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Low Veocity Impact on Relatively Thick
Rectangular Plate under In-plane Loads

_JResting on Pasternak Elastic Foundation
Sh. Hosseini Hashemi @ This study deals with the elastic-plastic impact on moderately thick
Associate Professor B rectangular plate subjected to uniform in-plane compressive loads
resting on the Pasternak elastic foundation. The proposed rectangular
plates have two opposite edges simply-supported, while all possible
combinations of free, simply-supported and clamped boundary
conditions are applied to the other two edges. The dimensionless
equations of motion of the plate are obtained by applying the
Reissner-Mindlin plate theory considering the first-order shear
deformation and the rotary inertia effects. The exact closed form
solution of the governing equations leading to more accurate result
with less calculating time in comparison with the Rayleigh-Ritz
method is used to obtain the dynamic response of the plat. The validity
of the result is first examined by studying the convergence of the
R. Kalhor "l maximum impact force. Then, a comparison of results with those
M. Sc Student [l available in literature confirms the excellent accuracy of the present
approach. Finally the effects of the dimensionless parameters such as
uniaxial and biaxial’ in-plane "loads and the effect of foundation
stiffness parameters on force and displacement histories have been
examined.

Keywords: Low velocity impact, first order shear deformation theory, permanent indentation,
in-plane loads, elastic foundation

1 Introduction

Rectangular plates, subjected to external in-plane loads, with different sizes, thickness
variations and boundary conditions have undoubtedly been one of the key components in
aerospace, civil, automotive, optical, electronic, mechanical, and shipbuilding industries.
They may also be supported by an elastic foundation. These kinds of plates are mainly used
in concrete roads, raft, and mat foundations of buildings and reinforced concrete pavements
of airport runways. Abrate [1] implied that the first step for thorough understanding of impact
event is choosing an appropriate model for prognosis force and displacement histories that
involves the motion of the target, the motion of the projectile, and the local indentation in the
contact zone. Hence many models have been proposed in the literature. These models can be
classified into three categories: (1) energy-balance models that assume a quasi-static behavior
of the structure; (2) spring-mass models that account for the dynamics of the structure in a
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simplified manner; (3) complete models in which the dynamic behavior of the structure is
fully modeled. First step for complete modeling of low velocity impact on rectangular plate
under in-plane load resting on elastic foundation is forced vibration solution of it. Lee and
Reismann [2] investigated forced vibration of a rectangular plate with simply supported
boundary condition under transverse impact loading with 3-D elasticity theory. Reismann and
Tendorf [3] solved forced vibration of thick isotropic plates by using modal superposition
approach. In another study Reismann and Lxu [4] surveyed forced vibration of rectangular
plate with simply supported boundary condition under initial stresses and time independent
mechanical transverse load by applying 3-D elasticity solution. Sakata and Sakata [5] studied
forced vibration of rectangular plate with varying thickness and SFSF boundary conditions
under mechanical transverse load accompanied by sinusoidal displacement distribution,
constant, and harmonic time functions by utilizing approximate functions for forced
vibration. Laura [6] analyzed forced vibration of non-isotropic rectangular plates with simply
supported boundary condition by using Rayleigh-Ritz method. Shen [7] and Yu [8] studied
free and forced vibration of relatively thick plates by applying the Reissner-Mindlin plate
theory with totally free boundary conditions. In another paper, Shen [9] analyzed free and
force vibration of relatively Reissner-Mindlin rectangular plate with. simply supported
boundary conditions exposed to thermomechanical loading and resting on a Pasternak-type
elastic foundation. The mechanical loads consisted of transverse partially distributed
impulsive loads and in-plane edge loads while the temperature field is assumed to exhibit a
linear variation through the thickness of the plate. The Modal Superposition Approach and
State Variable Approach are both used to determine the dynamic response of the plate.

Rossikhin and Shitikova [10] considered the problem of normal impact of a long thin
elastic cylindrical rod upon an infinite pre-stressed elastic transversely isotropic plate
possessing cylindrical anisotropy. The impact took place at the center of the plate, whose
equations of motion considered both rotary inertia and shear deformations. It was shown that
as the radial compression forces reach a critical-magnitude, the velocity and amplitude of the
transient wave of transverse shear both diminish to zero. Sun and Chattopadhyay [11]
investigated the dynamic response to the impact of a mass on rectangular anisotropic
laminated plates under an initial tensile stress. The equations of plate motion took the
transverse shear deformations into account, but ignored the rotary inertia in the direction of
coordinate axes lying in the plate’'s median plane. As a result, the Timoshenko nonlinear
integral equation for the contact force was used, which was then solved numerically by
means of the small-time increment method. It is shown that, a higher initial tensile stress
elevates the maximum contact force, but reduces the contact time, the deflection, and the
stresses, as well as increases the velocity of disturbance propagation. Dynamic response of
pre-stressed composite laminates subjected to large deflection impact is investigated by Sun
and Chen [12] using the finite element method. They found that an initial tensile stress tends
to intensify the contact force while reducing the contact time. It was also noted that an initial
compressive stress may result in larger amplitudes of deflection.

