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1  Introduction 
 
At the present time, using energy absorber systems has grown owing to increase of vehicles’ 
speed in order to lessen human suffering and financial burdens, have found greater importance. 
The energy absorber systems are devices which transform the whole or just a part of kinetic 
energy into another form of energy. They are generally called mechanical energy absorbers. 
Energy absorbers are divided into two categories, reversible energy absorbers like elastic 
damper dashpots and collapsible energy absorbers which absorb the energy by plastic 
deformation of the thin-walled structure. Collapsible energy absorbers have various types such 
as circular and square tubes, corrugate tubes, frusta, tapered tubes, octagonal cross-section 
tubes, honeycomb cells and S-shaped frames [1]. 

Thanks to efficient energy absorbing, easy manufacturing and low cost, circular metal tubes 
represent one of the most famous energy absorbers which absorb the energy under axial load, in 
different modes like in-out inversion, axial splitting, lateral indentation and axial crushing. 

Tube axial crushing is more significant due to high crushing efficiency and energy 
absorption. These structures may crush in different modes including: axisymmetric or 
concertina, non-axisymmetric or diamond, mix mode and Euler. Among the various collapsing 
modes, concertina mode is better than other modes because of progressive and stable 
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Multi-objective Optimization of 
Crashworthiness of Cylindrical Tubes 
as Energy Absorbers 
In this article, the multi-objective optimization of cylindrical 
aluminum tubes under axial impact load is presented. The absorbed 
energy and the specific absorbed energy (SEA) are considered as 
objective functions while the maximum crush load should not exceed 
allowable limit. The geometric dimensions of tubes including 
diameter, length and thickness are chosen as design variables. The 
Non-dominated Sorting Genetic Algorithm –II (NSGAII) is applied to 
obtain the Pareto optimal solutions. A back-propagation neural 
network is constructed as the surrogate model to formulate the 
mapping between the design variables and the objective functions. The 
finite element software ABAQUS/Explicit is used to generate the 
training and test sets for the artificial neural networks. To validate the 
results of finite element model, several impact tests are carried out 
using drop hammer. 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

 
Iranian Journal of Mechanical Engineering                                  Vol. 12, No. 1, March. 2011 

 
6

collapsing. The empirical and numerical studies reveal that different parameters affect the 
collapsing mode such as geometric dimensions [2], impact velocity [3], material properties [4] 
and  end condition of tube [5,6]. 

Lately, the studies on optimization of crashworthiness in mechanical structures have 
increased mainly due to faster computers and better algorithms. Nevertheless, few works have 
been done on the optimization of energy absorber tubes. The first time, Yamazaki and Han [7] 
optimized crashworthiness of cylindrical tubes so as to maximize their crushing energy while 
the limit was the maximum crash load on a certain value. Based on numerical analysis, the 
crush responses of tubes were determined and response surface approximation method (RSM) 
has been applied to construct an approximating design sub-problem. Zarei and Kroger [8] 
represented the multi-objective optimization of aluminum tubes with the purpose of 
maximizing absorbed energy and specific absorbed energy by MATLAB. They also used the 
scalar weighting function method to aggregate the multi-objective optimization problem into a 
simple optimization. The D-optimal design of the experiment and RSM has been utilized to 
construct sub-problems in sequential optimization procedure. Hou et al. [9] and Liu [10] 
presented optimal designs of multi-corner structures with sound crush performances. 
Non-constraint optimization of tube crashworthiness parameters was presented by the authors 
before [5]. Artificial neural networks (ANNs) were used to reproduce the crushing behavior of 
tubes, which are often non-smooth and highly non-linear in term of design variables (diameter 
and length of tube) and single-objective optimization was carried out using the genetic 
algorithm (GA). 

By and large, it is conventional to employ the nonlinear finite element method (FEM) in 
optimization of crashworthiness problems to create the design samples because of complex 
material constitutive relationships and large deformations. 

