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Sound Transmission through Laminated Composite Cylindrical Shells,
Considering Transverse Shear Deformation

K. Daneshjoul, A. Nouriz, and R. Talebitooti’
Mech. Eng. Dep’t., Iran Univ. of Science and Tech.

ABSTRACT

Laminated composite shells are increasingly being used in various engineering applications, including aerospace,
mechanical, marine, and automotive. In this paper, sound transmission through an infinite laminated composite
cylindrical shell is studied in the context of the transmission of airborne sound into aircraft interior. The shell is
immersed into an external fluid medium and contains internal fluid, while the airflow in external fluid medium is
moving with a constant velocity. Modal impedance method, along with the first-order shear deformation theory
(FSDT), is used to calculate the transmission loss (TL), considering three directions of the shell. The TL
obtained in this study is compared with that of thin laminated composite obtained by others. The effects of
structural properties and flight conditions on TL are studied for a range of values, especially, Mach number,
aircraft flight altitude, shell thickness, and warp angle. Comparisons. of the transmission loss are made among
classical shell theory (CST) and FSDT for laminated composite and isotropic shells, which show close
agreements.
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Introduction

Composite panels and cylinders are extensively
employed in the aerospace industry. Their
applications are commonly found in aircrafts,
helicopters, launch vehicles and engine cowlings.
Ironically, the light weight advantage of the
composite construction could lead to higher interior
noise levels. The prediction of the sound
transmission into such structures requires the
analysis of acoustic wave propagation in composite
cylindrical shell. With the increase awareness of,
and sensitivity to, structural noise and vibration,
research covering the vibration of composite shells
has received considerable attention.

Noise transmission, measured by transmission
loss (TL) through the circular shell, has been
studied by Smith [1], White [2], Koval [3-5], Blaise
et al [6, 7] and Kim [8] for isotropic, orthotropic
and laminated fiber-reinforced composite shells.
Smith presented a theoretical study of transmission
of sound energy through a thin, isotropic elastic
cylindrical shell from an oblique plane ‘wave
excitation. White investigated sound transmission
into finite cylindrical shells and. found: two
important characteristics, the ring-and coincidence
frequencies, at which TL takes on minima. Koval
extended Smith's work to’ present. an analytical
model for predicting of TL for isotropic,
orthotropic, and “laminated fiber-reinforced
composite shells::The transmission loss prediction
for orthotropic and multi-layered infinite cylinders
was investigated in a series of papers by Blaise et al
[6, 7]. They presented a displacement field which
neglected the transverse shear and rotary inertia.

The theoretical study of Koval (1980), for an
infinite cylindrical shell, provided the first model

for noise transmission loss of composite
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constructions using classical laminated theory.
Roussos et al. [9] gave a report prepared at the
NASA Langley Research Centre about the
theoretical and experimental study of noise
transmission through composite plates. Tang et al.
[10] considered an infinite cylindrical sandwich
shell excited by an oblique plane sound wave with
two independent incident angles. In most of studies
surveyed above, numbers of terms used in the series
solution were apparently insufficient to provide
accurate results, which. could have affected the very
large TL’s .estimated results. In addition, the
deformation of ‘the transverse plane due to
transverse shear stress was neglected, whereas in
thick shells'and in high frequency, transverse shear
deformation could become important.

The objective of this paper is to study sound
transmission through an infinite laminated
composite  cylindrical shell using “modal
impedance method”. An aircraft fuselage in flight
with an external airflow is modelled as an infinite
cylindrical shell. The vibro-acoustic model of
laminated composite shell is obtained in a series
form using FSDT laminated shell vibration, without
ignoring any of the three directions of the shell. The
shell is assumed to be immersed in a fluid media
and excited by an incident oblique plane sound
wave. The properties of the internal and external
fluids surrounding the shell may be different. To
make sure an enough number of modes are
included in the analysis, the convergence checking
is preformed. Moreover, the effects of structural
properties and flight conditions on TL are studied
for a range of values, especially, Mach number,
flight altitude of aircraft and angle of warp.
Comparison of TL is made between isotropic and
composite shell using FSDT and CST.
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Fig. 1. Schematic diagram of the laminated composite cylindrical shell.
NE

cylindrical coordinate system.

