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Introduction 

Mesenchymal stem cells (MSCs) which also 

recognized as multipotent stromal or mesenchymal 

cells were discovered by Friedenstein and his 

colleagues in 1970.
1
 They used an innovative method 

for isolation of MSCs from bone marrow based on 

their intrinsic adhesion features. The bone marrow 

derived fibroblastoid adherent cells were clonogenic 

without phagocytic activity.
2
 MSCs are self-renewal 

cells which are able to differentiate into different 

endodermal, mesodermal and ectodermal cell lineages 

in particular culture systems.
3-6

 MSCs are capable to 

be divided up to 50 times in about 10 weeks in vitro.
7
 

The possibility of MSCs isolation from different 

sources is giving promising confidence to establish 

mesenchymal stem cell banks in future. 

It is believed that MSCs are residues of embryonic 

stem cells which remain in adult human body and 

express embryonic stem cell markers, including 

SSEA-1, Nanog, Oct-4, Rex-1 and GATA-4.
8-10

 

Despite of numerous attempts, researchers have found 

that there is no individual specific marker for MSCs 

identification. MSCs do not express hematopoietic 

markers such as CD34, CD45, CD11 or CD14 or co-

stimulatory molecules, CD40, CD80, and CD86 while 

express CD166, CD29, CD106, and ICAM-1 in 

various status.
11-17

 The International Society for 

Cellular Therapy (ISCT) has offered several criteria to 

identify MSCs which are listed as: 1) Plastic 

adherence while maintaining these cells in standard 

conditions. 2) Expression of CD73, CD90 and CD105 

markers in at least 95% of cell population and lack 

expression of CD34, CD45, CD14 orCD11b, CD19 or 

CD79α and HLA-II markers as measured by flow 

cytometry. 3) Differentiation capability in to 

adipogenic, osteogenic and chondrogenic lineage cells 

in vitro.
18,19

 Recent publication is considered 

exceptions for identifying adipose tissue-derived 

stromal cells (ASC) and adipose tissue's stromal 

vascular fraction (SVF) cells.
20

 It has been revealed 

that ASC, similar to the other MSCs, have tri-lineage 

differentiation potency with a set of markers 

phenotype (CD73
+
, CD90

+
, CD105

+
, CD36

+
, CD44

+
, 

CD106
-
, CD45

-
, and CD31

-
) to distinguish them from 

bone marrow MSCs. In order to identify the SVFs, 

these cells are characterizes by the (CD34+, CD45-, 

CD31-, CD235a-) phenotype and fibroblastoid 

colony-forming unit assay.
20

 In addition to the bone 

marrow,
21,22

 MSCs have been found in other sources, 

including liver,
23

 lung,
24,25

 brain,
26

 adipose tissue,
22,27-

29
 peripheral blood,

30
 cornea,

31
 synovium,

32
 thymus,

33
 

dental pulp,
34,35

 periosteum,
36

 tendon,
37

 spleen,
33

 

fallopian tube,
38

 placenta,
39,40

 amniotic fluid,
41

 

Wharton’s jelly,
42

 umbilical cord
43,44

 and umbilical 

cord blood.
22,45
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Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation 

properties to various specialized tissue types, ease of in vitro and in vivo expansion and 

specific migration capacity, make them to be tested in different clinical trials for the 

treatment of various diseases. The immunomodulatory effects of MSCs are less 

identified which probably has high clinically significance. The clinical trials based on 

primary research will cause better understanding the ability of MSCs in 

immunomodulatory applications and site specific migration in the optimization of 

therapy. So, this review focus on MSCs functional role in modulating immune 

responses, their ability in homing to tumor, their potency as delivery vehicle and their 

medical importance. 
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Immunomodulatory mechanism of MSCs on 