Wei and Yida [13] considered the dynamic response of an elastic plate with arbitrary

boundary shape supported by alinear viscoel astic Winkler foundation, and impacted by a low
velocity projectile. Classical plate theory was used in this article. Nath and Varma [14]
studied nonlinear dynamic response of clamped and simply supported plates resting on
Winkler-Pasternak elastic foundation subjected to the uniform step and sinusoidal loadings.
The effects of Winkler and shear foundation interaction parameters on the response of the
plates have been investigated.

Shear deformation effects on impact force and displacement histories are broadly investigated
through references [15-18] and importance of using first order shear deformation theory were
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emphasized. In these studies, frequencies and mode shapes were acquired by using power
series and Rayleigh-Ritz methods. Leissa and Kang [19-21] have aso obtained exact
solutions for free vibration and buckling of a thin rectangular plate by using power series
method. Hosseini-Hashemi and et al. [22] have presented the exact solution for free vibration
of moderately thick rectangular plate. They obtained exact characteristic equations for six
distinct cases involving all possible combinations of classical boundary conditions namely
SSSS, SCSS, SCSC, SSSF, SFSF, and SCSF plates. The integrated equations of motion in
terms of the stress resultant are derived based on the first order shear deformation theory.

In this paper the elastic-plastic impact on relatively thick rectangular plate having two
opposite edges ssimply supported and subjected to in-plane loads has been studied. The plate
is rested on the Pasternak elastic foundation and the other two edges of the plate can be
combinations of classical boundary conditions such as free, smply supported and clamped
boundary conditions. In order to reduce the number of the independent parameters involving
in the impact process and reduction of computation time, equations of motion are presented
in the dimensionless form [23]. The Reissner-Mindlin plate theory which considers the first-
order shear deformation and rotary inertia effects is used to _derive the dimensionless
equations of motion. The exact closed form solutions of mode shape functions which are
presented in [22] are used to study the behavior of the plate subjected to impulsive load. To
solve the force time history resulting from the elastic-plastic impact, the time increment
method is used.

2 Governing equations of moder ately thick plate

Consider aflat, isotropic, moderately thick rectangular plate of length a, width b, uniform
thickness h, modulus of Elasticity E, Poisson's ratio v,,, and density o, oriented so that

its undeformed middle surface contains the x, and x,-axis of a Cartesian coordinate system
(X, X,, %) , subjected to uniformly biaxial in-plane loads as illustrated in Fig. 1. Two edges

of the plate parallel to the x,-axis are assumed to be simply supported while the other two

can be combination of free, simply supported, or clamped boundary conditions as shown in
Fig. 2.
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Figure 1 Moderately thick rectangular plate under biaxial in-plane loads and co-ordinate convention
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Figure 2 Boundary conditions

The governing differential equations of motion based on the Mindlin first order shear
deformation theory as given in [22] are

M11,1 + M12,2 - Q1 = _(1/ 12),0h3 ‘/>1 (1'a)
My, +M,,, —Q, = ~(1/12) ph’y, (1-b)
Qu+Q,,+ p=phy, (1-0)

wherey,, y, aretherotations of the transverse normal about x,and x, -axis, respectively and
v, is the transverse displacement. Also, M,; and M,, are the bending moments, M,, isthe

twisting moment, Q, and Q, are the transverse shear forces, all per unit length which may be
written as

My, =-D(yyy+0,0,,) (2-a)
M, =-D(v,, +01,) (2-b)
M, = —%(1— 0,) (Wi +¥21) (2-c)
Q =-x’Gh(y, +ys,) (2-d)
Q, =—«Gh(w, +3,) (2-€)

where D = (E h®)/[12(1-v,%)] is the flexural rigidity, G=E /[2(1+v,)] is the shear

rigidity, and x is the shear correction factor to account for the fact that the transverse shear
strains are not fully independent of the thickness coordinate. Substituting Egs. (2—a) to
(2—e)intoEgs. (1—a)to(1-c) gives