Model Specification

The specific problem consists of a plane. sound
wave obliquely impinging upon . a flexible
laminated composite shell, and:.. includes the

reflection and transmission of the incident wave,
and the effect of an external airflow (see Figure 1).
The wave approaches from the (= T direction
with
simplicity the shell is considered to be of infinite
length and the shell interior to be totally absorbing.

The fluid media in the external and internal space
are defined by the density and the speed of sound:

{p]acl} and {pz,cz} respectively.

incident angle - of Y. For mathematical

Acoustic and Shell Dynamics
In the exterior space, the pressure p, = pI +p]R,

where pI is the incident wave and p]Ris the

reflected wave, satisfies the convected wave
equation (11, 12), as:

2
0
vt ent)-[ Zove | @ eat=0 0

where, is the Laplacian operator in the

In the interior cavity, the pressurep, =p§,

where pg is transmitted wave, satisfies the

acoustic wave equation, as:

2T
vpl -2 =

o )

For the shell let {u,,v,,W,} be the

displacements of the shell at the neutral surface in
the axial, circumferential, and radial directions

respectively, and { Vg } be the rotations of the

normal direction relative to the unreformed mid-
surface.

In FSDT, assuming that normal to the mid-
surface strains remains straight during deformation

but not normal to the mid-surface, the
displacements can be written as [13, 14]:

u(a, B,8) =uy(a, p) + Sy, (a, p),
V(aaﬁaé) = VO (G"B) + &Wﬁ(a’ﬁ)a (3)

w(a,B,8) = w(a.p),
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where, o and [} are curvilinear surface

coordinates and & is the distance from mid-

surface. The middle surface strains and curvature
change for a thick cylindrical shell are defined as:

ou, _0v, , W,
800’ - s 805 - + 9
oo B R
ov ou
Bup =5 B T g
- Wy,
YOa& a o
o =M _Vo, @
0pg 68 R g
0
ka 8\Ifa , kB _ﬁ’
8ot op
:% aw_‘l
kaB > Ba
b0 op

In above equation €, €ops Eoup> Eopa arC
normal and shear mid-surface strains; Y., ¥ope
are shear strains in the z direction; k o> kB .k >

kBa are the curvature and twist changes. The

subscript (0) refers to the middle surface in above
equations.

The forces and moments resultant, obtained by
integrating the stresses over the shell thickness, are:

N, X11 A, X]e Ay E11 By Els By €oa
Ny A, A, Ay Ay B, B, By By ||
Nonli XI(\ Azo Xb(x Aeb ﬁ16 Bzo E(xb B(x() €oap
NBu - Ay Azs Ag (Ag By st By I§66 €opa
M, E11 B, Els By B11 Dy, 616 Dy Ky
MB Blz Bzz st sz Dlz ]322 Dza ]526 Kp
MaB Els By B B B16 Dy ﬁss Do | | ®ap
_Mﬁa_ | Bis I§ze By, By Dy bze Dy ]566_ Kpa
(6))
Q. |_ {Ass A45} Y oas ©)
>
_QB Ay Ay Yope

where, N is membrane force resultant; M is

moment resultant; Q o> Q[3 represent transverse

shearing force resultants; A, Bij and Dijare

extensional, coupling and bending stiffness. For a
composite shell composed of different orthotropic
materials the stiffness can be written as [13]:
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No
Aij = Qil;(hk _hk—l)
S
_ 1Ak 02 2 s s s 7
B, =52 Q)i ~hi,) 1i=126 @
_1 < k(1.3 3
Dij -5 Qij (hk _hk—l)
3a

N, .
Aij =ZK" KjQil;(hk _hk—])
k=1

(RN ) .
By =5 LK K QI -hip ij=4s5 O

_1 < k(1.3 3
Dij _EéKi KjQij (hk _hk—l)

where, hk_1 and hk denote the distances from the
referénce surface to the outer and inner surfaces of

the' kthlayer as shown in Fig. 1, N is the number
of layers in-the laminated shell and K = 5/ 6 is
shear correction coefficient [13- 15].

In both of equations (7, 8) the constants Qij are

transformed stiffness coefficients, which are found
from the following equation:

[Q]=[1]"[Q]Ir]. ©)

where, [T] is the transformation matrix for principal
material coordinate and shell coordinates system
and defined as:

c0s’0, sin’0, 2c0s0, sinb,
[T]= sin’0, c0s’0, - 2cos6, sind,
-cos0, sin®, cosO, sin®, cos’O, -sin’0,
(10)

In addition O, is orientation of fibres and Qij are

material constants that were defined in terms of
material properties of the orthotropic ply, as:

1 1
Qn:ElZ» Q22=E2Zf (11)
A% A%
Q66:G12 > Q12=E1f=Ezf»

A=1-v,v,,

where, E; and E, are modulus of elasticity in the

1 and 2 directions, respectively; G,, is modulus of
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shear stiffness and Vij(i,j=1,2,i¢j) are

Poisson’s ratios.