immune cells 

Regard to enormous conducted researches; it has been 

found that the potency of MSCs to modulate immune 

responses is resulting from both cell-cell interactions 

and paracrine effects. The paracrine effects are caused 

by the release of soluble immune modulators such as 

IL-6, IL-10, indoleamine 2,3 dioxygenase (IDO), 

transforming growth factor (TGF)-β, prostaglandin E2 

(PGE-2), hepatocyte growth factor (HGF), nitric 

oxide (NO)
46,47

 and heme oxygenase-1 (HO-1).
48-54

 In 

parallel, MSCs induce an immune tolerant phenotype 

by cell-cell interaction, which is characterized by 

intermediate or low levels of MHC class I and lack of 

MHC class II antigens expression,
55,56

 co-stimulatory 

molecules B7-1 (CD80), B7-2 (CD86), CD40 or 

CD40L and FasL.
15,57

 In a well-known reports, it has 

been shown that MSCs express Toll-like 

receptors(TLR) 2, 3, 4, 7 and 9, which involve in 

immunomodulatory properties.
58

 Recent findings 

reveled that depending on which TLR is stimulated, 

there will be a possibility of two distinct phenotypes 

of MSCs.
59

 It is widely accepted that MSCs possess 

immunomodulatory effects on immune cells in vitro, 

and they can arrest the immune cells cycle in G0/G1 

phases and hinder subsequent cell proliferation.
60

 For 

the first time, Di Nicola et al. reported the suppression 

of cell-mediated immune interactions by co-culturing 

dendritic cells [(DC cells), irradiated allogeneic 

lymphocytes or phytohaemaglutinin (PHA)] 

stimulated T-cells with irradiated MSC in mixed 

lymphocyte reaction (MLR). They found that MSCs 

can suppress the activation and proliferation of CD4
+
 

and CD8
+
 T-cells.

61
 Following studies revealed that 

proliferation of CD3
+
/CD4

+
 T- cells and production of 

IFN-γ and IL-2, in the presence of MSCs were 

suppressed.
62

 The suppression of these cytokines 

could inhibit the differentiation of naive CD8
+
 T-cells 

into cytotoxic effector cells.
63

 Ghannam et al have 

also shown that MSCs have a potency to induce T-reg 

cell activity in the presence of pro-inflammatory 

cytokines including TNF-α and IFN-γ, in Th17 cells. 

When Th17 cells were co-cultured with MSC, the 

secretion of stored PGE2 in MSCs were increased and 

raised the suppressive effect of MSCs.
64

 MSCs also 

are able to modulate the immune response of B-cells. 

It has been reported that in a co-culture system of 

stimulated B-cells and MSCs, the B-cells proliferation 

and antibody secretion (IgA, IgG, and IgM) were 

inhibited. Chemotactic ability of B-cells also could be 

modulate by MSCs via CXCR5 and CXCR4 down-

regulation.
65

 The effect of MSCs on inducing 

regulatory T-cells has also been investigated, in which 

MSCs induce T-cells differentiation into T-reg 

phenotype (CD4+, Foxp3+, CD25+) by up-regulating 

HLA-G5 molecules when they co-cultured with 

activated CD4+ T-cells.
66

 The MSCs not only are able 

to inhibit natural killer cells (NK-cells) activity and 

IFN-γ production, by secreting soluble mediators 

including IDO, PGE2 and HLA-G
67,68

 but also they 

can hinder the cell cycle of dendritic cells (DC-

cells)and subsequently inhibit maturation and function 

of these cells.
69

 

 

MSCs homing to tumor and inflammatory sites 

Although many studies have been conducted on the 

homing of MSC, the exact mechanism of migration 

and homing of MSC to the tumor and the site of 

injury is still not well known. It has been suggested 

that the method MSCs migrate to the site of injury is 

same as the leukocytes recruitment to the site of 

inflammation.
70

 This similarity is due to the 

chemokine receptors are expressed on MSCs, are the 

same as the ones, acting in homing of leukocytes.
71

 