D [Ul(‘//l,n +W12) 0, (Yo + ‘//2,12)] - Kth(l//l —y5) =1/ 12):0h3 V1 (3-a)
D I:Ul('//z,n +HWo0) +0, (Wi + '//2,22)] - Kth(V/z —¥s3,) =/ 12)ph3 @) (3-D)
2
K Gh['//s,n W32 —Vi1— '/’2,2] +K, I:‘//3,11 + Wa,zz] +P- K+ Ny + Ny 5,
(3-c)

=phy,
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where v, v, aredefined as
012(1—Up)/2,02=(1+l)p)/2 4

In order to investigate the effect of impact parameters on plate it is more appropriate to
express the governing equations of motion in dimensionless form. In other words the number
of independent parameters can be reduced by combining them in non-dimensional groups
which in turn minimize the time of computations required. Further, it would help in
generalizing and correlating experimental results through the use of minimum amount of data
and model test [23]. Thus for generality and convenience, the coordinates are normalized
with respect to the plate planar dimensions and the following non-dimensional terms are
introduced

Xllela" X2:X2/b1 1/71:al//1/amax1 WZZaWZ/amax’ 1/73:V/3/amax’

)
o=hla, n=alb, p=wle, t=¢pt
~ N o N > K > K
N. = 1 , N. = 2 , K = 1 ’ & 2
1 a2ph(p2 2 a2[0h¢2 1 ,Oh(DZ 2 a2ph(02 (6)

where £ is the frequency parameter, ¢, is the maximum elastic indention and ¢ is the

normalized time parameter. Introducing the dimensionless parameters given by Egs. (5) and
(6), InEgs. (3—a) to (3—b) and assuming the free harmonic motion as:

w1 (X, Xy, 7) =91 (X, X,) e (7-8)
Wi (X, Xy, ) =p4( X, X,) e (7-b)
VA (XX, 1) =y, (X, X,) e (7-0)

The dimensionless equation of motion for the free vibration of the plate under absence of
theload may be expressed as

A | Pt 00 (Pr Vo) | —~0U2K°A18Y) (3-v) =B (89)
A [ ‘/72,11"'772‘/72,22 +(,/1v) 7 (‘/71,12 +’7V72,22) J_(]-ZKZ/“é‘Z) (‘ﬁz _77‘/;3,2) (8-b)
= _ﬁzlﬁz
(Kz/l"' K, + Nl) Van +(K2/1+ K, + Nz) NWaz — KA (l/71,1+77§52,2) -K, 17, (8-0)
= _,leps

where 1 = (12Dv,)/(ph*a’p?) is the impact parameter. For the sake of definiteness the
dimensionless boundary conditions will be given below for an edge parallel to the X,-
normalized axis. For asimply supported edge

w,=0, ;=0 Mllzo 9)
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for afree edge
M, =0, M,=0, Q=0 (10)
and for a clamped edge
7, =0, 17,=0, 7,=0 (12)

Upon making use of the non-dimensional terms the dimensionless equations of moments and
transverse shear forces per unit length may be written as :

My, = (7, +0,07,,) € (12-3)
My, = —(17,, + 0, ) € (12-b)
My, = -0y (¥, +17,,) €7 (12-0)
Q =—(¥,+vs,) € (12-d)
Q,=—(w,+s;,) €~ (12-€)

The three dimensionless governing Egs. (8-a)-(8-c) may be solved by representing the
three dimensionless functions w,, v, and y, in terms of the three dimensionless potentials
W,, W,and W, asfollow [22]:

w, =CW,; +CW,, -, (13-a)
W, =C\W,, + G\, , W, (13-b)
lﬂs =W, +W; (13-c)
where
C 2 12£%0,15% au’+an’0 -3
R Gy a;

2 2 2 202 (14)

C, = 120, 16" _au +a,n0,—a

(a5 -vas) a;
g _—0+NO—4a ., —0+\0’-4a
1 = ’ 2 — = 4~
2 2
K°A B> 12«* 1 B° 12¢? (13)
0~C§ :ﬂzl) a~12d22 :7—?, 932 :—2[m2ﬂ2—7+ 5?2 J
1
2 2 o 4 _(a+a)ul+
PO o e P (% 44)ﬂ % (16)
a,n an
and a (i =12,---,6) areconstant coefficients as
N, K

=1+t +—2 17-a
% K24 KA (17-a)
a, =1+ LS (17-b)

