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A Soft-Input Soft-Output Target Detection Algorithm for 
Passive Radar 
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Abstract: This paper proposes a novel scheme for multi-static passive radar processing, 
based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, 
each receiver estimates the probability of target presence based on its received signal and 
the prior information received from a central processor. The resulting posterior target 
probabilities are transmitted to the central processor, where they are combined, to be sent 
back to the receiver nodes or used for decision making. The performance of this iterative 
Bayesian algorithm comes close to the optimal Multi-Input Multi-Output (MIMO) radar 
joint processing, although its complexity and throughput are much less than MIMO radar. 
Also, this architecture provides a tradeoff between bandwidth and performance of the 
system. The Bayesian target detection algorithm utilized in the receivers is an iterative 
sparse estimation algorithm named Approximate Message Passing (AMP), adapted to SISO 
processing for passive radar. This algorithm is similar to the state of the art greedy sparse 
estimation algorithms, but its performance is asymptotically equivalent to the more 
complex l1-optimization. AMP is rewritten in this paper in a new form, which could be 
used with MMSE initial filtering with reduced computational complexity. Simulations 
show that if the proposed architecture and algorithm are used in conjunction with LMMSE 
initial estimation, results comparable to jointly processed basis pursuit denoising are 
achieved. Moreover, unlike CoSaMP, this algorithm does not rely on an initial estimate of 
the number of targets. 
 
Keywords: Multiple-Input Multiple-Output (MIMO) Radar, Passive Radar, Soft-Input 
Soft-Out (SISO) Processing, Sparse Estimation, Turbo Detection. 

 
 
 
1 Introduction1 
Passive radar has been an interesting topic of research 
for some decades [1-9]. Using illuminators of 
opportunity, it is possible to detect targets without any 
transmission, thus reducing system cost and probability 
of intercept. But there are important inherent problems 
in passive radar, which have reduced its real-world 
application. 

One of the main drawbacks of passive radar is the 
presence of the direct-path signal, which could be more 
than 100 dB above the target signal echo. Passive radars 
usually try to use antenna design to decrease the power 
of the direct-path signal. Also it is shown that sparse 
estimation algorithms can perform better than matched-
filter processing in such a situation [7-9]. The first 
algorithms of this kind applied to passive radar were 
greedy iterative algorithms, like Orthogonal Matching 
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Pursuit (OMP) [7] and CLEAN [8]. These algorithms 
basically consist of iteratively detecting and removing 
strongest echoes from the received signal. As it is stated 
in [9], these algorithms are not optimal and could 
produce poor results in realistic conditions. Thus using 
Basis Pursuit [10], an algorithm based on l1-norm, is 
proposed therein. Algorithms based on l1-norm are 
solved using linear programming methods, and are 
much more complex. 

Another drawback of passive radar is its blind spots 
[1]. A multi-static passive radar solves this problem by 
using more receivers [5-6]. Each receiver could detect 
the targets independently and transmit the results to a 
center for decision-making. Alternatively, all the 
received signals could be transmitted to a central 
processor, to be jointly processed. This kind of joint 
processing, which is known as Multiple-Input Multiple-
Output (MIMO) radar [11-13], results in better detection 
in lower powers and overcomes target RCS fluctuations. 
Thus, joint processing would help reduce the coherent 
integration time needed to collect enough power from 
the weak signal echo. But the MIMO radar needs much 
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more bandwidth for transfer of the received signals to a 
central processor. Also the amount of processing needed 
in the central processor is orders of magnitude more 
than the multi-static passive radar. 

To reduce the data transfer rate in the MIMO radar, 
[14] has proposed an algorithm based on Compressive 
Sensing (CS) [15]. Compressive sensing states that a 
unique response can be found for an under-determined 
sparse estimation problem, if some conditions on the 
sparsity and the number of available samples hold. In 
[14] it is proposed that the receiver throws away some 
of the received signal samples randomly before 
transmission to the central processor. The central 
processor applies Dantzig-Selector, another sparse 
estimation algorithm based on l1-norm [16], to the 
resulting under-determined problem to estimate the 
sparse vector of target RCS values. This method reduces 
the data transfer to the central processor, but it throws 
away some of the valuable signal power. This could 
result in larger integration times in the central processor, 
which is contradictory to the main justification of 
applying MIMO radar principle to the passive radar. 

