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In this article, the multi-objective optimization of cylindrical
M . Shakeri' aluminum tubes under axial impact load is presented. The absorbed
' energy and the specific absorbed energy (SEA) are considered as
objective functions while the maximum crush load should not exceed
allowable limit. The geometric dimensions of tubes including
diameter, length and thickness are chosen as design variables. The
M. Sadighi* l Non-dominated Sorting Genetic Algorithm —~II'(NSGAII) is applied to
Associate Professor @ obtain the Pareto optimal solutions. A< back-propagation neural
network is constructed as the surrogate model to formulate the
mapping between the design variables and the objective functions. The
SE. Seyedi§ finite element software ABAQUS/Explicit is used to generate the
ms [l raining and test sets for the artificial neural networks. To validate the
results of finite element model, several impact tests are carried out

using drop hammer.
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1 Introduction

At the present time, using energy absorber systems has grown owing to increase of vehicles
speed in order to lessen human suffering and financial burdens, have found greater importance.
The energy absorber systems are devices which transform the whole or just a part of kinetic
energy into another form of energy. They are generaly called mechanical energy absorbers.
Energy absorbers are divided into two categories, reversible energy absorbers like elastic
damper dashpots and collapsible energy absorbers which absorb the energy by plastic
deformation of the thin-walled structure. Collapsible energy absorbers have various types such
as circular and square tubes, corrugate tubes, frusta, tapered tubes, octagonal cross-section
tubes, honeycomb cells and S-shaped frames [1].

Thanksto efficient energy absorbing, easy manufacturing and low cost, circular metal tubes
represent one of the most famous energy absorbers which absorb the energy under axial load, in
different modes like in-out inversion, axial splitting, lateral indentation and axial crushing.

Tube axial crushing is more significant due to high crushing efficiency and energy
absorption. These structures may crush in different modes including: axisymmetric or
concertina, non-axisymmetric or diamond, mix mode and Euler. Among the various collapsing
modes, concertina mode is better than other modes because of progressive and stable
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collapsing. The empirical and numerical studies revea that different parameters affect the
collapsing mode such as geometric dimensions [ 2], impact velocity [3], material properties [4]
and end condition of tube [5,6].

Lately, the studies on optimization of crashworthiness in mechanical structures have
increased mainly due to faster computers and better algorithms. Nevertheless, few works have
been done on the optimization of energy absorber tubes. The first time, Y amazaki and Han [7]
optimized crashworthiness of cylindrical tubes so as to maximize their crushing energy while
the limit was the maximum crash load on a certain value. Based on numerical anaysis, the
crush responses of tubes were determined and response surface approximation method (RSM)
has been applied to construct an approximating design sub-problem. Zarei and Kroger [8]
represented the multi-objective optimization of aluminum tubes with the purpose of
maximizing absorbed energy and specific absorbed energy by MATLAB. They also used the
scalar weighting function method to aggregate the multi-objective optimization problem into a
simple optimization. The D-optimal design of the experiment and RSM. has been utilized to
construct sub-problems in sequential optimization procedure. Hou et al. [9] and Liu [10]
presented optimal designs of multi-corner structures with sound. crush performances.
Non-constraint optimization of tube crashworthiness parameters'was presented by the authors
before [5]. Artificial neural networks (ANNS) were used to reproduce the crushing behavior of
tubes, which are often non-smooth and highly non-linear in‘term of design variables (diameter
and length of tube) and single-objective optimization was carried out using the genetic
algorithm (GA).

By and large, it is conventional to employ the nonlinear finite element method (FEM) in
optimization of crashworthiness problems to create the design samples because of complex
material constitutive relationships and large deformations.

Sinceit is not affordable to employ FEM to evaluate the objective and the constraint values
from a computational point of view, the global approximation methods like RSM [7-10],
(ANNS) [11-12] and the radia basis functions (RBF) [13-14] are mainly used to construct the
response surfaces of tube crashworthiness parameters.

Comparing these meta-models, Stander et al. [15] demonstrated in the optimization of
nonlinear problems, that ANNS method has a better efficiency.