For instance MSCs express CCR8, CCR2, CXCR1, 

CXCR2, CXCR3, CCR1, CCR3 and CCR4 which are 

likely up-regulated under inflammatory 

conditions.
72,73

 Numerous studies have proved MSC 

homing into tumors. Nakamuraet al. demonstrated the 

migration of MSC to tumor by administration of 

MSCs into the rat model with gliomas.
74

 Since tumor 

cells release various chemokines, cytokines and 

different inflammatory mediators, they have a potency 

to recruit respondent cells such as MSCs.
75

 It is found 

that tumor cells and adjacent inflamed tissue, secrete 

different types of mediators, including IFN-γ, TNF-α, 

IL-1, IL-1β, IL-10, monocyte chemoattractant protein-

1(MCP-1) and TGF-β
76,77

 and MSCs express receptors 

for these mediators.
73,78

 Expressing these receptors 

plays key role in the mediator specific homing of 

MSCs to the tumor. In addition to previously 

mentioned mediators, It has been identified that other 

important factors are involved in migration and 

homing of MSCs such as vascular endothelial growth 

factor (VEGF), stromal cell-derived factor-1α (SDF-

1α), urokinase plasminogen activator (uPA), 

transmembrane protein 18 (TMEM18) and epidermal 

growth factor (EGF). All aforementioned factors act 

in MSCs homing into tumor and exerting their anti-

tumor properties.
79-83

 Scientists have utilized the 

migration potency of MSCs to inhibit tumor cells 

growth. This has been tried in different kinds of 

malignancies, such as Kaposi’s sarcoma,
84

 malignant 

melanoma,
85

 glioma
74

 and colon carcinoma.
86

 The 

results indicate that by secreting soluble mediators, 

MSCs reduce the progression of tumor growth.
74,85

 

Another study in this field has demonstrated that 

MSCs have a potency to induce down-regulation of 

NFκB in breast cancer and hepato-cellular carcinoma 

and subsequently reduce their proliferation.
87

 

 

MSCs as delivery vehicles 

The self-renewing capability of MSCs, uncomplicated 

isolation procedure, migratory capacity toward 

inflammatory sites and tumors which make them an 

appropriate option as cell therapy vehicles for the 

delivery of mediators into tumors and damaged 

tissues.
88

 Up to now, many animal model studies have 
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been directed to show the potential of genetically 

engineered MSCs in delivering therapeutic agents into 

the tumor sites, which consequently, prevent tumor 

growth. The anti-tumor activity of genetically 

manipulated MSCs has been proved in various kinds 

of subcutaneous, lung and brain tumors.
74,89-91

 By 

different approaches, several studies have used 

engineered MSC to produce and deliver a variety of 

chemokines and cytokines. It has been demonstrated 

that the intravenous injection of IL-2-expressing 

MSCs, enhances immune surveillance against tumors 

and reduces metastasis of subcutaneous tumor 

model.
92

 Similarly, delivery of CX3CL1 (a chemokine 

which activates both T-cells and NK-cells) by 

manipulated MSCs, causes a considerable reduction in 

lung tumors established by intravenous administered 

of melanoma cells.
93

 Secretion of IFN-β (which 

induces apoptosis) by genetically engineered MSC 

suppresses prostate cancers, melanomas, pancreatic 

tumors and breast cancers in animal models.
94-97

 It has 

been also demonstrated that IL-12-expressing MSCs 

have similar effect on renal cell carcinoma.
98

 Pro-

drugs converting MSCs have also been engineered by 

expressing particular enzymes which converts a pro-

drug into a cytotoxic factor at the site of tumors. It has 

been elegantly revealed in a glioma model.
99

 In the 

similar approach, MSCs have been engineered to 

express thymidine kinase of herpes simplex virus, 

which converts the ganciclovir at the tumor site. 

Although the toxicity of final product to the carrier 

MSCs is limited the efficiency of this technique.
99

 A 

comparable study has used MSCs expressing cytosine 

deaminase enzyme to convert 5-fluorocytosine to 5-

fluorouracil in colon carcinoma
91

 and melanoma 

models.
100

 In efforts to find effective plan by the same 

strategy, MSCs engineered to express rabbit 

carboxylesterase enzyme which convert the pro-drug 

CPT-11 into the active drug SN-38, which acts as 

topoisomerase-I inhibitor.
101

 In attempts to produce a 

good cellular vehicles, MSCs have been modified 

genetically to secrete nano-sized exosomes
102

 to 

deliver different types of therapeutic agents such as 

siRNAs
103

 and MHC class I/peptide complexes.
104

 

Delivery of erythropoietin (EPO) by genetically-

engineered MSCs was another challenge which has 

been done in a murine model of chronic kidney failure 

(CKF) and could reduce progression of red blood cells 

aplasia.
105

 As other pioneering plan, engineered MSCs 

which constitutively express TRAIL have been used 

in different models, such as pancreatic cancer,
106

 lung 

metastasis
91

 and glioma model.
107

 MSCs-expressing 

TRAIL home into the tumors and induce selective 

apoptosis of tumor cells with no obvious cytotoxicity 

to the adjacent tissue. Finally, a new possible method 

of virus delivery is considering MSCs as carrier 

vectors for virus delivery. The advantage of this 

delivery method is the reduction immune response of 

the recipient to the virus. This mechanism has been 

applied in several tumor models, such as ovarian 

cancer,
108

 lung and breast metastases
109,110

 with 

different level of success. 