This paper proposes another algorithm for target 
detection in passive radar that is based on Soft-input 
Soft-output (SISO) processing. SISO processing was 
first introduced for turbo coding [17] and turbo 
equalization [18] to reduce the complexity of joint 
processing, without losing detection quality. In SISO 
equalization, the equalizer calculates symbol 
probabilities, based on the received signal and 
probabilities fed back from the decoder. The symbol 
probabilities are then transferred to the SISO decoder, 
which uses these probabilities and coder structure to 
calculate new bit probabilities. This iterative 
equalization and decoding method achieves near-
optimal data detection in a few rounds. In this paper the 
same principle is applied to passive radar. SISO target 
detection is performed at each receiver node and the 
resulting posterior target probabilities are transmitted to 
a central processor. The central processor combines 
these probabilities into a joint detection probability 
vector, which is sent back to each node for further 
processing. This process is repeated until a stationary 
result is achieved. This scheme would have two 
benefits: First, the computational complexity is reduced 
in comparison to basic MIMO radar. Second, as the 
probability vectors are inherently sparse, the data 
throughput between the receiver nodes and the central 
processor decreases greatly. 

A Bayesian target detection algorithm should be 
implemented in each receiver node of the SISO passive 
radar. Donoho et al have proposed such an algorithm in 
[19] based on belief propagation. The algorithm, called 
Approximate Message Passing (AMP), assumes the 
information transferred in the belief propagation is 
Gaussian, and estimates its mean and variance 
iteratively. The resulting algorithm is very similar to 
iterative soft thresholding (IST), and only includes 

simple linear operations. AMP is proved [20] to be 
asymptotically equivalent to Basis Pursuit Denoising 
(BPDN) [10]. Moreover, this algorithm lends itself to 
usage of priors [21]. These properties have led to usage 
of AMP in SISO processing where the signal model is 
sparse. AMP has been used in [22] for SISO 
equalization and decoding of sparse channels, and in 
[23] for estimation of structured sparse signals. AMP is 
unique in that it resembles the greedy sparse estimation 
algorithms, while performing as well as the algorithms 
based on l1-norm. 

The contributions of this paper are threefold. First, 
the paper proposes SISO processing to reduce 
complexity and bandwidth of MIMO radar. Second, the 
AMP algorithm is proposed to be used in passive radar 
to fill the gap between the greedy iterative sparse 
estimation algorithms and the complex algorithms based 
on l1-norm. Third, the AMP is adapted to be used in the 
SISO processing scheme and some simplifications are 
proposed to reduce its complexity. Also it is shown that 
the resulting SISO processing scheme provides tradeoffs 
between detection performance, in terms of false alarm 
rate and detection rate, and complexity. 

The paper is organized as follows: In the next 
chapter the system model is described. Then in chapter 
3, AMP algorithm and its adaptation to the MIMO 
passive radar is developed. In chapter 4 simulation 
results are reported and the algorithm is compared with 
the most recent developments. Finally chapter 5 
concludes the paper. 
 
2 System Model 

2.1   Received Signal Model 
Assume a MIMO radar system in which there are N 

transmitters, M receivers and T targets. In the case of 
passive radar, the transmitters are non-cooperative 
illuminators of opportunity. The signal from transmitter
n , reflected from target i  and received at receiver m  
is modeled as: 

{ }tfjdtxattattty inmdinmniminmniinm ,2exp)()( πσ −−=    (1) 

where niatt  and imatt  are respectively the attenuation of 
signal from the transmitter to the target and from the 
target to the receiver in the free space. inmσ  is the RCS 
of target i as viewed from receiver m  with respect to 
the transmitter n , inmd  is the total delay of the reflected 
signal with respect to the direct path, and inmdf ,  is the 
target Doppler observed at receiver m  with respect to 
the transmitter n . Considering all the signal paths, from 
all the transmitters and reflected from all the targets, the 
total signal received at receiver m  equals: 
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where )(tn  is the additive white Gaussian noise, and 
)(, ty mndirect  is the direct path signal from transmitter n 

to receiver m . We assume that the signals from various 
transmitters are uncorrelated due to use of some 
multiplexing scheme, as is common in broadcast and 
mobile communication systems. Therefore, the received 
signal in receiver m from transmitter n after sampling is 
modeled as: 