K2l KA
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1

== (#*-Ki) (17-¢)
[/32;; 1;;2} ,+K,) (17-d)
(ﬂz/‘;; 1522‘21] ,+Ky) (17-€)
2% - ( Lo, ﬁ'ﬂ(ﬂz -K,) (17

The genera solution of differential Egs. (8—a) to (8—c) intermsof W,, W, and W, can
be expressed as

VV1,11 +n 2'\/\/1,22 = 0712VV1 (18-a)
VV2,11 +n 2\/\/2,22 = dzzvvz (18-b)
W, + 772VV3,22 = 0?32\N3 (18-c)

Solutions of the above equations based on [22] are taken as :

W, =[ Asin(4,X, )+ Acos(6,X,)]sin(uX,) (19-a)
W2=[Ass|n , 2)+A4COS 6,X,)|sin(uX,) (19-b)
W, =[ Asin(6;X,)+Acos(6;X, ) |cos( uX,) (19-c)

In which arbitrary constants A(i=12...6), 6,(j=123), and u=m~(m=123) are
related to a; by
=’ +n°0l, d; =" -0’0y, &5 =u’-n'0; (20)

Introducing Egs. (19) in Egs. (13) together with utilizing Egs. (14-16), and substituting the
results into the three appropriate boundary conditions along the edges X, =0and X, =1
lead to a characteristic determinant of the six order for each m. Expanding determinant and

collecting terms yields a characteristic equation for any appropriate boundary conditions that
illustrated in Fig. 2.

3 Forced vibration solution

The eigenvalue expansion method may now be used to obtain the response of the plate
subjected to impulsive load. For this purpose Egs. (3-a) to (3-c) may be written in
dimensionlessform as:

_ _ _ _ 1-
Yan T ny 12t (v 1vy) ('//1,11 TNY 210 ) (12*152) ( V)=V (21-3)

=3
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1-—

Wou t 772'72,22 +(v, /‘/1)77(‘/71,12 + 77'?2,22) - (12«* /52)(‘/72 _77‘/73,2) = 2 L) (21-b)
(KZ;H' K, + Nl)!/73,ll+(’(2/1 +K,+ Nz) 772‘/73,22 _Kzi(‘/71,1+771/72,2)_ KiZs+ P =1, (21-c)
%o, t) . . :
where [‘)(Xl, Xz,r) =% is the non-dimensional impact force. Thus the response of
PP o

the plate to the E(Xl, Xz,r) according to the eigenvalue expansion method may be assumed
to be

7% X7 = 2 Y (X X )T™(0) (22-2)
7oK Xe17) = X 37,7 (4 X)T™(2) (22:b)
7% X ) = 2 275 (K X )T (0) (22:0

where 7, (X, X,), 7, (X, X,), and ;" (X,, X,), are the vibrational mode-shape
functions. Also n, m are numbers of semi-wavesin directionsof X,, X, axisand T™(zr) are

the corresponding time functions associated with the mode-shape functions. Substituting Egs.
(22-3) to (22-c) into Egs. (21-a) to (21-c) gives

S 3l e+ ]2 (-] T

m=1 n=1 5?
low _ (23-a)
=22 2.0 (% X) T (7)
m=1 n=1
o —mn mn —mn —mn 12 ? —mn —mn mn
ZZ[‘/’211+772V/222+ 77('/’1,12+77V/2,22)_—’§(V/2 _77V/3,2)] T (7)
m=1 n=1 Ul 5
(23-b)
=—ZZ )T (7)
A
ZZ[(K2/1+ K, + Nl)ﬁgfl +(1<2/1+ K, + Nz)nzzﬁg'z‘z —Kzi(ﬁff +771/7§2)
m=1 n=1
(23-¢)

1‘//3 ] Tmn +p ZZ xl'x ( )

m=1 n=1

The vibrational mode shape functions also satisfy the free vibration Egs. (8-a)-(8-¢). Hence

2

— 2 _ _ 'Brm _
Win +11 %zz+ (%zz+f71//£"£‘z) l?; (v - 571’)?( ,1) 74 (24-a)
12 (ﬁ”“)2
AR S T e A ’§ (7 —pgm) = - 7 (24-b)
U o J)
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(’(2/1""{2""\]1) ‘/7;1]1"'(’{2/1""{2""(]2) 772‘//'?22 Kzﬂ(ﬁffﬂﬁ?ﬁ)—'{ﬁ?”