Note that we described the fiber coordinates of
orthotropic, as 1 and 2, where direction 1 is parallel
to the fibers and 2 is perpendicular to them.

Considering first-order shear deformation theory,
the equations of motion of the laminated composite
cylindrical shell are defined as [13, 14]:

ON, ONg =0 T .
o 4 +q, =Ll +Ly2), (12
20 B q, =L, +1Lyg)
ON, ON Q - -
B ap B — (T 2 - 2
P + o + R +qp = (L, Vg + 1) (13)
N, 00,6 0Q _
Py 2 Fa f EP o = (102, (14)
R 20 Y q: (iwy)
oM ONg, - =
aaa + 6[3[3 _Qa +tm, :(Izu(z) +13\Vé)’ (15)
oM, N, N
78[3[3 + aaﬁ -Qy +my :(IZV(Z) +I3\|/é)- (16)

Equation. (12-14) present the equation of the
translation motion and Equation. (15, 16) present
the equations of rotational motion. In above

equations (,,qs and . are external forces (per
unit area) in the o, and & directions,

respectively, m_ and mg represent distributed

03
couples about the middle surface of the shell (per
unit length) and two dots represent the second
derivative of these terms with respect to time, and:

_ 1.
L. :(Ii +‘—+‘] 1=123, (17)
R
N, h/2 :
L= [p & deni=1234, (18)
k=l _p/2

where, P, is the mass density of k-th layer. For
cylindrical shells in Fig. 1, B =R anda =z,

therefore the equations of motion can be written in
terms of displacements [13, 15], as:

[L1{u}+ MK} ={q}. (19)

where,

{u}:[uo,vo,wo,\yz,\y@]T, (20)

Mech. & Aerospace Eng. J. Vol. 2, No. 2, Nov. 2006

I, 0 01, O
01, 0 0 I,
M]=|0 0 I, 0 O], Q1)
I, 0 01, 0
0 I, 0 0 L]
and
{at=[0,0,(pt +pE)-p1,0,0]". (22)

The L coefficients are shown in appendix A. In

addition, the classical equations of thin laminated
composite shell can be found in appendix B [15,
16].

Boundary Conditions

We have to-consider, for a coupled fluid-structure
problem; the boundary conditions at internal and
external shell’surfaces. On the internal and external
shell surfaces, the particle velocities of the acoustic
media in the normal direction have to be equal to
the normal velocity of the shell. These results are
shown in the following equations [11, 17]:

1 R ?
w =-p, (§+VV] w o, (23)
T
r=R
o  _  Pw
op; | =—p, 24
or _ P3 ot @4

which describe the effect of the fluid pressure on
the shell motion.

Solution of the Vibro-acoustic Equations
The harmonic plane WavepI in cylindrical

geometry, incident from outside to the direction
shown in Fig. 1, can be expressed as [6, 8, 18]:

p'(r.z,0,0)= F, z e, (=p"J, (k,r) el (@ hizmme)l

m=0

(25)
where, ¢_is the Neumann factor given by:
1 m=0, 26)
E =
"2 m>1,
and
k., =k cosy , k, =k siny. (27)
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In addition klis the wave number in the moving
medium and J _ is the Bessel function of the first
kind of order m, p, is the amplitude of the incident
wave, = \/—_1, m=0,1,2,3, . . .
angular frequency.

The wave number in moving medium can be
written as [3]:

and o is the

® 1
ki =—| ———|, (28)
01(1+M1 cosy]

where, M, =(V/c,) is the Mach number of the

external flow.

