA/
Americas/ ^[123] | CS (not mentioned in article)/Multivariable conditional logistic regression models/21 | AOR | Human behavior
factor: Alcohol and
marijuana | Alcohol and marijuana each play
a significant role in fatal crash
initiation | | 108 | Age-related
differences in fatal
intersection crashes
in the United
States ^[124] | Lombardi
et al./2017/USA/
Americas/[124] | CS (not mentioned in
article)/multivariate
Poisson regression model,
Multivariate logistic
regression models/23 | AOR | Human factor | Age (aged 85 or older) | | 109 | Trends in
automobile travel,
motor vehicle
fatalities, and
physical activity:
2003-2015 ^[125] | McDonald/2017/
USA/Americas/ ^[125] | CS (not mentioned
in article)/state level
fixed-effects panel
models, regression
model/12 | Death rates | Human factor | Age (young men) | | 110 | Has the great
recession and its
aftermath reduced
traffic fatalities? ^[126] | Noland and
Zhou/2017/USA/
Americas/[126] | CS/CS time-series
models, negative
binomial panel model,
fixed effect negative
binomial model/13 | Rate | Human factors,
vehicle factors,
environmental factors,
road factors,
economic factors,
laws factors,
medical services | Economic status, inequality of income distribution, age, some laws such as; graduate licensing, cellphone laws, and motorcycle helmet laws, safety belt use, alcohoconsumption, lane miles, fraction of roads and factors include a prox for medical technology and access to EMS (based on the percent of VMT in rural areas) affect on traffic fatalities | | 111 | Evaluating the potential benefits of advanced automatic crash notification ^[127] | Plevin et al./2017/
USA/Americas/ ^[127] | CS study (not mentioned
in article)/multiple
logistic regression
models/18 | OR | Vehicle factors:
Advanced
automatic crash
notification (AACN) | An AACN help decrease
mortality following a motor
vehicle collision (MVC) by
alerting EMS providers earlier | | 112 | Climate change,
weather and road
deaths ^[128] | Robertson/2018/
USA/Americas/[128] | CS/logistic regression/9 | Rate | Environment factors
(temperature), vehicle
factors (miles driven
per capita) | Temperatures | | 113 | Bicycle fatalities:
Trends in crashes
with and without
motor vehicles in
The Netherlands ^[129] | Schepers <i>et al.</i> /2017/
Netherlands/Europe/ | CS (not mentioned in article) /segmented Poisson regression/11 | Rate | Vehicle factors | Cyclist deaths following motor
vehicle crashes decreased while
cyclist deaths following crashes
without motor vehicles increased | | 114 | Fatal crashes
involving large
numbers of
vehicles and
weather ^[130] | Wang et al./2017/
USA/Americas/[130] | CS (not mentioned in article)/regression equation/11 | Number of fatal crashes | Vehicle factors,
environment factors | Number of vehicles, snow or fog, rain | | 115 | Factors associated
with pediatric
mortality from
motor vehicle
crashes in the United
States: A state-based
analysis ^[131] | Wolf et al./2017/
USA/Americas/[131] | Ecological study/used
multivariable linear
regression/15 | Rate | Geographic factor | Geographic variation | | Append | ix Table 1: Contd. | | | | | | |--------|--|--|--|-------------------|--|---| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 116 | Modelling of road
traffic fatalities in
India/[132] | Goel/2018/India/
WHO Southeast
Asia Region/[132] | CS/Poisson-lognormal mixture regression/21 | Rate | Transit type | Two-wheels car and bus are associated with higher risk | | 117 | Real life safety
benefits of
increasing brake
deceleration in
car-to-pedestrian
accidents:
Simulation of
vacuum emergency
braking ^[133] | Jeppsson <i>et al.</i> /2018/
German/Europe/ ^[133] | CS/logistic regression/13 | Percent | Vehicle factors:
Emergency
brake (VEB) added
to a pedestrian
automated emergency
braking (AEB) system | Adding vehicle emergency
brake (VEB) to a car with
pedestrian emergency
brake (VEB) decreased pedestrian