Since it is not affordable to employ FEM to evaluate the objective and the constraint values 
from a computational point of view, the global approximation methods like RSM [7-10], 
(ANNs) [11-12] and the radial basis functions (RBF) [13-14] are mainly used to construct the 
response surfaces of  tube crashworthiness parameters. 

Comparing these meta-models, Stander et al. [15] demonstrated in the optimization of 
nonlinear problems, that ANNs method has a better efficiency. 

In this paper, the multi-objective optimization of cylindrical aluminum tubes under impact 
axial load is performed by Non-dominated Sorting Genetic Algorithm-II (NSGA-II) which is a 
fast and elitist genetic algorithm proposed by Deb [16]. In view of the fact that the goal of this 
survey is to find tubes with dimensions that have maximum energy absorption capacity besides 
weight efficiency, the multi-objective optimization procedure has been applied to maximize the 
absorbed energy and the specific absorbed energy (SEA) of cylindrical tubes subject to axial 
impact. The diameter, length and thickness of the tubes were optimized while the applied 
maximum crush load should not exceed allowable limit. 

To this end, at the first step, the crush behavior of tubes has been simulated in finite element 
software ABAQUS/Explicit. Then, several impact tests are carried out to validate the results of 
simulation. The approximating design sub-problem is constructed with the use of ANNs. 
Finally, the Pareto solution sets are presented. 
 
2  Numerical simulations 
 
2.1 Finite element modeling 
  
With the aim of carrying out the numerical simulations of axial crushing of cylindrical tubes 
under impact loading, the FE code ABAQUS/Explicit is used. While axial crushing of tubes 
includes buckling, it is essential to perturb the initial mesh of the tube by the buckling modes. 
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Thus, before performing crushing analysis, the buckling analysis is carried out to find the first 
ten elastic buckling modes using the FE code ABAQUS/Standard. 

For axial crushing simulation, a cylindrical tube is placed between two rigid walls, the lower 
wall is fixed and the upper wall is constrained in all degrees of freedom except the axial 
displacement. A point mass equal to m=140 kg is attached to the upper wall and an initial 
velocity is defined for the upper wall just before the collision. 

Four-nodded shell elements, suitable for large deformation analysis is used to model tubes. 
Nine integration points are used through the shell thickness to model bending. The Element size 
for each tube is obtained after performing the mesh sensitivity analysis. It indicates that an 
element size of 3 mm is adequate to produce suitable results. 

Self-contact with a friction coefficient equal to 0.2 is defined for the inner and the outer 
surfaces of tubes, and surface-to-surface contact with friction coefficient equal to 0.2 is defined 
between the tube and the rigid walls. 
 
2.2 Material properties 
 
Mechanical properties of the aluminum tubes are determined from standard tensile testing of 
coupons cut from several tubes. The elastic modulus of this material is E=70 GPa, the density is 

3kg/m 2700=ρ  and the Poisson ratio is 0.3=υ . The material model is defined as linear elastic 
followed by non-linear isotropic work hardening in the plastic region. A typical engineering 
static stress-strain curve is presented in Figure 1. This curve is used to introduce the 
approximated true stress-plastic strain data points in the numerical simulations, as shown in 
Table 1. It is also presumed that this material is not sensitive to strain rate. 

 

 
Figure 1 Engineering static stress-strain curve of the aluminum alloy obtained from  experiment 

 
                                Table 1 True stress-strain data points used for aluminum in numerical simulations 

)N/mm( 2σ  65 85 90 98 103.75 106.87 110.3 

pε  0 0.032 0.463 0.082 0.132 0.182 0.263 
 
 
 
