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Abstract 
 
Introduction 
The morphologic features of human sperms are key indicators for monitoring fertility problems in men. 
Therefore, automated analyzing methods via microscopic videos have become the most favorite policy in 
infertility treatment during the last decades.  
Materials and Methods 
In the proposed method, firstly a hypothesis testing framework was defined to distinguish sperms from 
background. Then, some regions were selected as candidates by minimization of the information distance 
between the original and processed images. Finally, the correct sperms were extracted from candidates using 
a watershed-based algorithm. 
Results 
The proposed, Watershed Segmentation Algorithm (WSA), Multi Structure Element Segmentation (MSES) 
and Dynamic Threshold Segmentation (DTS) algorithms achieve true positive rates of 96%, 84%, 81%, and 
70%, respectively, versus typically 3% of false positive rate in semen specimens with high density of sperms. 
The true positive rates of 87%, 69%, 66%, and 52%, respectively, at the same false positive rate were 
obtained for the semen specimens with high density of sperms. 
Conclusion 
Results show that false positive rates of the proposed algorithm were at least 8% (in the first scenario) and 
32% (in the second scenario) better than other methods considering the minimum acceptable true positive 
rate of 90%. Furthermore, it has been shown that the proposed algorithm extracted sperms at least 12% (in 
the first scenario) and 18% (in the second scenario) better than other methods in presence of a typically low 
false positive rate equal to 3%.  
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1. Introduction 
It is known that semen of men with impaired 
fertility has fewer sperms than the semen of 
men with normal fertility [1,2]. Moreover, it 
has been shown that abnormal morphology of 
sperms can be related with fertility hazards in 
men [3,4]. Therefore, analyzing the male 
semen in order to determine sperm population 
and morphology has become the most favorite 
policy of researchers in monitoring infertility 
[5,6]. In the recent years, microscopic imaging 
has been widely used for studying semen [7,8]. 
The most challenging step of this procedure is 
to separate sperms from other particles in 
semen microscopic images which is called 
sperm detection. During several years, manual 
sperm detection by an expert person has been 
the main technique to do such a separation. 
However, visual analyzing method is 
considerably effort-demanding and time-
consuming. Furthermore, the inherent lack of 
objectivity in the evaluation of human sperm 
morphology in this method, leads to the high 
degree of variation between different 
laboratories and technicians [9].  
Based on the aforementioned limitations, the 
automated sperm detection and analysis 
methods have been developed rapidly during 
last two decades [10]. The low contrast of the 
sperm under various microscopy conditions is 
a major challenge in automated methods. 
Despite the considerable amount of work that 
has been done in this field, automated 
detection of sperm has been remained as an 
open problem. Some methods try to detect 
sperms using information obtained from the 
sperm head. Unfortunately, this approach is 
not capable of extracting the sperm tail 
completely [11]. Since edge information 
cannot be extracted from microscopic images 
which are intrinsically low contrast, active 
contour-based sperm detection algorithms 
have been developed.  However, these 
methods require several iterations which make 
them unsuitable for real-time applications. In 
some prior arts, threshold-based segmentation 
algorithms have been applied. These methods 
are very sensitive to values of the thresholds 
which are used for segmentation that leads to 

considerable missing of sperms or false 
detections [12].  
In some other researches, detecting human 
sperms is performed using the region growing 
algorithms. Unfortunately, these methods often 
lead to merging the neighboring sperms [13]. 
As for more sophisticated methods, various 
types of matching can be named. In these 
methods, constant or flexible masks are used 
to separate sperms from other parts of semen. 
These approaches suffer from some limitations 
such as high sensitivity to shape, size, and 
rotation of sperms [14]. 
In some researches, the wavelet transform has 
been utilized to distinguish sperms from other 
parts of semen. Despite the capability of this 
method in extracting sperm morphology, its 
performance is degraded considerably in 
semen specimens with high density of sperms 
[15]. Some methods utilize watershed 
segmentation for separating sperms from other 
specimens of semen. Although these methods 
may estimate the existence of sperm, they may 
not determine an exact boundary between it 
and background. Therefore, the above methods 
may not extract sperm morphology as well 
[16].  
In this paper, a sperm detection technique 
based on minimization of the information 
distance between the original and processed 
image, followed by watershed segmentation 
method is presented. In the proposed method, 
firstly, the co-occurrence matrix was 
calculated which contains information on the 
distribution of gray level transition frequency. 
Using elements of this matrix, the entropy of 
transitions across boundaries of image 
contents were calculated which indicates some 
regions of image as primary “candidates” for 
sperms. Finally, an algorithm which is based 
on watershed segmentation was applied to 
determine complete sperms from the above 
candidates. Unlike the existing methods, the 
proposed algorithm extracts more accurate 
morphology for sperms in high density semen 
specimens. This advantage arises from the 
ability of the the proposed algorithm in 
removing background of microscopic images.    