casualties | | 118 | Mandatory helmet
legislation as a
policy tool for
reducing motorcycle
fatalities:
Pinpointing the
efficacy of universal
helmet laws ^[134] | Lee/2018/USA/
Americas/[134] | CS/multinomial probit model/15 | Rate | Law factor: Helmet legislation | Motorcycle helmet laws reduce average individual fatality | | 119 | Pedestrian fatality
and impact speed
squared: Cloglog
modeling from
French national
data ^[135] | Martin and
Wu/2018/France/
Europe/[135] | CS (not mentioned in
article)/complementary
log-log or Gompertz
regression/19 | RR | Human factors,
vehicle factors | Speed, age, type of vehicle hitting the pedestrian | | 120 | Considering built
environment and
spatial correlation in
modeling pedestrian
injury severity ^[136] | Prato et al./2018/
Denmark/Europe/ | CS (not mentioned in article)/linearized spatial logit model/9 | Rate | Environment
characteristics, human
factors (population
composition) | The intoxication of the pedestriar
is related to a higher probability
of suffering a severe or fatal
injury | | 121 | Alcohol and fatal accidents in the United States—a time series analysis for 1950-2002 ^[137] | Ramstedt/2008/
USA/Americas/ ^[137] | CS (not mentioned
in article)/time series
model/13 | Rate | Human behavior
factors: Alcohol
consumption | Sex (male), age (15-34 years) | | 122 | Motorcyclist
fatality rates
and mandatory
helmet-use laws ^[138] | Houston and
Richardson/2008/
USA/Americas/[138] | CS/fixed effects regression models/13 | Rate | Law factor: Helmet laws | Helmet laws | | 123 | Pedestrian fatality
risk as a function of
car impact speed ^[139] | Rosén and
Sander/2009/
German/Europe/[139] | CS (not mentioned in article)/logistic regression analysis/16 | Rate | Human behavior factors: Driving speed | Speed | | 124 | Traffic accidents,
deaths and alcohol
consumption ^[140] | Arranz and
Gil/2009/Spain/
Europe/[140] | CS (not mentioned
in article)/logistic
regression/7 | Rate | Economic policies
(alcohol taxes,
sanctions), law factors
(traffic policies) | If the tax applied to beer increases, the rate of traffic fatalities will increase | | 125 | Female involvement
in fatal crashes:
Increasingly riskier
or increasingly
exposed? ^[141] | Romano <i>et al.</i> /2008/
USA/Americas/ ^[141] | CS (not mentioned in article)/-/10 | Rate | Human factor | Increase in female drivers' fatalities | | 126 | Differences in urban
and rural accident
characteristics and
medical service
utilization for
traffic fatalities
in less motorized
societies ^[142] | Li/2008/Taiwan/
Western Pacific/ ^[142] | CS (not mentioned in article)/-/17 | Rate | Geographic factor:
Geographic
differences | A higher percentage of prehospital deaths were observed following rural | | Append | ix Table 1: Contd | | | | | | |--------|---|---|---|----------------------------|--|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 127 | Analysis of the
effect of speed
limit increases on
accident-injury
severities[142] | Malyshkina
and
Mannering/2008/
India/Southeast Asia
Region/[142] | CS (not mentioned
in article)/ordered
probability model/8 | Fatality, elasticity | Human behavior factors: Driving speed | Higher speed limits significantly increase the likelihood fatalities | | 128 | Declines in fatal
crashes of older
drivers: Changes
in crash risk and
survivability ^[143] | Cheung and
McCartt/2011/USA/
Americas/[143] | CS (not mentioned
in article)/ANCOVA
models/14 | Rate | Human factors | Deaths of motorcyclists occur
disproportionately among
younger drivers | | 129 | Effects of
high-profile
collisions on
drink-driving
penalties and
alcohol-related
crashes in Japan ^[144] | Nakahara and
Ichikawa/2010/
Japan/Western
Pacific/[144] | CS (not mentioned
in article)/time-series
regression model/14 | Percent | Law factor:
drink-driving
law | In 2006, the trends for
drivers with a blood alcohol
concentration (BAC) \$0.5 or<0.5
showed significant level declines | | 130 | Explaining regional