3  Experimental results  
 
With the intention of validating numerical simulations, five impact tests are carried out on 
aluminum tubes under vertical crashes. The tests are conducted using the vertical drop-test 
machine which is installed in impact mechanic laboratory in Amirkabir University. Impact 
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loads are applied to the specimens using a drop hammer with constant mass of 140 kg. The drop 
mass is elevated by an electric winch and released via an electromechanical system from 
different heights. The maximum drop height is 5 m and the maximum impact velocity is 9.9 
m/s. A dynamic acceleration gauge is attached to the drop mass to measure acceleration of 
impact event. Crush load is calculated by multiplying the drop mass and acceleration. The 
instantaneous crush displacement is obtained by twice numerically integrating the 
acceleration-time curve. The crush load-displacement curves of the specimens are obtained by 
cross plotting the displacement-time and load-time values. The area under the crush 
load-displacement curves equals the absorbed energy. The ratio of the absorbed energy to the 
mass of the tube is SEA. 

The tubes have been made of aluminum alloy. The material properties of this alloy have 
been described in section 2. The dimensions of specimens and impact velocity for each test are 
presented in Table 2. The collapsed modes of specimens obtained by numerical simulation and 
experimental tests are compared in Figure 2. This figure shows that the FE modeling can 
simulate the collapsing shape of the tube with sufficient accuracy. Typically, a crush 
load-displacement curve obtained from the experimental and numerical results is shown in 
Figure 3. Table 2 shows the values of the crashworthiness parameters obtained from FE 
simulation and experimental tests. It is obvious from Figure 2, Figure 3 and Table 2 that 
numerical simulation can predict the collapsing shape and the crashworthiness parameters of 
tubes with a great accuracy. 

 
 
 

 
Figure 2 Comparison of the results for tubes collapsing mode under axial impact load obtained from experimental 

tests and numerical simulations 
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Figure 3 Comparison of the crush load-displacement curve obtained from experimental test and numerical 

simulation for test no. 5 
 
 

  Table 2 Results from the impact tests and numerical simulation 
Test 
 no. 

t  
(mm) t

D  D
L  0V  

(m/s) 
)(max KNF  )(KNFmean  SAE(KJ/Kg) 

maxδ (mm) 

Exp Sim Exp Sim Exp Sim Exp Sim 
1 3 25 1.53 6.5 68.12 67.35 44.92 43.26 13.86 13.84 65 66.7 
2 1.6 45.43 2.05 6.4 26.42 25.58 14.3 13.99 12.89 11.32 130.5 132.2 
3 2 36.85 2.03 5.8 37.87 36.59 24.56 23.24 13.79 13.4 102.5 103.03 
4 1.8 40.67 3.07 6.6 31.13 30.47 18.17 16.84 13.15 12.2 177.5 179.92 
5 2 36.9 2.03 6.8 41.87 39.74 30.02 29.19 17.52 15.75 117 116.14 

 
4  Neural networks to reproduce the crush behavior of the tube  
 
Currently, the artificial neural networks are regarded as global approximation tools to solve 
problems, not just in engineering, science and mathematics, but in medicine, business, finance 
and literature as well. The history work in the field of neural networks dates back to the late 19th 
and early 20th centuries which includes predominantly of interdisciplinary work in physics, 
psychology and neurophysiology. Nevertheless, the first practical application of ANNs was 
introduced in the late 1950s, with the invention of the perceptron network by Frank Rosenblatt 
[17], which was just applied to a linearly separable problem. Later, the multi-layer perceptron 
(MLP) networks were put forward with back-propagation learning rule to surmount these 
limitations in the 1980s [18]. 

As a point of fact, the ANNs comprise several simple computing units called neurons which 
can be trained to reproduce the response of input-output systems. Neurons are usually arranged 
in series layers to develop a multi-layer ANN. A multi-layer ANN consists of an input layer, an 
output layer; and one or more layer in between called hidden layers. Number of neurons in input 
and output layer equals to the number of input and output variables. According to Figure 4, each 
neuron in the ANN receives the sum of the weighted outputs of previous layer and bias then 
produces output of the neuron by passing the result through a transfer function. Any 
differentiable function can be used as a transfer function. The ANNs must be trained to solve a 
problem. Training process includes adjusting the weight and the bias parameters for each 
neuron to conform the network output to a desired value. Relation between input and output is 
extracted by a set of examples of proper network behavior called training set. After training, in 
order to approve the accuracy of the network in precisely predicting the solution to the new 
inputs, a verification stage is needed by considering several input/target pairs called test sets. 
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Figure 4 Schematic of a one hidden-layer perceptron network 