In this paper, the multi-objective optimization of cylindrical aluminum tubes under impact
axial load is performed by Non-dominated Sorting Genetic Algorithm-11 (NSGA-II) whichisa
fast and elitist genetic algorithm proposed by Deb [16]. In view of the fact that the goa of this
survey isto find tubeswith dimensions that have maximum energy absorption capacity besides
weight efficiency, the multi-objective optimization procedure has been applied to maximize the
absorbed energy and the specific absorbed energy (SEA) of cylindrical tubes subject to axial
impact. The diameter, length and thickness of the tubes were optimized while the applied
maximum crush |oad should not exceed allowable limit.

Tothisend, at thefirst step, the crush behavior of tubes has been simulated in finite element
software ABAQUS/Explicit. Then, several impact tests are carried out to validate the results of
simulation. The approximating design sub-problem is constructed with the use of ANNS.
Finally, the Pareto solution sets are presented.

2 Numerical smulations
2.1 Finite element modeling
With the aim of carrying out the numerical simulations of axial crushing of cylindrical tubes

under impact |oading, the FE code ABAQUS/Explicit is used. While axial crushing of tubes
includes buckling, it is essential to perturb the initial mesh of the tube by the buckling modes.
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Thus, before performing crushing analysis, the buckling analysisis carried out to find the first
ten elastic buckling modes using the FE code ABAQUS/Standard.

For axial crushing ssimulation, acylindrical tubeis placed between two rigid walls, the lower
wall is fixed and the upper wall is constrained in all degrees of freedom except the axial
displacement. A point mass equal to m=140 kg is attached to the upper wall and an initial
velocity is defined for the upper wall just before the collision.

Four-nodded shell elements, suitable for large deformation analysis is used to model tubes.
Nine integration points are used through the shell thicknessto model bending. The Element size
for each tube is obtained after performing the mesh sensitivity analysis. It indicates that an
element size of 3 mm is adequate to produce suitable results.

Self-contact with a friction coefficient equal to 0.2 is defined for the inner and the outer
surfaces of tubes, and surface-to-surface contact with friction coefficient equal to 0.2 is defined
between the tube and the rigid walls.

2.2 Material properties

Mechanical properties of the aluminum tubes are determined from standard tensile testing of
coupons cut from several tubes. The elastic modulus of this material is£=70 GPa, the density is
p = 2700 kg/m*® and the Poisson ratio isy =0.3. The material model is defined as linear elastic

followed by non-linear isotropic work hardening in the plastic region. A typical engineering
static stress-strain curve is presented in Figure 1. This curve is used to introduce the
approximated true stress-plastic strain data points in.the numerical simulations, as shown in
Table 1. It isalso presumed that this material is not sensitive to strain rate.
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Figure 1 Engineering static stress-strain curve of the aluminum alloy obtained from experiment

Table 1 True stress-strain data points used for aluminum in numerical simulations
s(Nmm?) g5 g5 90 98 103.75 106.87 110.3

€p 0 0032 0463 0082 0132 0182 0.263

3 Experimental results

With the intention of validating numerical simulations, five impact tests are carried out on
aluminum tubes under vertical crashes. The tests are conducted using the vertical drop-test
machine which is installed in impact mechanic laboratory in Amirkabir University. Impact
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loads are applied to the specimens using adrop hammer with constant mass of 140 kg. The drop
mass is elevated by an electric winch and released via an electromechanical system from
different heights. The maximum drop height is 5 m and the maximum impact velocity is 9.9
m/s. A dynamic acceleration gauge is attached to the drop mass to measure acceleration of
impact event. Crush load is calculated by multiplying the drop mass and acceleration. The
instantaneous crush displacement is obtained by twice numerically integrating the
acceleration-time curve. The crush load-displacement curves of the specimens are obtained by
cross plotting the displacement-time and load-time values. The area under the crush
|oad-displacement curves equals the absorbed energy. The ratio of the absorbed energy to the
mass of the tube is SEA.