disparities in
traffic mortality
by decomposing
conditional
probabilities ^[145] | Goldstein
et al./2011/USA/
Americas/[145] | CS (not mentioned in
article)/multilevel or
hierarchical regression
model/14 | Rate | Geographic factor | Traffic mortality rate increase in rural areas | | 131 | Potential risk of using general estimates system:
Bicycle safety ^[146] | Kweon and
Lee/2010/USA/
Americas/[146] | CS (not mentioned
in article)/partial
proportional odds
model/16 | Proportional odds model | Human behavior factors: Helmet use | Helmet use | | 132 | Road traffic deaths
in Brazil: rising
trends in pedestrian
and motorcycle
occupant deaths ^[147] | Chandran
et al./2012/Brazil/
Americas/ ^[147] | CS (not mentioned in article)/-/13 | Rate | Human factors | The mortality rate for elderly pedestrians (80+years) is high | | 133 | Poverty as a
determinant of
young drivers' fatal
crash risks ^[148] | Males/2009/USA/
Americas/[148] | CS (not mentioned in article)/bivariate and multivariate regression analyses/16 | Rate | | Drivers of all ages in poorer areas
suffer substantially higher fatal
crash rates | | 134 | Prevalence of
alcohol and other
drugs in fatally
injured drivers ^[149] | Brady and Li/2013/
USA/Americas/ ^[149] | CS (not mentioned in article)/ multivariable modeling/17 | Adjusted prevalence ratios | Human behavior
factors: alcohol and/or
other drugs (AOD) | Alcohol and/or other
drugs (AOD) was significantly
more prevalent among drivers
who died in single-vehicle
crashes | | 135 | Booster seat laws
and fatalities
in children 4 to
7 years of age ^[150] | Mannix et al./2012/
USA/Americas ^[150] | CS (not mentioned in article)/linear regression/11 | Rate | Law factors: State booster seat laws | The findings of this study shows
that state booster seat laws are
associated with decreased rates of
fatalities | | 136 | Fatalities of
children 0-7 years
old in the second
row ^[151] | Viano and
Parenteau/2008/
USA/Americas ^[151] | CS (not mentioned in article)/-/ | Relative
fatality risk | Vehicle factors | Seated behind the right-front passenger, rollovers, side impacts and frontal crashes | | 137 | Trends in fatalities from distracted driving in the United States, 1999 to 2008 ^[152] | Wilson and
Stimpson/2010/
USA/Americas/ ^[152] | CS (not mentioned in article)/adjusted the multivariate regression/14 | Rate | Human behavior
factors: Distracted
driving | Fatalities from distracted driving increased | | 138 | The implications
of the relative risk
for road mortality
on road safety
programmes in
Qatar ^[153] | Consunji <i>et al.</i> /2015/
Qatar/Eastern
Mediterranean/ ^[153] | CS (not mentioned in article)/-/13 | RR | Human factors | Age | | Append | ix Table 1: Contd | | | | | | |--------|---|---|---|-------------------|---|--| | Number | Title | Author/Year/
Country/Region | Study design*/model which was used/STROB score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 139 | The effectiveness of alcohol control policies on alcohol-related traffic fatalities in the United States ^[154] | Chang et al./2012/
USA/Americas/ ^[154] | CS (not mentioned in article)/multivariate regression analyses/13 | Rate | Law factors: Alcohol
control policies | Beer taxes are the most
effective policies in reducing
alcohol-related traffic fatalities | | 140 | Gas prices, beer taxes and GDL programmes: Effects on auto fatalities among young adults in the US ^[155] | Morrisey and
Grabowski/2011/
USA/Americas/ ^[155] | CS (not mentioned in article)/regression/15 | Rate | Economic
factor (gasoline prices,
beer taxes), human
factors (GDL) | Higher gasoline prices, higher
beer taxes played a much larger
role | | 141 | Increased population density of neurosurgeons associated with decreased risk of death from motor vehicle accidents in the United States ^[156] | Desai <i>et al.</i> /2012/
USA/Americas/ ^[156] | CS (not mentioned in article/multiple regression analysis/11 | Rate | Medical services:
Neurosurgeon
population density | Neurosurgeon population density | | 142 | Decomposing
the relationship
between
macroeconomic
conditions and fatal
car crashes during
the great recession:
alcohol-and
non-alcohol-related
accidents ^[157] | Cotti and Tefft/2011/
USA/Americas/ ^[157] | CS (not mentioned in article)/regressions/11 | Rate | Economic factor:
Recession | Recession | | 143 | Graduated driver licensing and fatal crashes involving 16-to 19-year-old drivers ^[158] | Masten et al./2011/
USA/Americas/[158] | CS (not mentioned
in article/age-specific
Poisson regression
models/15 | Rate ratio | Human factors: GDL | Age, stronger GDL programs were associated with higher fatal crash incidence | | 144 | Fatal crash
involvement of
unlicensed young
drivers: county
level differences
according
to material
deprivation and
urbanicity in the
United States ^[159] | Hanna et al./2012/
USA/Americas/ ^[159] | CS/Logistic regression/14 | OR | Economic factor (deprivation), geographic factor (urbanization) | Deprivation | | 145 | An epidemiological
survey on road
traffic crashes in
Iran: application
of the two logistic
regression
models ^[160] | Bakhtiyari/2014/
IRAN/Eastern
Mediterranean/ ^[160] | CS/binary logistic
regression and
proportional odds
regression/17 | OR | Human factors | Not maintaining eyes on the road
and losing control of the vehicle
are the main causes of drivers'
deaths | | 146 | Individual and areal risk factors for road traffic injury deaths: nationwide study in South Korea [161] | Park/2010/Korea/
SouthEast Asia
Region/[161] | CS (not mentioned in article/multilevel Poisson regression/16 | RR | Human factors,
geographic factor | Elderly men with a low level of education who live in deprived areas | | Number | ix Table 1: Contd | Author/Year/ | Study design*/model | Effect size | Categories | Summary findings (influenced | |--------|--|---|---|-------------|---|--| | | | Country/Region | which was used/STROB score | | independent
variables considered | variable on traffic crashes deaths) | | 147 | More fatal all-terrain vehicle crashes occur on the roadway than off: increased risk-taking characterises roadway fatalities ^[162] | Denning/2012/USA/
Americas/[162] | CS/multivariate logistic regression/17 | OR | Vehicle factor,
road factor | Fatal roadway crashes were more likely than off-road crashes | | 148 | Do seat belts and
air bags reduce
mortality and injury
severity after car
accidents ^[163] | Cummins/2011/
USA/Americas/ ^[163] | CS (not mentioned in article)/multiple logistic regressions/13 | AOR | Vehicle factors: Car
safety devices | Seat-belt-plus-air-bag group had effect on reduction in mortality | | 149 | Drug and alcohol
involvement in
four types of fatal
crashes ^[164] | Romano/2011/USA/
Americas/[164] | Cross sectional study (not
mentioned in article)/
logistic regressions
modeling/15 | OR | Human behavior
factors: drunk and
drugged driving | Drunk and drugged driving | | 150 | Associations
between driving
under the influence
of alcohol or
drugs, speeding
and seatbelt use
among fatally
injured car drivers
in Norway ^[165] | Bogstrand/2015/
Norway/Europe/ ^[165] | CS/binary logistic regression/18 | OR | Human behavior
factors: DUI, speeding
and seat-belt use | Alcohol, drugs | | 151 | Graduated driver
license nighttime
compliance in
US teen drivers
involved in fatal
motor vehicle
crashes ^[166] |
Carpenter/2013/
USA/Americas/ ^[166] | CS/multiple logistic regression/20 | | Environment
characteristics:
Nighttime GDL | Legislative and enforcement,
nonschool night driving, seatbelt
nonuse, and alcohol | | 152 | Development
of probabilistic
pedestrian
fatality model for
characterizing
pedestrian-vehicle
collisions ^[167] | Oh/2008/Korea/
Southeast Asia
Region ^[167] | CS (not mentioned in article)/Binary logistic regression and a PNN/8 | Rate | Human
factors (pedestrian