 
As was mentioned earlier, the aim of this article is the optimization behavior of thin-walled 

tubes under axial crushing. For this purpose, plenty of numerical simulations are needed to 
define a design domain. On the other hand, performing all these simulations by the FEM is very 
costly and time consuming from the computational point of view because of the complexity of 
the FE models required predicting behavior of structures. Thus, the ANNs are used to 
reproduce crashworthiness parameters of tubes under impact load. For this purpose, a set of the 
MLP neural networks, with two hidden layer is developed and trained by a finite number of the 
FE simulations. 
 
 4.1 Design of neural networks  
 
In this study, two distinct neutral networks are designed to reproduce the values of the absorbed 
energy and the maximum force during axial crushing of tubes with impact velocity fixed at 
10m/s by Matlab software. Design variables vector consists of diameter, length and thickness of 
the tubes.  

A proper structure of the network needs to be found considering the training efficiency and 
accuracy. Since the number of input variables and output variables determine the neurons as 
well as the transfer functions for these two layers, it is necessary to define a proper structure for 
the hidden layers. The most common approach to attain an optimal network topology so far is 
still the trial-and-error method, i.e. comparing the performances of different networks. Based 
on this ground, the architecture is obtained to be 3-5-5-1 and the transfer functions for the four 
layers are "tangent sigmoid", "tangent sigmoid", "tangent sigmoid" and "linear" respectively. 
The Levenberg – Marquardt algorithm is used for training all the neural networks [19]. 

 
4.2 Training and test sets 

 
The ultimate performance of the neural networks is highly sensitive to the settlement of the 
training sets in the design variables domain. A general rule for selecting the location of the 
training sets in the design variables domain is not still attained. Methods based upon the 
definition of factorial grid within the desirable region of the domain are frequently used to settle 
the initial design points. Sadly, these approaches are not easily applicable to crash problems 
often requiring large number of examples. 

The method used in this research is based on a different concept. The settlement of the 
training patterns is carried out beginning from an initial random allocation of points in a 
normalized domain in a way that each design variable ranges from 0 to 1. The idea is then to 
modify the initial positions so as to acquire a homogeneous and not systematic allocation inside 
the normalized domain [12]. 

In the present study, the training and test sets are defined in the range of 50 mm < D < 150 
mm, 100 mm < L < 300 mm and 1 mm< t < 3 mm, which will also be the optimization domain. 
The training set consists of 150 samples chosen to guarantee a random and homogeneous 
allocation inside the design domain and change the design variable values. The initial and final 
positions of the samples are compared in Figure 5. The test set consists of 50 samples uniform 
selected inside the design domain. A total number of 200 ABAQUS/Explicit runs were then 
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performed. The training process continues until the mean square errors decrease less than 
0.0008. After training both of the networks, the test sets are used to find the error of each 

network. The maximum percentage relative error obtained by each network is within 8%.  
 

 
Figure 5 Settlement of the training set (a): initial positions (b): final positions 

 
5  Crashworthiness optimization 
 
5.1 Problem formulation 
 
Several problems of crashworthiness optimization may be considered even for a simple 
structure under impact load. Owing to the variety of the parameters that influence the response 
of the structure subject to dynamic loading, different classes of the optimization problems may 
be introduced. However, generally the problem can be formulated as: 
Objective function:  )}({ xfi   (1) 
Constraints: cN1i0xig ,...,)( =≤   (2) 

Design variables:                                 diuiil Nixxx ,...,1, =≤≤                                                     (3) 
 