[ ] [ ] [ ]knkykyky mn

T

i
inmmndirectmn ++= ∑

=1
,][         (3) 

Now assume a grid on the target positions and 
velocities. Namely assume TG combinations of possible 
target positions and velocities. ymn is rewritten as below: 
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where TG is the number of grid points, and []t is the 
transpose operation. Also, we have 

[ ] [ ] [ ][ ]′= kykykyky mndirectnmTnmmn G ,1 ,,,][ L , 1~
1 =+GTs , and 
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Combining the RCS into s~ , and considering K  
consecutive time samples, the following model will 
result: 

mnmnmnmn nsAy +=                (6) 

where 
mnA  is a )1( +× GTK  matrix, with the following 

values: 
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Obviously, as the grid points are equivalent for 
various transmitter-receiver pairs, the support of all mns  
is equivalent, although their values may be different. 
Target detection, positioning and velocity estimation is 
equivalent to estimation of the support of mns . 
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Fig. 1 The multi-static SISO passive radar, and the flow of information. 
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2.2   SISO Radar Structure 
The structure of the multi-static passive radar 

proposed here is shown in Fig. 1. The radar consists of 
M receiver nodes and one central processor. In each 
receiver node, the received signals from various 
transmitters are separated. The signal received from 
each transmitter is used in a Bayesian sparse estimation 
algorithm to generate a posteriori probability of target 
presence for that grid point. The details of the algorithm 
used in each node are discussed in the next chapter. 

Each of the Bayesian detection algorithms generates 
a posterior probability vector l

mnp . These values can be 

combined locally to obtain l
mnω , which can be used as 

the prior value for the next iteration. Alternatively, l
mnp  

values in each node can be compressed and transmitted 
to the central processor, to calculate a joint estimate of 
target probabilities, lω . The values in lω  could be sent 
back to the receivers for the next iteration of the 
Bayesian sparse estimation algorithm, or be used for 
decision making. 

Calculation of ω  in both cases is the same. For the 
i-th target, define ( )itp  as presence of target at grid 
point i. Then: 
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The prior value of prωω =0  are set to small values 
for each i , so that sparsity is enforced. 

The possibility of calculating lω  at each receiver 
locally, or joint calculation at a central processor, 
provides a trade-off between joint processing and data 
transmission. We could reduce data transmission with 
less joint processing, or increase the joint processing 
with an increased amount of data transmission. Some 
results on the best trade-off point are given in chapter 4. 
Another aspect of this two-step refinement is that the 
probabilities calculated in the early iterations have not 
converged and, as a result, are less compressible. So, 
these probabilities need more bandwidth for 
transmission to the center. This would increase the 
amount of transmission needed. By letting the Bayesian 
estimation algorithms in each receiver to converge 
more, the transmitted data would be more compressible, 
resulting in less data traffic. 

3 Bayesian Sparse Estimation Algorithm 
3.1   Approximate Message Passing 

Approximate message passing is a Bayesian sparse 
estimation algorithm based on belief propagation, 
developed and analyzed by Donoho et al. [19-21]. The 
mean square error of AMP is equivalent to LASSO [24] 
in asymptotically large problems [20]. In this section 
this algorithm is briefly introduced. 

AMP is based on a graphical model of the sparse 
estimation problem in Eq. (6), derived from decoupling 
of the prior information on Smn, and the conditional 
distribution of the noise nmn. In the derivations in this 
section, the mn subscript is omitted for the sake of 
simplicity. 