age, vehicle type, and
collision speed),
vehicle type | Pedestrian age, collision speed, and vehicle type | | 153 | Why more male
pedestrians die in
vehicle-pedestrian
collisions than
female pedestrians:
a decompositional
analysis ^[168] | Zhu/2012/USA/
Americas/[168] | CS (not mentioned in article)/-/13 | Ratio | Human factors | Male pedestrians | | 154 | Analysis of factors
that increase
motorcycle rider
risk compared to
car driver risk ^[169] | Keall/2012/USA/
Americas/[169] | CS (not mentioned in article)/logistic model/21 | Odds | Human factors | The odds of fatal in new motorcycles were high | | 155 | The association of graduated driver licensing with miles driven and fatal crash rates per miles driven among adolescents ^[170] | Zhu/2014/USA/
Americas/[170] | CS (not mentioned in article)/regression
Model/16 | Rate | Laws factors: GDL laws | Comparing persons subject to GDL policies with those not, 16-year-olds had fewer fatal crashes per person-year | | | ix Table 1: Contd. | | | =,, | | A # # # # # # | |--------|---|--|---|----------------------|---|---| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size
index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 156 | Pedestrian fatality
risk in accidents
at unsignalized
zebra crosswalks in
Poland ^[171] | Olszewski/2015/
Poland/Europe/ ^[171] | CS (not mentioned
in article)/logistic
regression/14 | OR | Environment factors, road factors | Following factors increase
the probability of pedestrian's
death at unsignalized zebra
crosswalks: darkness, especially
with no street lighting,
divided road, two-way road,
non-built-up area, mid-block
crosswalk location and summer
time period | | 157 | Mapping patterns
of pedestrian
fatal accidents in
Israel ^[172] | Prato/2012/Israel/
Europe/[172] | CS (not mentioned in article)/-/5 | Percent | Environment factors, road factors | Urban areas, road sections, center of the country | | 158 | Comprehensive
target populations
for current active
safety systems
using national
crash
databases ^[173] | Kusano/2014/USA/
Americas/[173] | survey design
techniques/-/9 | Percent | Vehicle factor (active
safety systems) | Active safety systems could potentially mitigate of fatal crashes | | 159 | The association of age, sex and helmet use with the risk of death for occupants of two-wheeled motor vehicles involved in traffic crashes in Spain ^[9] | Donate-López
et al./2010/Spain/
Europe/ ^[9] | rCoh/-/24 | ARR | Human factor (age,
sex and helmet use
for occupants of
two-wheeled motor
vehicles) | Age, sex, and helmet use | | 160 | Population density
and mortality
among individuals
in motor vehicle
crashes ^[10] | Gedeborg
et al./2010/Sweden/
Europe/[10] | Population-based cohort/-/22 | Mortality rates | Human
factor (population
density) | Crude mortality rates were inversely related to regional population density | | 161 | Traffic crash victimizations of children and teenagers by drinking drivers age 21 and older ^[11] | Males/2010/USA/
Americas/[11] | rCoh (not mentioned in study)/-/ | RR | Victimizations of
children and teenagers
by drinking drivers
age 21 and older | Drinking drivers age 21 and older victimize 1.3 times more teenage drivers than vice versa and account for large majorities of passenger and nonoccupant alcohol-related crash victimizations of both children and teens | | 162 | The effect
of earlier or
automatic collision
notification on
traffic mortality
by survival
analysis ^[12] | Wu <i>et al.</i> /2013/
USA/Americas/ ^[12] | CC/Kaplan-Meier/12 | Survival
rates | EMS, vehicle factor
ACN | The results showed the benefits associated with earlier notifications (approximately 1.84% fatality reduction within a time frame of 6 h after a crash) | | 163 | Obesity and vehicle
type as risk factors
for injury caused
by motor vehicle
collision ^[13] | Donnelly et al./2014/UK/
Europe/[13] | rCC/multivariable
regression model/18 | OR | Human factor