Where the parameters ilx  and iux  are the lower and upper bounds of the design variable 

domain, cN  is number of constraints and dN is number of design variables. 
In the present study the optimization problem is applied to the maximization of absorbed 

energy and specific absorbed energy under axial impact load. Design variables are diameter, 
length and thickness of the tubes. The crush load constraint is usually required to reduce the 
occupant injury. Hence, in the optimization process, the maximum crush load should not 
exceed the allowable limit. The design variable domain is also limited so that the crushing of 
tube in concertina or diamond mode is guaranteed. Thus, the optimization problem is defined 
as: 
Maximize:                                     { })(),(energy Absorbed D,L,tSEAD,L,t                                         (4) 
Constraints:                                                          KN60≤maxF                                                                            (5) 

                                                                 
15020 ≤≤

t
D

                                                               (6) 

                                                                    
41 ≤≤

D
L

                                                                               (7) 
Design variable:                                  mm150Dmm50 ≤≤                                                           (8) 
                                                           mm300Lmm100 ≤≤                                                                      (9) 
                                                               mm3tmm1 ≤≤                                                                          (10) 
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5.2 Multi-objective genetic algorithm (MOGA) 
 
The GA is an optimization method based on the process of evolution in biological population. 
In the first step of the GA, a random population in the design variable domain is generated and 
in the next steps, successively new populations are produced using the previous individuals in 
such a way that each new population is modified and evolves towards an optimal solution. For 
the crashworthiness problems that the objective function is highly non-linear with respect to the 
design variables, unlike the other standard optimization methods, the GA can be applied with 
sufficient accuracy. In most cases, design problems frequently contain multiple conflicting 
objectives, leading to a set of Pareto optimal solutions. One of these solutions cannot be 
considered better than the other. MOGAs have been regarded as well-suited to solve 
multi-objective problems. The main reason for this is their capability to find diverse Pareto 
optimal solutions in one single simulation run [16]. From these optimum solutions the designer 
can choose the final design according to his particular emphasis on certain objective functions. 

A number of MOGAs have been developed and effectively implemented throughout the 
years [20]. In this research, the NSGA-II is applied to attain the Pareto set. The principal 
features of NSGA (Non-dominated Sorting Genetic Algorithm) lie in that it ranks solutions 
with non-dominated sorting and assigns them fitness based on their ranks. The selection 
operator distinguishes itself while the crossover and mutation operators remain analogous to an 
ordinary GA. As an improvement of NSGA, NSGA-II is characterized by a rapid 
non-dominated sorting procedure; an elitist strategy; a parameter-less diversity-preservation 
mechanism and a straightforward yet effective constraint-handling approach. Details of 
NSGA-II are described by Deb [16]. 
 
5.3 Results of the optimization 
 
Based on the NN model, the multi-objective optimization is performed through NSGA-II. 
Table 3 contains parameters for NSGA-II, which has been executed several times and provides 
results with good repeatability. 
 
                                      Table 3 Parameter specifications for the NSGA-II 

Population size 300
Number of generations 2000 
Crossover probability 80% 
Mutation probability 20% 

 
   

 
Figure 6 Pareto front for the optimization design problem 
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The outcome of this optimization is displayed in Figure 6. 48 circular points represent the 
Pareto optimal solutions, which explain the trade-off between the absorbed energy and the 

specific absorbed energy. It is shown that the two crashworthiness criteria strongly compete 
with each other: large absorbed energy values go hand in hand with small SEA values. As a 
result, if the decision maker wishes to emphasize more on the SEA or weight of the energy 
absorbers, the energy absorption must be compromised and become lower, and vice versa. Pay 
attention that the Pareto front spreads over a wide range and each point represents a possible 
optimal solution with a unique set of design parameters. The points with smaller values of SEA 
favor the objective of high energy absorption and the points with smaller values of energy 
absorption favor the minimization of the weight, while the middle points tend to favor the 
energy absorption and SEA. To gain more insight into the optimization, the results are 
demonstrated in Table 4.  The optimum values are listed with respect to their absorbed energy. 
In this table, the points from 13 to 20 are considered weak Pareto solutions, because SEA values 
keep constant when the absorbed energy varies. 