Assume that the prior distribution of s  is 

( ) ( )∏
=

=
GT

i
ii dsd

1
αsα . After observing the received signal, 

the following a posteriori distribution is obtained for s: 
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2
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where Z is a factor used to normalize μ to be a 
distribution function and β is a constant defining 
presumed sparsity. The mode of this distribution 
coincides with the solution of the BPDN problem: 

2

21 2
1minimize Asys −+λ .               (11) 

The factorized distribution in Eq. (10) can be 
described by a factor graph as shown in Fig. 2. There 
are TG "variable nodes", each node representing one of 
the elements of s , and K  "factor nodes", each node 
representing one of the K  observed samples in this 
factor graph. Each edge on the graph means a non-zero 
value in the corresponding model matrix A. Each of the 
factors in Eq. (10) is related only to one of the nodes in 
the factor graph. 
 

 
Fig. 2 Factor graph for the posterior distribution of the signal 
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To obtain the posterior probability distribution of s, 
a belief propagation algorithm can be implemented on 
the factor graph, with the following measure: 

( ) ( ) ( )sxs
bx,

bx,s d
bz

df ii αβ

β

⎟
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⎞
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⎝
⎛ −−=

2

2
exp1;       (12) 

It is proved in [19] that the mean and variances of 
the messages from variable nodes to factor nodes in the 
stl  iteration of the belief propagation algorithm are as 

follows: 
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where 
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and z is the residue left from omitting the estimated 
signal after each iteration. 

Setting yz =0 , AMP would be derived as: 
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3.2   AMP with Gaussian Mixture Priors 

The priors used in the basic AMP algorithm are 
Laplace priors which demonstrate the sparsity of the 
original signal. To be able to include the feedback 
information from the central processor, a more complex 
prior structure is needed. It has been proposed to use 
Gaussian mixtures [23], as they can accommodate the 
feedback probabilities besides the sparsity prior, and are 
also mathematically tractable. 

If there is no target at point i , the distribution of si 
will be a complex Gaussian distribution with zero mean 
and variance equal to the power of noise and 
interference: 

( ) ( )2,0; niin sCNsQ σ=             (16) 

and if there is a target, and its RCS obeys a complex 
Gaussian distribution with mean equal to μs and 
variance equal to 2

rcsσ , distribution of si would be: 

( ) ( ) 2222 ,,; rcsnsssiit sCNsQ σσσσμ +==       (17) 

Assuming ωpr as the prior probability of target 
presence at various grid points; the total Bernoulli-
Gaussian distribution of si would be: 
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where C is a normalizing coefficient. With this prior 
probability, Eq. (12) becomes a Gaussian mixture prior 
equal to: 
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After some straightforward development, and by 
defining 
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F , F ′ and G are driven as follows [21]: 
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Finally, the l
mns  values resulting from AMP could 

be used to calculate target probabilities based on the 
Gaussian assumption: 

( ) ( )
( ) ( )init
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+
=−= iterationth;)(min y    (25) 

 
3.3   AMP Simplification 

Considering the AMP algorithm in Eq. (15), one 
could notice that zl+1 is mainly calculated from y, not zl. 
This shows that θl could be written as a function of y 
and θ0. Omitting the derivations, AMP could be 
rewritten as follows: 
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where 0syAθ0ξ ==== −−− 1011 ,,,1 hζ . 
In the case of matched filtering, the original AMP 

needs about 2KTG calculations in each iteration 
(excluding the operators F, G and F΄, which are less 
complex). When the algorithm is rewritten as Eq. (26), 
preprocessing with about GG KTKT +2  multiplications 

and then about 2
GT  multiplications in each iteration. As 

AMP usually converges very fast [19], the new 
algorithm's complexity is superior in one of the 
following situations: 

- IAA ≈h , thus omitting the calculation of lhAξA . 

- KTG <<  , so that GG KTT <<2  and so the new 
method is less complex than matched filtering. 

- AAh  is less complex than usual matrix 
multiplication, or could be calculated sample by sample. 

The first condition is satisfied when the simple 
matched filter is replaced by an adaptive filter which is 
calculated only once to estimate θ0. This filter could be 
an adaptive MMSE filter which is calculated 
sequentially from the time the frame starts [25]. Of 
course in this case AhA could not be calculated directly, 
but we could assume that the MMSE estimate is near-
optimal, and so IAA ≈h . 

The second condition might happen when a target is 
being tracked, so that the grid points are only dense 
around it and are very sparse further. The last case could 
happen with signals like OFDM transmissions, in a 
slightly different signal model. 