Arc
hive

 of
 S

ID

www.SID.ir



Seyed Vahab Shojaedini et al. 
 

Iran J Med Phys, Vol. 11, No. 2 & 3, Spring & Summer 2014 286

The paper is organized as follows. In section 
II, the proposed algorithm is introduced 
including entropy-based candidate selection 
followed by watershed-based segmentation. In 
section III, the performance of the proposed 
method is evaluated in two different scenarios 
based on real microscopic images of semen 
specimens. In section IV, the obtained results 
from experiments are compared with results of 
some existing methods using their effective 
parameters. Conclusion is presented in the last 
section of the paper. 
 
2. Materials and Methods 
Suppose I as a microscopic image captured 
from a semen specimen which contains 
sperms, plasma, and debris which two latter 
parameters are called background in this 
article. For each pixel of I it can be written: 

JjLl
jlII lj

≤≤≤≤

=

1,1
),(

                         (1) 

In which, ljI is brightness of a pixel which is 
located in row and column equal with l and j , 
respectively. Moreover, Land J are image 
sizes. Dependence of the pixel ljI to 
background, noise, or sperm is modeled by hypothesis testing equation (2):  
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In the above equation, ljr , ljc  and ljn show the 
sperm, background, and noise components in 

ljI , respectively. 
 
 
2.1. Mathematical Description of the Method 
Assume that I  has N  gray levels denoted by

{ }1,...,2,1,0 −= Nβ  which constructs 1-D 
histogram of I . However, this 1-D histogram 
neglects the correlation among gray levels of 
sperms and background which is vital in 
segmentation of I . In order to resolve this 
problem, the co-occurrence matrix is 
introduced which is a square matrix as 

NNkmwW *][=  in which kmw is the numbers of 

transitions between all pairs of gray levels in
β . The above parameter is defined as [17,18]: 
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The transition probability from gray level k  to 
gray level m is obtained as: 
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Let T be a threshold used to separate sperms 
from other particles in microscopic image I . 
Therefore, it partitions co-occurrence matrix 
into four quadrants as 1A , 2A , 3A , and 4A . 
These four quadrants can be clustered into two 
classes. Let pixels with gray levels above the 
threshold be assigned to the sperms and those 
equal to or below the threshold are assigned to 
the background. Therefore, 1A  and 3A  show 
local transitions within background and 
sperms, which are called local quadrants. The 
quadrants 2A  and 4A  represent joint 
transitions across boundaries between 
background and sperms which are called joint 
quadrants. The probability of each quadrant is:  
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If the thresholdT  applied to the original image
I it leads to processed image 'I . Now, the 
transition probabilities of I are shown as

NNkmgG *][= , and for the 'I  are shown as

NN
T

km
T fF *][= , which T

kmf has the similar 
definition as kmg . The second-order entropy of 

Arc
hive

 of
 S

ID

www.SID.ir



Automatic Sperm Analysis in Microscopic Images of Human Semen 

Iran J Med Phys, Vol. 11, No. 2 & 3, Spring & Summer 2014 287 

the above gray-level transition probabilities is 
defined as [19]: 
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The above entropy is used to measure the 
information distance between the original 
image I  and the processed (e.g., thresholded) 
image 'I . Therefore, the smaller this entropy 
is, the closer the two images are in terms of 
their probability distributions.  Based on this 
fact, it can be concluded that minimization of 

),( TFGE over T  generates 'I  in such a way 
that best matches I . Let all gray levels above 
T are called }1,...,2,1{1 −++= NTTβ and all 
gray levels equal to or below T  are called

},...,1,0{0 T=β . Therefore, 1β  and 0β  are 
partitioned sets of β  which had been 
introduced before. Assuming that the gray 
levels in 1β  and 0β are uniformly distributed 

in their respective regions, the resulting T
kmf  

for each quadrant can be found by [20,21]: 
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Where T
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and T
Akmf

4| are constants in each individual 
quadrant and they only depend upon which 
quadrants  they belong to. To optimize 
equation (7) which leads to obtaining the best 
value ofT , firstly, it is expanded as: 