The tubes have been made of aluminum aloy. The material properties of this alloy have
been described in section 2. The dimensions of specimens and impact velocity for each test are
presented in Table 2. The collapsed modes of specimens obtained by numerical simulation and
experimental tests are compared in Figure 2. This figure shows that the FE modeling can
simulate the collapsing shape of the tube with sufficient accuracy. Typicaly, a crush
load-displacement curve obtained from the experimental and numerical results is shown in
Figure 3. Table 2 shows the values of the crashworthiness parameters obtained from FE
simulation and experimental tests. It is obvious from Figure 2, Figure 3 and Table 2 that
numerical smulation can predict the collapsing shape and the crashworthiness parameters of
tubes with a great accuracy.

Test 5

Figure 2 Comparison of the resultsfor tubes collapsing mode under axial impact load obtained from experimental
tests and numerical simulations


www.SID.ir

M ulti-objective Optimization of Crashworthiness ... 9

120

100l — Sirmulation ,I_

Experiment
sof

|

Crush load [ KN )

40 k.

20

0 20 40 &0 20 oo 120
Displacement (mm)

Figure 3 Comparison of the crush load-displacement curve obtained from experimental test and numerical

simulation for test no. 5

O 1

Table 2 Results from the impact tests and numerical simulation
Test t 1% %) v, F._ (KN) F.. (KN) SAE(KJKQ) 8 e (MIM)
25

no. (mm &
(mm) (ms) Exp Sm Exp  Sm Exp Sm Exp Sm

3 1.53 6.5 68.12 6735 4492 4326 1386 13.84 65 66.7
16 4543 2.05 6.4 2642 2558/ 143 1399 1289 1132 1305 1322
2 36.85 2.03 58 3787 3659 2456 2324 1379 134 1025 103.03
18 40.67 3.07 6.6 3113 3047 1817 16.84 1315 122 1775 179.92
2 36.9 2.03 6.8 4187 3974 3002 29.19 1752 1575 117 116.14

abrhwNPE

4 Neural networksto reproduce thecrush behavior of the tube

Currently, the artificia neural networks are regarded as globa approximation tools to solve
problems, not just in engineering, science and mathematics, but in medicine, business, finance
and literature aswell. Thehhistory work in the field of neural networks dates back to thelate 19"
and early 20" centuries which includes predominantly of interdisciplinary work in physics,
psychology and neurophysiology. Nevertheless, the first practical application of ANNs was
introduced in thelate 1950s, with the invention of the perceptron network by Frank Rosenblatt
[17], which was just applied to alinearly separable problem. Later, the multi-layer perceptron
(MLP) networks were put forward with back-propagation learning rule to surmount these
limitations in the 1980s [18].

Asapoint of fact, the ANNs comprise several simple computing units called neurons which
can be trained to reproduce the response of input-output systems. Neurons are usually arranged
in serieslayersto develop amulti-layer ANN. A multi-layer ANN consists of an input layer, an
output layer; and one or more layer in between called hidden layers. Number of neuronsin input
and output layer equalsto the number of input and output variables. According to Figure 4, each
neuron in the ANN receives the sum of the weighted outputs of previous layer and bias then
produces output of the neuron by passing the result through a transfer function. Any
differentiable function can be used as a transfer function. The ANNs must be trained to solve a
problem. Training process includes adjusting the weight and the bias parameters for each
neuron to conform the network output to a desired value. Relation between input and output is
extracted by a set of examples of proper network behavior called training set. After training, in
order to approve the accuracy of the network in precisely predicting the solution to the new
inputs, a verification stage is needed by considering several input/target pairs called test sets.
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Figur e 4 Schematic of a one hidden-layer perceptron network

Aswas mentioned earlier, the aim of this article is the optimization behavior of thin-walled
tubes under axial crushing. For this purpose, plenty of numerical simulations are needed to
define adesign domain. On the other hand, performing all these simulations by the FEM isvery
costly and time consuming from the computational point of view because of the complexity of
the FE models required predicting behavior of structures. Thus, the ANNs are used to
reproduce crashworthiness parameters of tubes under impact load. For this purpose, a set of the
MLP neural networks, with two hidden layer is developed and trained by afinite number of the
FE ssimulations.

4.1 Design of neural networks

In this study, two distinct neutral networks are designed to reproduce the val ues of the absorbed
energy and the maximum force during axial crushing of tubes with impact velocity fixed at
10m/sby Matlab software. Design variables vector consists of diameter, length and thickness of
the tubes.