4 Simulation Results 
In this section simulation results for evaluation of 

the proposed algorithm are presented. Two state-of-the-
art algorithms are used for performance comparison 
with the proposed algorithm. The first one is BPDN 
algorithm which has been used in [9] for passive radar. 
BPDN, although rather complex, is one of the best 
sparse estimation algorithms. The second algorithm is 
the greedy iterative algorithms, CoSaMP [26]. For the 
BPDN algorithm implementation, the SPGL1 package 
[27] is used. For all the algorithms, a large set of 
examinations where performed to select the best set of 
parameters. 

One of the most important parameters in the AMP 
algorithm is the variance of the interference and noise, 

2
nσ . Setting this value too low results in lots of false 

alarms, while too high values would reduce probability 
of detection. When the sequential LMMSE algorithm is 
used, the median of the columns of the minimum MSE 
matrix are used to calculate the threshold.  In the case of 
matched filtering, we have used the signal 
autocorrelation values to estimate 2

nσ . In this case, as 
ll zAθ ′= , the variance of interference at grid point i 

can be written as: 
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where ρτi is the value of the non-normalized ambiguity 
function of the transmitted signal at grid point τ, when 
centered at grid point i. Also 
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Using the prior probabilities l
iω , The resulting 

calculated variance is: 
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These calculations add KTG
2/2 initial multiplications 

to calculate iτρ , and 2
GT  more multiplications in each 

iteration, but they result in better target detection and 
lower false alarm rate. 

Simulations are based on a DVB-T network, because 
of its vast coverage and good ambiguity function. The 
DVB-T transmitters use 2K Mode DVB-T with 
(204,188) shortened RS coding, convolutional 
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interleaver, 3/4 punctured convolutional code and 64-
QAM modulation. To be able to implement all the 
algorithms, with their various degrees of complexity, a 
small simulation environment is considered with 
dimensions of 10x10 kilometers. No Doppler is 
assumed, and the targets are assumed to be on a grid of 
12x12 equally-spaced points. Although these conditions 
are not realistic, they were enforced by the 
computational power available. All the transmitter 
powers are assumed equivalent. 

In all the simulations, the targets are assumed to 
obey Swerling model type I, and the variance of the 
RCS values is assumed to be 10 m2. This is in contrast 
to [14], which considers point targets with constant RCS 
from all the angles, which means that all mns  vectors in 
Eq. (6) are equal. Using the Swerling models mean that 
the RCS of the target seen between each pair of 
transmitters and receivers is different. Thus the vectors 
smn in Eq. (6) are sparse with equivalent support. Such a 

problem is called a "jointly sparse", or "Multiple 
Measurements Vector" (MMV) problem. In this 
situation the Dantzig Selector algorithm in [14] is not 
suitable, MMV versions of the BPDN and CoSaMP 
algorithms are developed and used. In all the 
algorithms, the direct path signal is cancelled by 
estimating its power with a matched filter and 
subtracting it from the received signal. 

The parameters used as the base of the comparison 
are detection probability and false alarm rate, with 
respect to the transmitter power. These parameters are 
obtained by averaging over 100 random geometries. In 
each geometry, positions of the transmitters, the 
receivers and the targets are selected randomly on the 
grid. In all the simulations, the receivers have no 
assumptions on the number of targets, except for 
CoSaMP, which needs an initial estimate of the number 
of targets. 

 
 

 
Fig. 3 Effect of number of iterations in each receiver (the second number in the legends), and number of transmissions to the central 
processor (the first number in the legends). Up: MMSE-AMP detection rate; Bottom Left: MF-AMP false alarm rate; Bottom Right: 
MF-AMP detection rate. 
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Two set of simulations, one with 2 targets present 
and the other with 10 targets present, have been 
performed. The detection threshold is set on probability 
of 0.1. Simulation results not presented here show that a 
slight change (about 3 dB) in this value does not have 
any significant effect on the results. 

To see the trade-off between data transmission and 
estimation quality, a scenario with 3 transmitters, 4 
receivers and 10 targets is considered. The number of 
iterations of AMP algorithm on each receiver, before 
transmitting the current results to the central processor 
was varied. Also the number of retransmissions from 
the central processor to each transmitter was changed 
too. The results are shown in Fig. 3. In these 
simulations, the false alarms for the MMSE-AMP 
algorithm were negligible and are so omitted. 