——(pmY 7" o
Substituting from Eqs. (24-a) to (24-c) into Egs. (23-8)-(23-C) gives
S () T e = X 3 X ) (25-a)
) [Ca Al CE WA (25b)
O [C A OIS WA (25

Upon making use of the orthogonality of the mode-shape functions and some aljebric
manipulations, Egs. (25-a)-(25-¢c) may be combined to give asingle equation as :

T [ G 7P ) (7| (47 T )

11 52 _ 2 _ 2 11 (26)
I 517y 7 )+ 7 }axa - J [P,
By introducing
11
k= [ [ 2) (@Yl )+ (7 xiexe, 27)
00
11 _
Q™ (z)=[[ B, dX,dX,, (28)
00
Eq. (26) may now be written-as
T+ (™) T™ () =Q™(2)/ K™ (29)
Solving Eg. (29) by using the Laplace transform method yields
T™(r)=— 1 r)sin[ #™ (t-T)]dr +T™ (0)cos( 5™¢)
A (30)
sin( ™7 .
B
By assuming the initial conditions as
o T™(0)=0
(7072 75)_ =0, (0w,107,0y,107,0y,107)_ =0= m(0)=0 (31)
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we obtain

T™(r) = Kmlﬂm jQ”“(r) sin[,b’”“ (t—r)]dr (32)

Thus the response of the plate subjected to the impact load in transverse direction may be
obtained by substituting Eq. (32) into Eq. (22-c).

V/S(Xl’ XZ,T) zz l//3K(X; Xz)Jan(r) Sln[ﬂ ( )] dar (33)

4 Normalization of impact equations

In the impact problems where the contact duration is long in comparison with the wave
period, the static contact laws such as one given in Eg. (34) can be used for problems
involving moderate impact velocities [24]. According to the ‘Hertz theory of contact the
relationship between the force and indentation in contact of two elastic bodies may be given
by

F=ka¥ 0<a<a,y (34)
where

k,=(4/9RE", 1/E =(1-0?)IE +(1-v)/E,, (35)

and v,, E are Poisson ratio and Young modulus of impactor respectively. Consider now
collision of a spherical object having.initial velocity V, with a plate initially at rest as shown

inFig. 3.
Uslxa

Figure 3 Impact of an object on plate

Knowing that the maximum indentation can occur when the relative velocity ¢ is zero
and using ¢da = ada, the maximum indentation can be represented as :

5 2/5
amax [ 4:] 0 J (36)
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That is the precise upper limit of the indentation for the low velocity impact [28]. The
displacement of the impactor may also be given in dimensionless form as

l/7i = l//i /amax (37)
where i, is the dimensionless displacement of the impactor. Using Newton's 2nd law
together with the dimensionlesstime r =g t , it isnot difficult to show that

W, =—F ()| (Ma,,9°) =—F(7) (38)
Introducing & = a/ a,,,, and using equation (34) gives
F(7) = ka™? | (Mt p®) = Koy e @7 1 (M?) (39)

The non-dimensional impact force given by Eqg. (38) may be normalized by introducing

0" = KO, 1M (40)

Thus the dimensionless form of force-indentation relationship for elastic collisions may be
given by

F(r)=(a)¥? 0<a<l (41)

4-1 Elastic-plastic contact law

If the stress resulting from the impact of the abject on the plate is more than the Yield
strength of the plate, the Hertz impact theory can nolonger be used to predict result. Thisis
because of generation of the permanent indentation which is on contrast with the elastic
assumption. Based on the elastic-plastic contact law [24], the contact interval is viewed as
consisting of three periods:

1-  Aninitial elastic.compression according to the Hertz law of contact. Thus in this
stage equation F.=k,a®'? may be used until a given critica stress q, is first
attained.

2-  The indentation that is started from the end of the first stage and during which a
plastic zone enclosed by an elastic ring moves outward from the center of the area
of contact under constant stress g, .