(occupant BMI class;
underweight, normal
weight, overweight, or
obese) | It is found that obesity was a risk factor for mortality caused by MVC (OR, 1.6; 95% CI, 1.2-2.0) | | 164 | Driver obesity and
the risk of fatal
injury during traffic
collisions ^[14] | Rice and Zhu/2014/
USA/Americas/ ^[14] | Matched-pair cohort
study/conditional Poisson
regression/16 | RRs | Human factor (obesity,
sex), human behavior
factor (driver seat
belt use), vehicle
factor (vehicle type),
collision type | Estimated RRs raised for
underweight drivers, RR
increased with higher BMI
categories | Archive of SID | Append | ix Table 1: Contd | | | | | | |---------------|---|---|--|-------------------|--|--| | Number | Title | Author/Year/
Country/Region | Study design*/model
which was used/STROB
score | Effect size index | Categories
independent
variables considered | Summary findings (influenced variable on traffic crashes deaths) | | 165 | Age, period, and cohort effects in motor vehicle mortality in the United States, 1980-2010: The role of sex, alcohol involvement, and position in vehicle ^[15] | Macinko et al./2015/
USA/Americas/ ^[15] | CC/apply APC
analysis/16 | Rate | Human factor (role
of sex, alcohol
involvement), and
position in vehicle,
age, period, and
cohort effects in motor
vehicle mortality | Declines in MVC deaths by position in the car vary for men and women by age and cohort over time cohorts born before 1970 had higher risks than those born later. New technologies and public policy efforts reduce fatalities | | 166 | Helicopter transport
improves survival
following injury
in the absence
of a time-saving
advantage ^[16] | Brown et al./2016/
USA/Americas/ ^[16] | Rcc/Conditional logistic regression models/24 | AOR | Medical services:
HEMS compared
with GEMS transport
across similar
pre-hospital transport
times | HEMS had a survival benefit over
GEMS for prehospital transport
times between 6 and 30 min | | 167 | The association between booster seat use and risk of death among motor vehicle occupants aged 4-8: a matched cohort study ^[17] | Rice et al./2009/
USA/Americas/ ^[17] | Matched cohort study/
conditional Poisson
regression/15 | RRs | Human behavior
factor (booster seats
and of seatbelts) | Seatbelts, used with or without
booster seats, are highly effective
in preventing death among motor
vehicle occupants aged 4-8 years | | 168 | Mortality from road traffic accidents in Switzerland: longitudinal and spatial analyses ^[18] | Spoerri <i>et al.</i> /2011/
Switzerland/Europe/ | Cohort/Weibull survival
models and Bayesian
methods/18 | Adjusted
HR | Human
factor (population
density) | RTA mortality increased with
decreasing population density
of study areas for motor vehicle
occupants and motorcyclists | | 169 | Association
between different
restraint use and
rear-seated child
passenger fatalities:
A matched cohort
study ^[19] | Du et al./2008/USA/
Americas/ ^[19] | Matched cohort design/
conditional Poisson
regression/18 | RR | Human
factor (rear-seated
child passengers use) | Restrained reduced the risk of death in rear-seated child passengers | AOR: Adjusted odds ratio, HR: Hazard ratio, RRs: Risk ratios, CS: Cross-sectional, DUID: Driving under the influence of drugs, DUI: Driving under influence, ARR: Adjusted rate ratio, ARIMA: Autoregressive integrated moving average, GDL: Graduated drivers licensing, APC: Age-period-cohort, LTV: Light truck or van, VMT: Vehicle miles traveled, MGOL: Mixed generalized ordered logit, DWI: Driving While Intoxicated, HEMS: Helicopter-based Emergency Medical Services, GEMS: Ground Emergency Medical Services, RENB: Random effect negative
binomial, RPNB: Random parameter negative binomial, PNN: Probabilistic neural network, EMS: Emergency medical services, ACN: Automatic collision notification, BMI: Body mass index, CI: Confidence interval, OR: Odds ratio, RRs: Risk ratios, AOR: Adjusted odds ratio, HR: Hazard ratio