)()('log]})(['),( "
1

0

1

0
TEGEfggEFGE

N

k

N

m

T
kmkmkm

T −=−= ∑∑
−

=

−

=  
(9) 

Where )(' GE is the entropy of the probability 
matrix G and is independent of T . Moreover, 

)(" TE is threshold-dependent part of entropy. 
As mentioned before, the best T is the one that 
yields the smallest value of ),( TFGE . 
However, minimization of ),( TFGE in 
equation (9) is equivalent to maximizing the 
second term of the right-hand-side of this 
equation, which can be further reduced to: 
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Therefore, the threshold value T that 
maximizes (10) is mentioned as: 
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Let the result of thresholding by T  be a 
processed image 'I which is defined as: 
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Now suppose that 
min'Iχ denotes the union of 

the set of 'Q local minimums of 'I  each of 
them can be considered a single object like as

''qO : 
{ }''1' ',...,',...,'

min QqI OOO=χ                          (13) 
 In which: 

})min('|1,1{' ' ljljq YIJjLlO =≤≤≤≤=                   
(14) 
In which ljY shows a window whose center is

),( jl . Now, we consider the gray level ljI '=α

. A neighbor of each member of 
min'Iχ  can be 

either a new local minimum (e.g., add a 
member to

min'Iχ ) or an extension of an existing 

object of 
min'Iχ  (e.g. ''qO ). In the latter case, for 

each ),( jl which is four or eight connected to 
some members of

min'Iχ , like ''qO and "'qO , 
geodesic influence zone of 

min'Iχ  is computed 
as [21]:  
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In above equation, (.)d shows the distance and 
ξ  shows gray level threshold for assigning 
pixel ljI ' to object ''qO or "'qO . Now, the 
primary objects of 

min'Iχ  may be updated. For 

this purpose, let αγ denotes the union of all 
local minimums at levelα which is not 
assigned by equations (14-16). Therefore, we 
have: 

αγχχχ ∪∪= )(
minmin ''' III Z

lj
                        (17) 

In the same manner, a recursion is defined 
with the gray level ljI '=α increasing from 

min'I to max'I which are minimum and maximum 
levels in an image. In this recursion, the 
regions from 

min'Iχ to 
max'Iχ associated with the 

minimums of 'I  and successively expanded 
according to equations (18)-(20) which are 
general form of (15)-(17) [22,23]. 
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According to the above recursion, at level 
1+α , all non-assigned pixels are potential 

candidates to get assigned to objects who are 
members of αχ . Therefore, it allows that pixels 
at gray level α which are not yet part of a 
sperm are merged with some sperms at the 
higher level 1+α . Therefore, finally

max'Iχ
contains a set of clusters as: 

{ }QqII OOO ,...,,...,1'' max
== χχ                      (21)   

Where O  is the set of Q  final expanded and 

merged sperms, (e.g., qO ) which are extracted 
from 'I . By combining equations (2) and (21), 

dependence of each pixel to background and 
noise ( 0H ) or sperm ( 1H ) is determined as:   
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2.2.  Data Collection 
The proposed algorithm was applied on 
microscopic videos which had been captured 
from human semen. The data collection setup 
contained a invert microscope(Nikon-Jappan) 
using a 100x zoom lens (Canon- Jappan) and 
an Orca ER digital CCD camera (Hamamatsu-
Jappan) which had been mounted on the 
microscope to record videos. A calibrated 
microscope slide was used in all of the 
experiments. This microscope slide was scaled 
per 10 micrometer which enabled us to 
estimate size and movement parameters of 
sperms. After calibration, the semen sample 
was put on a non-scaled microscope slide and 
digital video was captured. The image of this 
non-scaled microscope slide existed in all 
captured frames as background. Therefore, the 
image of empty non-scaled microscope slide 
was subtracted from all captured frames for 
background elimination.  
Using this procedure, 360 frames of semen 
were investigated which belonged to 11 
infertile men. From this value, 180 pictures 
were associated to samples containing low 
density of sperms (i.e., bellow 6102× sperms 
per milliliter) and the same number belonged 
to samples containing low density of sperms 
(i.e., more than 6102× sperms per milliliter). 
Based on these populations, each of frames 
belonged to first scenario contained 41-73 
sperms while each frames of the second 
scenario contained 136-221 sperms, both with 
average contrast equal to 17 percent. All 
captured frames had same sizes (i.e., 
1344×1024 pixels) and each sperm included 
minimally 40 and maximally 190 pixels in an 
image.   
 