3- A restitution initiated when the relative velocity of two objectsis zero and involving
restoration of the accumulated elastic strain energy.
During the first stage we may write

2 2
F=ka® 0<a<a, al=% (42)
where o, and R are the indentation at the end of first stage and radius of impactor
respectively. The dimensionless impact force can aso be given by
F(r)=(@)¥ O0<a<aq (43)
where a=a,/a,,.The non-dimensional form of force during the second and third stages as
shown in[23] are
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F(r)=(3a-1)/2 1<a<a, (44)

ﬁ(r):g{(aﬂ) &—&2+1+§§/(&—&2+1)2} (45)

Having the response of the plate to a typical force p(X,, X,,7) as given by Eq. (33), the
transverse response of the plate to the impact load applied at position X, = X, and X, = X,

P(X,, X;,7) = MF(2) 5(X, — X,) 6(X, - X,), m=m/ m, (46)
may be written as:

73X, X,,7) = sz% (X X, )jF(r)sin[ﬁ"“(r—r)]dr

m=1 n=1

L (47)
x [ [ (X, =X) 8(X, = X,) 73" (%;, X, )dX,dX,

where the Dirac delta functions, 5(X, - X,) and 5(X, - X,) presenting the position of the

applied load on the plate. The integral involving Dirac delta functions on the right-hand side
of EQ. (47) may be smplified as

11
[[o0X,=X)8(X, = X,) 75" (X, X,)aXedX, = 757 (X, X,) (48)
00

Hence, the transverse response of the plate to the impulsive load acting at X, = X,, X, = X,
can be written as:

T

1/73(x11xz’T):iimv?gn(XlkXZ)ﬂwa 1 %) I T)Sin[ﬂmn(f_r)]dr (49

Also after some simple aljebric manipulation the impact parameter 4 appearing first in Egs.
(8-a)-(8-c) can be given by

B ( 3 j E, mh) 1
= 4,05 035515 (1+ v, )Voz/spiys R7 (E* )4/5 (50)
and
_ 3 (mh} 1E, -
| 4r(1+0,) \ R 7 q 1)

for the first and second stages of impact process respectively. The initia conditions for the
impactor are
A7) _ VY,

v (0)=0, &=
dt |t:0 (0 amax

(52)

where £ isthe non-dimensional initial velocity. Using the Newton’s 2nd law together with
the Laplace transformation for the impactor we get
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v, () =&r— [ (c=T) F(T) d(r). 53)

The non-dimensional indentation at any instance of the contact period may now be given
by a =y, -y,. Thus

o0 0

a:gr—ZZm(‘(X X, )2/ (K™B™ )jF(r)sm[ﬁ (z-T)|dr

(54
F(D)(z -T)dT.

O'—.N

Substituting for & from Egs. (43)-(45) into Eq. (54), the non-dimensional impact force for
the three stages of the impact process may be given by

v Elastic stage

(F(e)" = &= 3 Y m{7,(K X)F £ (K™B™ )jF(r)sn A7 (1) ]dr

. (55)
jﬁ(r)(f r)dr

v Elagtic-plastic stage

ZIE(T)

— = >3 M 7Ry K LK™ ™ )jF(F)sn B (z-T)|dr

m=1 n=1 ) (56)

j (T)(r-T)dr

v’ Elastic unloading phase

7 - ii [7,(X, X2/ (K™B™)[ F(T) sin[ g™ (z~T) ]dT

—j F@)(r-T)dr (57)

F(z) =§[(&2 -1)Ja-a, +1+§3/\2/&—§2 +1}

The solution of Egs. (55)-(57) may be obtained by means of the small increment method
where the contact force is regarded as constant during any time increment Az. The time
increment Az is conveniently chosen as some small fraction of the fundamental period of
vibration of the plate.
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5 Convergence study

In order to chose the upper limit of the double summation in Egs. (55)-(57) the convergency
study should be carried out. Reaching to a proper convergency depends on the number of the
modes that are used in predicting the structural dynamic response. Also because of using the
small increment method, the time increment Az could be very important. In this section, we
will consider the effect of these two important parameters on the maximum impact force.
Using the material properties listed in Table 1 together with the selected time increment Az
and the number of the modes listed in the second and the third columns of Table 2 predicts
the maximum impact force listed in the forth column of Table 2.

Table 1 Assumed Material properties for convergence study

n o Uy A P é: m
0.4 0.1 0.3 0.5 0.86667 2/+/5 0.01

The trend of the calculated impact force shows that a decrease in time increment causes an
increase in maximum non-dimensional force. On the contrary an increase in the number of
modes causes a decrease in maximum non-dimensional force. Hence based on the result
given in Table 2 appropriate convergence can be achieved for Az =0.005 and number of
modes equals to 1000.