As is observed in Fig. 3, it is essential to have at 
least one retransmission from the central processor to 
the receivers. This could improve the results by more 
than 10 dB. More retransmissions result in less 
improvement each time. 

Increased number of iterations in each receiver 
results in better detection, so that the detection 
probability with 4 iterations in each receiver is better 
than those with 3 or 2 iterations. This could be 
attributed to extraction of more power from each target 
reflection, which would cause the probabilities to go 
higher. But at the same time, more iteration in each 
receiver, above 3, cause higher false alarm rate in higher 
powers. In fact the receivers need the first 2 iterations to 
reach a good starting point, and thereafter try to extract 
more signals based on that starting point. Without 
information from the other receivers, they tend to 
extract more and more targets, to reduce the residue 
power. Thus, although they are able to detect targets 
better, they tend to have more false alarms too. This 
didn't happen in the MMSE-AMP algorithm, because 
the initial MMSE had suppressed much of the 
correlations, before AMP iterations. As false alarm rate 
is usually given predominance, and the difference in 
detection performance is not huge, we have chosen to 
have 3 iterations in each receiver, and at least 4 data 
transfers to the central processor. 

 

 
Fig. 4 PD and PFA for various algorithms, in one-receiver scenario: Left Up: 2 targets PFA; Right Up: 10 targets PFA; Left Down: 2 
targets PD; Right Down: 10 targets PD.
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Fig. 5 PD and PFA for various algorithms, in multiple-receiver scenario: Left Up: 2 targets PFA; Right Up: 10 targets PFA; Left Down: 
2 targets PD; Right Down: 10 targets PD. 

 
In the next simulation, we have analyzed the effect 

of number of transmitters and number of receivers on 
detection and false alarm quality. In Fig. 4, the detection 
and false alarm rates of one receiver, with various 
numbers of transmitters, are plotted. 

When there is only one receiver, the AMP-based 
algorithms show the worst detection performance. 
Between them, MF-AMP starts to detect in lower 
transmit powers, but MMSE-AMP has better detection 
probability in higher powers. The difference between 
BPDN with complete data and MMSE-AMP is about 15 
dB in mid-range SNRs in the 10 target scenario, while 
the CS version of BPDN - which uses 50% of the 
acquired samples - is only 3dB below BPDN. But in the 
higher SNRs, MMSE-AMP is the best algorithm, 
detecting all the present targets, while MMV-BPDN and 
MMV-CoSaMP could not detect all the targets with 2 
transmitters. 

As for false alarm rate, performance of MF-AMP is 
again the worst, so much that it might become useless in 
some cases. MMSE-AMP also has high false alarm rate 
with 2 transmitters, but this rate is reduced with more 

transmitters. This observation is in line with previous 
analysis [20] which states that IST algorithms tend to 
have high false alarm rate. The false alarm rate 
increases with the number of targets in all the 
algorithms. The best algorithm in this regard is 
CoSaMP, in which the maximum number of targets is a 
predefined constant, thus limiting the allowed false 
alarm rate. MMSE-AMP is the next, followed by full-
sample and CS versions of BPDN. 

To demonstrate the MIMO system, 2 scenarios, one 
with 2 receivers and 2 transmitters, and the other with 4 
receivers and 3 transmitters are considered. The results 
are provided in Fig. 5. 

As is shown in Fig. 5, in the 3Tx-4Rx scenario, 
MMSE-AMP has the best false alarm rate, and its 
detection performance is second to the best algorithm - 
CoSaMP. Although MF-AMP has yet the worst 
performance, both its false alarm rate and detection 
performance are improved considerably with respect to 
the one-receiver scenario. The detection probability of 
MF-AMP in the 2-target, 3Tx-4Rx scenario is equal to 
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Table 1 The empirical and analytical complexities of various algorithms. 
Algorithm Preprocessing Time (ms) Estimation Time (ms) Theoretical Total Complexity, 1 Round 

Joint CoSaMP 58.5 16.2 ( )[ ]KMNTTMNTO GG ++ 23  

Joint BPDN 58.5 147.6 ( )[ ]2/3222
GTKNMO  

MF-AMP 58.5 31.4 ( )[ ]2
GG MNTKMNTO +  

MMSE-AMP 4573.7** 13.6 ( )[ ]3
GG MNTKMNTO +  

 
 

CS-BPDN. Obviously, addition of transmitter/receiver 
pairs helps AMP algorithms to achieve performances 
on par or better than the best algorithms available. 