3. Results  
The proposed algorithm was applied on real 
data using Matlab (2009). Furthermore, 
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Watershed Segmentation Algorithm (WSA) 
[16], Multi Structure Element Segmentation 
(MSES) [24], and Dynamic Threshold 
Segmentation (DTS) [12] were also 
implemented to compare with the proposed 
algorithm. Tests were carried out on different 
scenarios which in one of them the semen 
specimens contained low densities of sperms 
and in another one specimens contained high 
densities of sperms. The captured videos were 
first processed using manual detection to 
obtain a ground-truth detection to compare the 
automatic methods with. Then, sperms were 
detected by applying the proposed and three 
other algorithms and finally performance of 
each algorithm was determined by comparing 
its results with manual detection results. 
 
3.1. First scenario 
In the first scenario, the captured images were 
obtained from semen specimens with densities 
bellow 6102× sperms per milliliter. Two 
images of this scenario are shown in Figure 1. 
Figures 2 and 3 show obtained results utilizing 
the proposed and WSA methods on images of 
Figure 1. For instance, Figure 2-a shows that 
the proposed method has extracted 41 sperms 
from 43 original sperms which are shown in 
Figure 1-a with no false detection. Moreover, 
Figure 2-b shows that the proposed method 
has extracted 40 sperms of total 44 sperms 
which are shown in Figure 1-b again without 
any false detection. However, Figure 3 shows 
that WSA has weaker results than the 
proposed method. It is obvious in Figure 3-a 
that WSA has extracted 38 sperms from Figure 
1-a. In the same manner, the results which are 
shown in Figure 3-b indicates that WSA has 
extracted 36 sperms correctly from Figure 1-b. 
These figures have not shown any false 
detection similar to 2-a and 2-b.  

 
Figure 1. Two captured microscopic images for a semen 
specimen containing low density of sperms (first 
scenario). 
 

 
Figure 2. Extracted sperms by our method.  
 

 
Figure 3. Extracted sperms by WSA method. 
 
3.2. Second scenario  
In this scenario, images were obtained from 
high density ( 6102×> sperms per milliliter) 
semen specimens. Such a high density caused 
some detection problems which the most 
important of them is merging sperms with near 
distances. Two examples for such images are 
shown in Figure 4. Figures 5 and 6 show 
results which were obtained from images of 
Figure 4 utilizing the proposed and WSA 
methods, respectively. For example, in Figure 
5-a, it is shown that the proposed method has 
extracted 62 sperms from 69 original sperms 
in Figure 4-a also 2 false sperms have been 
detected. In the same way, Figure 5-b shows 
that the proposed method extracted 68 sperms 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 
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from a total 80 sperms in Figure 4-b plus 2 
false sperms. Similar to the first scenario, 
WSA still has weaker results than the 
proposed method. This fact is shown in Figure 
6. In Figure 6-a, it is obvious that WSA has 
extracted 51 sperms correctly from Figure 4-a 
and has 2 false detections. Figure 6-b shows 
above values equal with 56 correct and 2 false 
sperms after processing of Figure 4-b.  
 

 
Figure 4. Two captured microscopic images for a semen 
specimen containing high density of sperms (second 
scenario). 
 

 
Figure 5. Extracted sperms by our method.  
 

 
Figure 6. Extracted sperms by WSA method.  
 
4. Discussion 
In the current stydy, real data which were 
obtained from semen microscopy were 
analyzed. The proposed algorithm and three 
existing methods (WSA, MSES, and DTS) 
were applied and the results were compared 

with manual detection using two standard 
parameters. The first parameter is True 
Positive Rate (TPR) and is defined as the ratio 
of correctly identified sperms (i.e., true 
positives) to sum of correctly identified and 
incorrectly rejected sperms (i.e., false 
negatives) as: 

FNTP
TPTPR
+

=                                           (23) 

In which TP and FN represent true positives 
and false negatives, respectively. The second 
evaluation parameter is False Positive Rate 
(FPR) which is the ratio of incorrectly 
identified sperms (i.e., false positives) to sum 
of incorrectly identified and correctly rejected 
sperms (i.e., true negatives) as: 

TNFP
FPFPR
+

=                                           (24) 

In which FP  and TN represent false positives 
and true negatives, respectively. Using the 
mentioned parameters, ROC curves were 
obtained for all examined methods. Figures 7 
and 8 show changes of TPR versus FPR for 
first and second scenarios, respectively. These 
figures show clearly the superiority of the 
proposed method compared with other 
methods in both of scenarios. 
 

 
Figure 7. ROC curves obtained in first scenario for 
examined algorithms. 
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Figure 8. ROC curves obtained in second scenario for 
examined algorithms. 
 