Table 2 Maximum impact force resulted from time increment and number of mode shapes variation

At Number of mode shapes Maximum impact force
Casel 0.05 100 0.884969
Case2 0.05 200 0.882542
Case3 0.05 500 0.879779
Case4 0.05 1000 0.877477
Case5 0.01 1000 0.894522
Case 6 0.005 1000 0.896666

It is shown that the percentage of difference for the maximum impact force when the time
increment varies from 0.05 to 0.005, is only 2.14% and when the number of modes vary
from 100 to 1000, is 0.835% . Note that by reducing the time increment and increasing the
number of modes accuracy of the result can be improved, but the calculations time will be
increased. In all calculations the time increment and the mode numbers are selected as 0.005
and 3000 respectively.
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6 Numerical examples and discussion

In Fig. 4 the force-time history calculated by the present method on a basis of the Hertz law
of contact is compared with those given in reference [16] for both the classical and the
Mindlin plate theory neglecting the effect of rotary inertia. The plate and impactor properties
are taken from [16] and presented in Table 3.

Table 3 The plate and impactor properties

plate impactor
E, =206.85GPa E =206.85GPa
v,=03 v, =03
p =7837kg/m’ p, =7837kg/ m’
a,b:0.762,0.0127 m R :0.0127 m

It can be seen that because of the present method take into account the effect of both shear
deformation as well as the effect of rotary inertia the maximum impact force diminishes in
comparison with the maximum force related to the force-time history given in [16]. Thus
neglecting the effect of rotary inertia causes an increase in the maximum force. In Fig. 5, the
force-time history calculated by the present method based on the elastic-plastic impact law is
compared with the one given in reference [16]. The difference between two curves quite
noticeable showing that the theory used in the'interpretation of the elastic-plastic contact
could play amagjor rulein reliability of result.

F/(kn*?)"

5
x10
4 T T T T

— Current method
e Mindlin plate theory [16]
5 — - CPT [16]

3

t/(pho2rk,)"

Figure 4 Comparison of result obtained from exact solution of Mindlin theory with result of MPT and CPT
givenin Ref. [16]
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F /(k,h¥2)"

3
x 10
3 T T T

-=--- Elastic-plastic impact [16]
— Current method

2 : 5 | ”’,f Y

1.5/

1 L
6 7 8 9

th(p h*2/k,)"
Figure 5 Comparing of impact force history with Ref: [16]

There are many theory of elastic-plastic contact. The theory used in this article is known
as Andrew’ s theory. It is used by several researchers in recent years [24-27]. Variation of the

non-dimensional central transverse displacement y,E;ah / (qob3) against the dimensionless
time tJE /p /b for simply supported Mindlin plate are shown in Figs. (6)- (8) using
v,=015 «*=7°/12, §=01and 7=1.

wsE,ah /(g,b?)
7

----- Figure.5 [9]
—— Current method

|
6 7 8 9 10

tJyE,/p /Db
Figure 6 Comparing of hon-dimensional central displacement history with Ref. [9]
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In Fig. (6) the plate is subjected to in-plane load in the X, direction with magnitude
N1:—0.25NCr and resting on elastic foundation with foundation stiffness parameters
120,67 K I(z*2) =2 and 120,627%K, I(7?2) =1, (A =0.5).

v,E,ah /(q.b?)

35 T T T T

[-==-- Figure.4 [9]
| — Current method

2.5

1.5

0.5

1 1 1 [l
% 1 2 3 4 5 [ 7 8 9 10

tJE,/p /b
Figure 7 Comparison of the non-dimensional central displacement history with [9]

In Fig. 7 the plate is the same as plate described in Fig. 6 but having no foundation. In Fig.
8 the plate is not subjected to in-plane load but resting on elastic foundation with the same
coefficients as described for plate in'Fig 6. All three cases are compared with those given in
reference [9] and good agreement can be observed.

wsE,ah /(qb?)

3 T \

----- Figure.9 [9]
— Current method
2.5 —
2 - ]
151 v
1 — —
0.5 -
0 1 | | | | 1 L | |
0 1 2 3 1 5 6 7 8 10

9
t\/ E,/p /b
Figure 8 Comparison of the non-dimensional central displacement history with [9]
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In order to study the effect of the Winkler stiffness parameter on the force-time history the
dimensionless force is plotted against the dimensionless time for a simply supported plate
using data given in Table 1 but replacing & =100. The result is displayed in Fig. 9. Similar

plot is aso obtained for the displacement-time history and the result is shown in Fig. 10.

120 —

80—

B

60

401

0 \ \
0 0.5 1 1.5
T

Figure 9 Effect of Winkler stiffness of elastic foundation on impact force history

It can be clearly seen in Fig. 9 that increasing the Winkler stiffness parameter causes a little
effect on the impact force, athough slight increase can be observed but an increase in
duration of contact is more dominant. Reduction in the central displacement of the plate due
to increasing the Winkler stiffness parameter may be observed in Fig. 10.