A proper structure of the network needs to be found considering the training efficiency and
accuracy. Since the number of input variables and output variables determine the neurons as
well asthetransfer functions for these two layers, it is necessary to define a proper structure for
the hidden layers. The most common approach to attain an optimal network topology so far is
still the trial-and-error method, i.e. comparing the performances of different networks. Based
on this ground, the architecture is obtained to be 3-5-5-1 and the transfer functions for the four
layers are "tangent sigmoid"”, "tangent sigmoid", "tangent sigmoid”" and "linear" respectively.
The Levenberg — Marquardt algorithm is used for training all the neural networks[19].

4.2 Training and test sets

The ultimate performance of the neural networks is highly sensitive to the settlement of the
training sets in the design variables domain. A genera rule for selecting the location of the
training sets in the design variables domain is not still attained. Methods based upon the
definition of factorial grid within the desirable region of the domain are frequently used to settle
the initial design points. Sadly, these approaches are not easily applicable to crash problems
often requiring large number of examples.

The method used in this research is based on a different concept. The settlement of the
training patterns is carried out beginning from an initial random alocation of points in a
normalized domain in away that each design variable ranges from O to 1. The ideais then to
modify theinitial positions so asto acquire ahomogeneous and not systematic allocation inside
the normalized domain [12].

In the present study, the training and test sets are defined in the range of 50 mm < D < 150
mm, 100 mm < L <300 mm and 1 mm< t < 3 mm, which will also be the optimization domain.
The training set consists of 150 samples chosen to guarantee a random and homogeneous
allocation inside the design domain and change the design variable values. Theinitial and final
positions of the samples are compared in Figure 5. The test set consists of 50 samples uniform
selected inside the design domain. A total number of 200 ABAQUS/Explicit runs were then
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performed. The training process continues until the mean square errors decrease less than
0.0008. After training both of the networks, the test sets are used to find the error of each
network. The maximum percentage relative error obtained by each network is within 8%.
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Figure5 Settlement of the training set (a): initial positions (b): final positions

5 Crashworthiness optimization

5.1 Problem formulation

Several problems of crashworthiness optimization may be considered even for a simple
structure under impact load. Owing to the variety of the parameters that influence the response

of the structure subject to dynamic loading, different classes of the optimization problems may
be introduced. However, generally the problem can be formulated as:

Objective function: {f(x)} D
Constraints: g;()<0,i=1..N, 2
Design variables: Xl < X < Xjg»i =1, Ng )

Where the parameters x, and x,, are the lower and upper bounds of the design variable

domain, ~. isnumber of constraintsand N, is number of design variables.

In the present study the optimization problem is applied to the maximization of absorbed
energy and specific absorbed energy under axial impact load. Design variables are diameter,
length and thickness of the tubes. The crush load constraint is usually required to reduce the
occupant injury. Hence, in the optimization process, the maximum crush load should not
exceed the allowable limit. The design variable domain is also limited so that the crushing of
tube in concertina or diamond mode is guaranteed. Thus, the optimization problem is defined
as:

M aximize: {Absorbed energy(D,L,t), SEA(D,L,t)} @)
Constraints: Fac <60KN 5)
20< 2 <150
f (6)
1< £ <4

v (7)

Design variable: 50mm < D < 150mm (8)
100mm < L < 300mm (9)

Imm <t < 3mm (10)
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5.2 Multi-objective genetic algorithm (MOGA)

The GA is an optimization method based on the process of evolution in biological population.
In thefirst step of the GA, arandom population in the design variable domain is generated and
in the next steps, successively new populations are produced using the previous individualsin
such away that each new population is modified and evolves towards an optimal solution. For
the crashworthiness problemsthat the objective function is highly non-linear with respect to the
design variables, unlike the other standard optimization methods, the GA can be applied with
sufficient accuracy. In most cases, design problems frequently contain multiple conflicting
objectives, leading to a set of Pareto optimal solutions. One of these solutions cannot be
considered better than the other. MOGASs have been regarded as well-suited to solve
multi-objective problems. The main reason for this is their capability to find diverse Pareto
optimal solutionsin one single simulation run [16]. From these optimum sol utions the designer
can choose the final design according to his particular emphasis on certain objective functions.