Firstly, the performances of algorithms were 
analyzed for an ideal case in which =FPR 0%. 
As shown in Figure 7, in the first scenario, the 
values for false detections were 89%, 81%, 
78%, and 66% of TPR for the proposed, WSA, 
MSES, and DTS algorithms, respectively. 
Similarly, Figure 8 shows TPR values equal to 
80%, 63%, 56%, and 43% at the same FPR for 
the second scenario.  
Another marginal situation belongs to the case 
of complete TPR. In this case, FPR values 
were equal to 15%, 33%, 38%, and 80% for 
the proposed, WSA, MSES, and DTS 
algorithms, respectively for the first scenario. 
Figure 8 shows that FPR values were equal to 
29%, 52%, 59%, and 90% to achieve such a 
complete detection in second scenario. 
To present a more practical interpretation, 

=FPR 3% was considered as a typical 
acceptable false detection value and the 
performances of algorithms were analyzed. As 
shown in Figure 7, the proposed, WSA, 
MSES, and DTS algorithms achieved TPR 
equal to 96%, 84%, 81%, and 70% versus this 
FPR in the first scenario. Similarly, Figure 8 
shows TPR equal to 87%, 69%, 66%, and 52% 
at the same FPR for the second scenario. 
Based on these results, it can be concluded that 
having a typically low FPR (e.g., %3), the 
TPR of the proposed method is considerably 
(12% and 18% in first and second scenarios, 
respectively) higher than the best of three 
other methods (i.e., WSA). In another type of 
interpretation, the minimum acceptable value 

for TPR was considered equal to 90% to 
evaluate the performances of algorithms 
versus FPR. Under this condition, FPR values 
were 1%, 9%, 10%, and 36% for the proposed, 
WSA,MSES, and DTS algorithms in the first 
scenario (Figure 7). Similarly, FPR were equal 
to 6%, 38%, 41%, and 78% to achieve the 
threshold of =TPR 90% in second scenario 
(Figure 8). Therefore, it may be concluded that 
in the minimum acceptable TPR, the FPR of 
the proposed method were considerably (8% 
and 32% in first and second scenarios, 
respectively) better than other methods. 
Finally, it should be noted that due to more 
density of sperms in the second scenario, they 
have close proximity which led to degradation 
of results compared with the former scenario. 
ROC curves show that in the second scenario, 
TPR values were decreased at least 9% 
compared with the first scenario. In the same 
manner, FPR increased at least 5% in the 
second scenario compared with the first 
scenario. In spite of these degradations, the 
superiority of the proposed method versus 
other algorithms was more pronounced in the 
second scenario. The superior performance of 
the proposed algorithm versus the best of other 
algorithms (i.e., WSA) in TPR in the second 
scenario was 6% larger than its improvement 
in the first scenario. In the same manner, the 
superior performance of the proposed 
algorithm versus WSA in FPR in the second 
scenario was 24% better than its improvement 
versus WSA in the first scenario. 
 
5. Conclusion 
In this article, a new method was introduced 
for sperm detection in microscopic images of 
human semen. The proposed method is 
capable to distinguish sperms from other 
semen specimens using combination of 
entropy of transitions across boundaries and 
watershed-based segmentation. In order to 
evaluate the performance of the proposed 
algorithm, two scenarios were carried out 
based on real microscopic images of low and 
high densities of sperms. In both scenarios the 
performance of the proposed algorithm was 
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compared with three existing methods (i.e., 
WSA, MSES, and DTS) using their TPR and 
FPR. By exploiting the obtained ROC curves, 
the better performance of the proposed 
algorithm was proved. Results showed that the 
proposed algorithm extracted sperms at least 
12% (in first scenario) and 18% (in second 
scenario) better than other methods in presence 
of a typically low FPR equal to 3%. 
Furthermore, it was shown that FPR values of 
the proposed algorithm were at least 8% (in 
first scenario) and 32% (in second scenario) 
better than other examined methods 
considering the minimum acceptable TPR of 
90%. These results showed that better sperm 

detection achieved by the proposed algorithm 
did not increase FPR. Although the proposed 
algorithm showed a better performance 
compared with other examined algorithms, this 
superiority was more considerable in the 
second scenario. The aforementioned 
superiority in TPR in the second scenario was 
6% however this superiority in FPR was 24%. 
Consequently, it can be concluded that the 
proposed method may be used as a suitable 
alternative for detecting sperms in microscopic 
images especially in semen specimens with 
high density of sperms. 
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