 

MSCs and immunosuppressant drugs 

Some conducted studies are intended to complement 

or even replace the use of immunosuppressants with 

MSCs in the future. Since MSCs and some drugs have 

the common targets there is a possibility that 

immunosuppressants and MSCs have synergic or 

inhibitory effects on each other. Several studies have 

revealed that the mTOR inhibitors, rapamycin, and 

calcineurin inhibitor, tacrolimus, cause reduction of 

immunomodulatory activity of MSCs.
111,112

 In 

contrast, mycophenolic acid (MPA) (potent inhibitor 

of the cell cycle) and MSCs have synergetic 

immunosuppressive effects. These results are 

confirmed in animal model studies and have been 

showed that MPA in combination with MSCs have a 

higher effect on the survival of transplanted heart than 

each MPA and MSC alone.
113

 Another model also has 

been suggested that the effect of administrated MSCs 

was synergized with rapamycin in prolonging 

allograft survival.
114

 In summary, more studies are 

required to find the most appropriate 

immunosuppressant medicine to be combined with 

MSCs in various situations.  

 

Potential clinical applications of MSCs 

Principal functions of MSCs is related to their various 

therapeutic properties; anti-inflammatory and 

immunomodulatory effects,
115,116

 production of 

mediators that initiate or support tissue repair
117,118

 and 

tissue replacement through multipotent differentiation 

potency.
3,119

 Recently these properties have been 

subjugated in the treatment of a variety of disorders in 

preclinical and clinical studies. The anti-inflammatory 

effects of MSCs have been studied in inflammatory 

disorders, including chronic pulmonary disease and 

inflammatory bowel disease, and in other diseases, such 

as cardiac disease. Several studies demonstrated an 

improved cardiac function
120,121

 and decreased infarct 

size
122

 by administrating MSCs after chronic ischemic 

heart failure and myocardial infarction. In other human 

trial study, MSC-induced suppression of T-cell mediated 

immunity has revealed that single intra-arterial MSC 

injection significantly improves the survival rate of the 

graft versus host disease (GVHD).
123

 Many phase I and 

II clinical trials relating to MSCs for treatment of various 

diseases are available in the http://clinicaltrials.gov 

database, which probably is the largest clinical trial 

database. The most important therapeutic areas include 

ischemic cardiac disease, graft-versus-host disease, 

chronic obstructive pulmonary disease and Crohn’s 

disease. There have been about 339 clinical trials in 

http://clinicaltrials.gov injecting MSC for cell therapy 

with no reported incidence of MSCs malignant 

transformation. But by the time of writing this review 

(July 2013) there weren't no reported trials about the use 

of MSCs as delivery mediators for anti-tumor therapy.
124
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Concluding remarks and future perspectives for 

using MSCs in therapy 

Although the potential anti-proliferative and 

immunomodulatory roles of MSCs are currently being 

studied by different groups, and in spite of increasing 

hopes to consider MSCs application as a new 

treatments candidate for various human diseases, a 

better understanding of their immunosuppressive 

ability is now required. Despite the immunosuppressive 

characteristics and differentiation potential, which 

certificate their clinical application, several obstacles 

with the use of autologous or allogeneic MSCs have 

been raised in the clinical settings. Whereas autologous 

MSCs will engraft with a high efficacy, theoretically 

they could induce tumors. This was further supported 

by the fact that during in vitro expansion, MSCs can 

undergo spontaneous transformation that exhibits a 

tumorogenic potential.
125

 In inflammatory conditions, 

MSCs might express MHC class I and class II surface 

antigens, and therefore act as APCs for T cells, 

resulting in MSCs rejection. It is important to 

accomplish a better understanding of these mechanisms 

by further studies especially in animal models to clarify 

many unanswered questions about the overall effect of 

MSCs administration on systemic and local immunity. 

Thus, a precise definition and characterization of MSCs 

phenotype is required to make possible well-designed 

preclinical studies that should be performed to 

determine the in vivo biological properties of MSCs 

and further explore their clinical applications. 
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