A number of MOGASs have been developed and effectively implemented throughout the
years [20]. In this research, the NSGA-II is applied to attain the Pareto set. The principal
features of NSGA (Non-dominated Sorting Genetic Algorithm) lie in that it ranks solutions
with non-dominated sorting and assigns them fitness based on their ranks. The selection
operator distinguishesitself while the crossover and mutation operators remain analogousto an
ordinary GA. As an improvement of NSGA, NSGA-Il is characterized by a rapid
non-dominated sorting procedure; an elitist strategy; a parameter-less diversity-preservation
mechanism and a straightforward yet effective constraint-handling approach. Details of
NSGA-II are described by Deb [16].

5.3 Results of the optimization

Based on the NN model, the multi-objective. optimization is performed through NSGA-II.
Table 3 contains parameters for NSGA-II, which has been executed several times and provides
results with good repeatability.

Table 3 Parameter specifications for the NSGA-I|

Population size 300
Number of generations 2000
Crossover probability 80%
M utation probability 20%
% point 40 :
o 0, : : : :
2 o4 : - . :
= %qb D point 28 @ : i
- i Lt : :
513 TR e N
% % §p0|r]t8
2 e T 5
& 00 o000, \
10 : ; ; i ;
2 3 4 5 6 7

Absorbed energy (KJ )
Figure 6 Pareto front for the optimization design problem
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The outcome of this optimization is displayed in Figure 6. 48 circular points represent the

Pareto optimal solutions, which explain the trade-off between the absorbed energy and the
specific absorbed energy. It is shown that the two crashworthiness criteria strongly compete
with each other: large absorbed energy values go hand in hand with small SEA values. As a
result, if the decision maker wishes to emphasize more on the SEA or weight of the energy
absorbers, the energy absorption must be compromised and become lower, and vice versa. Pay
attention that the Pareto front spreads over a wide range and each point represents a possible
optimal solution with aunique set of design parameters. The points with smaller values of SEA
favor the objective of high energy absorption and the points with smaller values of energy
absorption favor the minimization of the weight, while the middle points tend to favor the
energy absorption and SEA. To gain more insight into the optimization, the results are
demonstrated in Table 4. The optimum values are listed with respect to their absorbed energy.
In thistable, the pointsfrom 13 to 20 are considered weak Pareto solutions, because SEA values
keep constant when the absorbed energy varies.

Table 4 The optimization results and Pareto solutions

No. Absorbed SAE Absorbed SAE

D(mm)  L(mm)  t(mm) Eneray(K))  (KJ/kg) No. D(mm)  L(mm)  t(mm) Eneray(K))  (KJk)

89.57 298.81 3.00 7.04 1034 25 5994 '225.05 3.00 412 12.03
88.25 298.07 3.00 7.01 1047 26 60.77 215.82 3.00 4.04 12.13
86.59 297.52 3.00 6.96 1063 27 6001 21229 3.00 3.99 12.30
84.74 299.15 3.00 6.94 10.76 28 6240 198.21 3.00 3.92 12.44
83.00 299.15 3.00 6.89 1090 29 -60.36 . 200.74 3.00 3.88 12.60
81.34 299.21 3.00 6.83 11.03 30 6098 19439 299 3.82 12.70
79.66 299.75 2.99 6.73 1113 31 6032 191.85 3.00 3.78 12.86
78.08 299.61 3.00 6.71 11.27 32 6005 188.84 3.00 3.75 12.98
76.77 298.63 2.99 6.60 11,3533 59.75 18350 299 3.65 13.14
10 7552 296.10 299 6.50 1144 34 6008 176.95 299 3.57 13.25
11 7417 29491 3.00 6.40 1152 35 6001 17148 299 349 13.35
12 7311 29235 3.00 6.30 11.58 36 5997 161.76 299 3.32 13.48
13 7206 28654 299 6.07 11.59 37 59.99 154.87 3.00 3.20 13.55
14 7035 28129 3.00 5.86 1165 38 60.19 143.89 3.00 3.00 13.61
15 69.04 27596 2.99 5.64 1166 39 5994 137.26 3.00 2.87 13.72
16 6812 27193 /3.00 5.49 11.67 40 59.97 13017 299 2.74 13.83
17 67.28 268.79 '3.00 5.36 11.67 41 5999 12553 3.00 2.67 13.93
18 6517 26048 3.00 5.04 11.68 42 60.88 11842 299 257 14.03
19 6413 254.79. 3.00 4.86 11.68 43 5997 11780 299 254 14.16
20 6331 250.17 3.00 4.71 1169 44 6051 11281 298 2.46 14.26
21 6233 24764 299 4.58 11.72 45 6012 11066 3.00 244 14.46
22 6106 24325 299 4.45 11.80 46 5994 10819 3.00 241 14.61
23 60.01 23946 3.00 4.35 11.90 47 5997 10542 299 237 14.76
24 60.34 229.96 3.00 4.21 11.92 48 59.95 100.28 3.00 231 15.12