A measure of the complexity of the algorithms is 
also needed to be able to compare the algorithms. Both 
analytical and empirical results on the complexity of 
the algorithms are given in Table 1. The empirical 
results are calculated by averaging run time of the 
simulations on a PC (Core-i7 6760, 4 GB RAM). 

As the SPGL1 package does not state any 
complexity calculations, the single-round complexity 
of BPDN algorithm is estimated based on the L1-LP 
implementation, analyzed in [28]. Note that the number 
of iterations needed for BPDN to converge is an order 
of magnitude greater than the other algorithms. In 
calculation of the complexity of MMSE-AMP, 
sequential update of the SLMMSE estimator is 
considered. For CoSaMP, the predetermined number of 
targets, shown by cT , is also needed to calculate the 
complexity. 

The empirical results in Table 1 show that the 
preprocessing time for MMSE-AMP is two orders of 
magnitude greater than the other algorithms. This is 
because of our SLMMSE implementation, which uses 
a new snapshot of data in each simulation round. In a 
realistic scenario, this algorithm changes to Kalman 
filtering, and the difference is much smaller. The 
processing time of the CoSaMP and MMSE-AMP is 
near each other, while MF-AMP takes more time. This 
difference is also due to implementation, as the MF-
AMP algorithm is implemented without the 
simplifications in chapter 3-3. The BPDN algorithm is 
the most complex, and needs the most amount of time. 

In a real-world scenario, both K and TG would be 
much larger than the simulations. In this case, 
complexity of MF-AMP would be the least, followed 
by CoSaMP, MMSE-AMP and BPDN. If the 
SLMMSE algorithm could be implemented with lower 
complexity, the complexity of MMSE-AMP would 
become nearly equivalent to CoSaMP. This could be 
the case in OFDM-based modulations, where 
frequency domain estimation based on FFT could be 
used. Anyhow, it should be noted that CoSaMP needs 
an accurate initial estimate of the number of targets, but 
AMP-based algorithms don't need such an estimate and 
are insensitive to the initial estimate of sparsity value. 

5 Conclusion 
This paper has proposed a new architecture for 

multi-static passive radar, based on soft-input soft-
output processing and Bayesian sparse estimation. This 
combination has two benefits: First, it reduces the 
bandwidth needed for joint processing while achieving 
comparable results. Second, it could cope with the 
direct-path signal through sparse estimation. 

The Bayesian sparse estimation algorithm used in 
the receiver nodes is AMP, which is adapted to use 
Gaussian mixture priors, to be able to accept the 
probabilities fed back from the central processor. Also 
the algorithm is rewritten so that it can be used with 
MMSE initial filtering, or any other adaptive filter, 
while the complexity is not increased substantially. 

The simulations have shown that the algorithm is 
inferior to joint processing when there is only one 
receiver, but when the number of transmitters and 
receivers increase, it can achieve results equal to joint 
processing with MMV-BPDN algorithm. The 
algorithms performance is below CoSaMP, especially 
at false alarm rate, but it should be noted that CoSaMP 
needs an initial estimate on the number of targets, 
while the proposed algorithm does not. 

Also it is shown that more iterations in each 
receiver node before transmission of the data for the 
central processor increases both detection and false 
alarm rate. The best results are achieved when 2 or 3 
iterations are run in each receiver, before probability 
transmission. This also reduces the required bandwidth, 
by generating more compressible probabilities. 

Future work includes study of various parts of this 
system. One of the interesting areas of research would 
be utilization of the DVB signal structure for frequency 
domain filtering. Also the algorithms in the central 
processor can be extended to target acquisition or 
tracking. 
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