 
 

         Table 4 The optimization results and Pareto solutions 
No. 

 D(mm) L(mm) t(mm) Absorbed 
Energy(KJ) 

SAE 
(KJ/kg) No. D(mm) L(mm) t(mm) Absorbed 

Energy(KJ) 
SAE 

(KJ/kg)
1 89.57 298.81 3.00 7.04 10.34 25 59.94 225.05 3.00 4.12 12.03 
2 88.25 298.07 3.00 7.01 10.47 26 60.77 215.82 3.00 4.04 12.13 
3 86.59 297.52 3.00 6.96 10.63 27 60.01 212.29 3.00 3.99 12.30 
4 84.74 299.15 3.00 6.94 10.76 28 62.40 198.21 3.00 3.92 12.44 
5 83.00 299.15 3.00 6.89 10.90 29 60.36 200.74 3.00 3.88 12.60 
6 81.34 299.21 3.00 6.83 11.03 30 60.98 194.39 2.99 3.82 12.70 
7 79.66 299.75 2.99 6.73 11.13 31 60.32 191.85 3.00 3.78 12.86 
8 78.08 299.61 3.00 6.71 11.27 32 60.05 188.84 3.00 3.75 12.98 
9 76.77 298.63 2.99 6.60 11.35 33 59.75 183.50 2.99 3.65 13.14 

10 75.52 296.10 2.99 6.50 11.44 34 60.08 176.95 2.99 3.57 13.25 
11 74.17 294.91 3.00 6.40 11.52 35 60.01 171.48 2.99 3.49 13.35 
12 73.11 292.35 3.00 6.30 11.58 36 59.97 161.76 2.99 3.32 13.48 
13 72.06 286.54 2.99 6.07 11.59 37 59.99 154.87 3.00 3.20 13.55 
14 70.35 281.29 3.00 5.86 11.65 38 60.19 143.89 3.00 3.00 13.61 
15 69.04 275.96 2.99 5.64 11.66 39 59.94 137.26 3.00 2.87 13.72 
16 68.12 271.93 3.00 5.49 11.67 40 59.97 130.17 2.99 2.74 13.83 
17 67.28 268.79 3.00 5.36 11.67 41 59.99 125.53 3.00 2.67 13.93 
18 65.17 260.48 3.00 5.04 11.68 42 60.88 118.42 2.99 2.57 14.03 
19 64.13 254.79 3.00 4.86 11.68 43 59.97 117.80 2.99 2.54 14.16 
20 63.31 250.17 3.00 4.71 11.69 44 60.51 112.81 2.98 2.46 14.26 
21 62.33 247.64 2.99 4.58 11.72 45 60.12 110.66 3.00 2.44 14.46 
22 61.06 243.25 2.99 4.45 11.80 46 59.94 108.19 3.00 2.41 14.61 
23 60.01 239.46 3.00 4.35 11.90 47 59.97 105.42 2.99 2.37 14.76 
24 60.34 229.96 3.00 4.21 11.92 48 59.95 100.28 3.00 2.31 15.12 

 
 
 As an alternative method, according to the Figure 7 and the Figure 8, the normalized design 

variable values can be plotted against their positions on the Pareto front [21]. Since the  
thickness  of tubes keeps constant of 3mm for the whole optimum solutions, it is not shown in 
the graphs, and it indicates, the thicker tubes gain an optimum solution for the maximum 
absorbed energy and SEA. These graphs also reveal the behavior of diameter and length of 
tubes against the absorbed energy and SEA. For instance, the Figure 8 divides into two clusters, 
in either of which only one design variable varies. While SEA is lower than 11.5 KJ, just the 
diameter of tube decreases accorded on growing SEA. While SEA is larger than 11.5 KJ, 
decreasing the length of tube, SEA grows.  In either cluster, the emphasis on the maximization 
of absorbed energy is gradually tends to SEA. 
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It is necessary to validate the obtained optimal solutions of the ANN in the optimization 
procedure with FEM results. In order to, three points have been evaluated to compare existing 
errors between optimal results with FEM. Table 5 is shown that the optimal solution is actual. 
 