O©CO~NOOTA WNPE

As an alternative method, according to the Figure 7 and the Figure 8, the normalized design
variable values can be plotted against their positions on the Pareto front [21]. Since the
thickness of tubes keeps constant of 3mm for the whole optimum solutions, it is not shown in
the graphs, and it indicates, the thicker tubes gain an optimum solution for the maximum
absorbed energy and SEA. These graphs also reveal the behavior of diameter and length of
tubes against the absorbed energy and SEA. For instance, the Figure 8 dividesinto two clusters,
in either of which only one design variable varies. While SEA is lower than 11.5 KJ, just the
diameter of tube decreases accorded on growing SEA. While SEA is larger than 11.5 KJ,
decreasing the length of tube, SEA grows. In either cluster, the emphasis on the maximization
of absorbed energy is gradually tendsto SEA.
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It is necessary to validate the obtained optimal solutions of the ANN in the optimization
procedure with FEM results. In order to, three points have been evaluated to compare existing
errors between optimal results with FEM. Table 5 is shown that the optimal solution is actual.

Mormalized variable

Mormalized variable

Absorbed Energy ( KJ )
Figure 7 Variation of the design variable against absorbed energy on the Pareto front

11

12

13

SEA (KJ i kg)
Figure 8 Variation of the design variable against the SEA on the Pareto front

Table 5 Comparison between the optimum results and the FEM

Optimized solution FEM
No. D(mm) L(mm) t(mm)  Absorbed  SAE  Absorbed ~ SAE  Reldtive error (%)
Energy(KJ) (KJ/kg Energy(KJ) (KJ/kg
8 7808 299.61 3.00 6.71 11.27 6.89 1157 2.4
28 6240 19821 3.00 3.92 12.44 3.97 12.61 12
40 5997 130.17 2.99 2.74 13.83 2.91 14.69 5.8
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6 Conclusions

This paper presents the crashworthiness design of cylindrical tubes under axial impact load.
The design problem isformulated as an optimization procedure with three design variables and
two objective functions. Using the nonlinear FE technique, the crashworthiness characteristics
of different design samples during the crash process are captured in the given domain.
Afterward, in order to establish the surrogate model and achieve the complex relation between
the parameters and the response functions, back-propagation neural network (BPNN) is
utilized. When the BPNN is validated, a multi-objective genetic algorithm is applied to search
for the optimal solutions and consequently, a set of Pareto optimal solutionsisvisualized. It can
be seen from the Pareto optima that these two objectives intensely rival with each other and
various criteria are highlighted along the Pareto frontier. To gain better insight into the
optimum results, the normalized design variables are plotted against their objective functions.
Finally, to validate the optimum sets, the results are compared with the FEM model.
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Nomenclature

D : mean diameter of tube
E . elastic modulus
f.(x) : objectivefunction

F : maximum crushing load

max
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Greek symbols

€y

SRR

constraint equation

length of tube
mass
number of constraints

number of design variables
design variable

lower bound of design variable
upper bound of design variable

plastic strain
stress
density
Poisson ratio
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