9 T =
K, 0.1
""" Ry =1
8l |—— & =2 H

| 1
1] 0.5 1 1.5

Figure 10 Effect of Winkler stiffness of elastic foundation on displacement history
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This is because of increase in resistance of the plate as a result of increasing stiffness. To
investigate the effect of shear stiffness parameter similar studies are carried out through Figs.
11 to 14. As shown in these Figs. the same effects as explained for the effects of the Winkler

stiffness parameter can be observed on both force-time and displacement-time histories.

Figure 12 Effect of shear foundation coefficient on displacement history
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Figure 11 Effect of shear foundation coefficient on impact force history
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Figur e 13 Effects of both elastic foundation stiffness parameters.on impact force history

However as far as the effects of Winkler and shear stiffness parameters on the plate response
is concern the more dominant effects may be performed by the shear stiffness parameter.

— K =01 K =01
rrrrrrr K =1k=1
—— K =2 k=2

0.5 1 1.5

Figure 14 Effects of both elastic foundation stiffness parameters on displacement history

The effect of in-plane load on the force-time history for SCSS plate is investigated in Fig. 15
using datagiven in Table 1 and selecting new valuefor £ as & =100.
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Figure 15 Effect of in-plane load coefficientin X, direction on impact force history

It is shown that the variations of the in-plane load have a very little effect on the force-
time history. The effect of the in-plane load on the displacement-time history is also
displayed in Figs. 16 and 17 for a plate under uniaxial in-plane load in the X, direction.
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Figure 16 Effect of in-plane load coefficientin X, direction on displacement history
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Figure 17 Effect of uniaxia in-planeload acting in the X, direction on central displacement-time history of
the plate subjected to central impulsive load

It can be observed that as the in-plane load increases the non-dimensiona central
displacement decreases. The same effect may be seen in Fig. 18 when the plate is subjected to
biaxial load in both X, and X, directions.
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Figure 18 Effect of biaxia in-plane load on non-dimensional central displacement-time history of the plate
subjected to central impulsive load
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7 Conclusion

The elastic-plastic impact on relatively thick rectangular plate with two opposite edges
simply supported and resting on Pasternak elastic foundation is investigated.

The dimensionless equations of motion are derived based on the Mindlin plate theory
considering the in-plane load.

The eigenvalue expansion method is used to obtain the response of the plate to the impulsive
load.

The force-time history is calculated by means of small time increment method.

The shear deformation and rotary inertia could effect the force-time history.

As aresult of using the closed form solution of eigenvalues and their corresponding mode
shape functions, in obtaining the response of the plate to the impulsive load, the present
method consumes | ess cal culation time in comparison with the Rayleigh- Ritz method.

The effect of the in-plane load and elastic foundation parameters on the impact force and the
displacement histories are investigated and discussed.
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Nomenclature

(e

Length and width of plate

Flexural rigidity of plate
Y oung’s modulus of impactor

Y oung’'s modulus of plate
Non-dimensional impact force
Shear modulus of plate

Shear modulus of plate
Plate thickness

N

Winkler parameter of elastic foundation

NN T oMM mmQg e
[54 ,(\Te'c
~

N

Transverse parameter of elastic foundation
Resultant moments (i,j=1,2,3)

Mass of impactor
Mass of plate

©

—_ e
l_—_‘IZI
N
X

N

|

S~—"

Non-dimensional in-plane load
Transverse impact of the impactor on plate
Transverse shear forces (k=1,2)

Radius of impactor

Yield stress

Time

Initial velocity of impactor

S T2 WO T Z2 33 L
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W, Dimensionless potentias
X, = X, X, = X, Cartesian coordinate of position of impact load on plate

Greek symbols

(04 Indentation

a Non-dimensional indentation

o, Elastic indentation in elastic-plastic law
Clrnax Maximum indentation in elastic law

a, Maximum indentation in elastic-plastic law
v, Poisson’ sratio of plate

v, Poisson’ s ratio of impactor

o Thickness to length ratio of plate

n Aspect ratio of plate

& Non-dimensiona initial velocity

o) Mass density of impactor

o, Mass density of plate

Vi, Rotational displacements

W, Transverse displacement

v, Dimensionless displacement of the impactor
(1) Normalized time parameter

A Impact parameter

K’ Shear correctionfactor

Dimensionlesstime
Natural frequency of plate

Non-dimensional frequency

= & "
3
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