 

 
Figure 7 Variation of the design variable against absorbed energy on the Pareto front 

 
 

 
Figure 8 Variation of the design variable against the SEA on the Pareto front 

 
 
 

           Table 5 Comparison between the optimum results and the FEM 

No. D(mm) L(mm) t(mm) 
Optimized solution FEM 

Relative error (%) Absorbed  
Energy(KJ) 

SAE 
(KJ/kg 

Absorbed  
Energy(KJ) 

SAE 
(KJ/kg 

8 78.08 299.61 3.00 6.71 11.27 6.89 11.57 2.4 
28 62.40 198.21 3.00 3.92 12.44 3.97 12.61 1.2 
40 59.97 130.17 2.99 2.74 13.83 2.91 14.69 5.8 
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6  Conclusions 
 

This paper presents the crashworthiness design of cylindrical tubes under axial impact load. 
The design problem is formulated as an optimization procedure with three design variables and 
two objective functions. Using the nonlinear FE technique, the crashworthiness characteristics 
of different design samples during the crash process are captured in the given domain. 
Afterward, in order to establish the surrogate model and achieve the complex relation between 
the parameters and the response functions, back-propagation neural network (BPNN) is 
utilized. When the BPNN is validated, a multi-objective genetic algorithm is applied to search 
for the optimal solutions and consequently, a set of Pareto optimal solutions is visualized. It can 
be seen from the Pareto optima that these two objectives intensely rival with each other and 
various criteria are highlighted along the Pareto frontier. To gain better insight into the 
optimum results, the normalized design variables are plotted against their objective functions. 
Finally, to validate the optimum sets, the results are compared with the FEM model. 
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Nomenclature 
 
D : mean diameter of tube 
E : elastic modulus 

)(xfi  : objective function 

maxF  : maximum crushing load 
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)(xgi  
 
: 

 
constraint equation 

L : length of tube 
m : mass 

cN  : number of constraints 

dN  : number of design variables 

ix  : design variable 

ilx  : lower bound of design variable

iux  : upper bound of design variable

Greek symbols 
pε  : plastic strain 

σ  : stress 
ρ  : density 
υ  : Poisson ratio 
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   چكيده
به روش  هاي آلومينيومي استوانه اي تحت بار محوري ضربهدر اين مقاله بهينه سازي چند منظوره لوله 

. رژي جذب شده و انرژي ويژه به عنوان توابع هدف در نظر گرفته مي شوندان. ارائه مي گردد الگوريتم ژنتيك
متغير هاي طراحي شامل قطر، طول و ضخامت لوله در محدوده اي در نظر گرفته مي شوند تا فروريزش لوله 

همچنين  .ي بيشتري برخوردار مي باشند انجام گرددر والماسي كه از قابليت جذب انرژبه شيوه چيندا
به منظور . سرنشينان وسيله نقليه اجتناب گرددحداكثر نيروي لهيدگي مقيد مي شود تا از صدمه ديدن 

شار يافتن رابطه بين متغيرهاي طراحي با توابع هدف وحداكثر نيروي لهيدگي از شبكه هاي عصبي پس انت
شبيه سازي عددي لهيدگي  200همچنين جهت آموزش وتست شبكه هاي عصبي از . استفاده مي شود

جهت معتبر سازي نتايج شبيه . استفاده  مي گردد Abaqus/Explicitمحوري لوله در نرم افزار المان محدود 
  .سازي تعداد محدودي آزمايش ضربه توسط دستگاه سقوط وزنه انجام مي شود
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