Because the travelling waves in the acoustic media
and inside the shell are driven by the incident-
travelling wave, the wave numbers (or trace
velocities) in the z direction should match

throughout the system, therefore k32 =k, and:

=k 9k3 = k§ _kgz (29)

1z r
The waves radiated from the shell to the outside
and into the cavity, pf and p3T , can be represented

as:

pr(r,2,0,t) = D P8 H2 (k, ryel @z mel
m=0

(30)

pg (ra z, 95 t) = Z P3Tm H:n (k3rr) e[j(“’t_k|72*mtp)] ,
m=0

(€2))

where, Hin and an are the Hankel functions of

the first and second kind of order m, respectively.
The former represents the incoming wave and the
latter the outgoing wave. The displacement and
rotation terms of mid surface can be written as
follows:

u, iU,
v, iV,
W, :i W {glitokiz-ney 32)
Vo, | " iWom
Voo IV om
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Here, in Equation. (32), {Um,Vm,Wm} and
{\Vzm,\y q)m} are unknown complex amplitudes of

the displacement and rotation components,
respectively. It can be seen that for each mode
number m, there are seven unknowns
R T
{Um’vm’Wm’\llzm’\Vgom’P]m’P3m} and seven
equations (five equation of motion and two

boundary condition). To obtain simplified and
meaningful results, one can get a set of equations in

terms of PN,PS and W by

Im> m
eliminatingU,, V., W, ¥, . Solving these
coupled equations yields:

Tk, R) (Zh +Z, +Z3)

_ « 33)
Pl‘:n - _POSm(_.]) 7 T R Sh ’ (
H2 (k, R) Z,t2,+Z,

1r" m m

: Ryl 2
Pl = Pe (=))" — ok, T, (e, R Zyy + 25, (i, | @) ’ (34)

’

p1k3rHl (k_%rR)(ZS +Zr: +Zih)

m

0)2 ZR +ZT +ZSh
pl m m m

R 1 2
Wm :—Pg (_ .)m klr']m(ker)Zm +Z (klcl/a)) , (35)

0“m

where ,

) E— &Jm(ker)

Z,=io——F———, (36)

klr Jm(kIrR)

2 2
K12 (g, RO\ @
1

zr =i P HEGR) ,(k3fR) , (38)

K H' (k,R)
79 = P&, (=)"J, (k,R)+ P} H*(k,R)— Py H'(k,R)

" jow,

1
- joD,, '

(39)

Here, in Equation. (33) to (39), the primes denote

derivatives with respect to the argument; Zln, ZE,
ZL are modal characteristic acoustic impedances

of the fluids; Z%

o, 1s the modal impedance of the
shell; and D, is the modal amplitude of the

displacement component of the shell in the radial
direction with a unit pressure.
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Transmission Loss

It is convenient to represent the solution in TL for
the design purpose. TL can be defined as the ratio
of the incoming and transmitted sound powers per
unit length of the cylinder [6, 8], as:

I

_ W
TL =10log,, W (40)

where, W'is the incident power and W' is the

transmitted power per unit length of the shell [8],
as:

2
cosyP
T
P C

1 2n .
W'=oR [pl. 9 (wyyrdoy , r=R.(42)
0

W' = R, A1)

where, Re {.} and the superscript * represent the
real part and the complex conjugate of the
argument, respectively. Substituting Equation (31,
32) by using Equation. (33, 35) into Equation (40)
leads to the expression of TL in terms of the modal
impedances, as:

) <26, (o | RelZ8]+RelZ}] (43
TL——]O]OgIO zk R(kcj ﬁ ’( )
m=0 Ky 1“1 ‘Zm +Z, +Zm‘

where, |.| is the absolute value of the argument:
In addition, the average power transmission
coefficient T is given as [19]:

T= I' t(y)sinycosydy, (44)

where, T(y) is the power transmission coefficient
calculated for the incident angley; 7Y, and

Y max are the critical angles of incidence upon the

shell [3]. Incidence wave out of this range, to be
totally scattered with no transmission into the shell
interior.

The integration in Eq. (44) is conducted
numerically by the Simpson’s rule using an
integration step-size of 20[20]. The average

TL,, shown in Fig. 2. is given as [21]:

TL,, = 101og10(i). (45)
T
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Fig. 2. TL.averaged for random incident angles.

Convergence checking

As one can see in Equation. (25) and (30-32), the
solutions, are obtained in series form. Therefore,
one has to ensure that enough number of modes are
included in the analysis to make the solution
converge. When insufficient number of modes is
used in the calculation, the resulting TL becomes
overestimated. Once the solution converges at a
given frequency, it can be assumed to converge in
all frequencies lower than that, because more terms
are necessary to be used in the calculation for a
higher frequency. Therefore, we construct an
iterative procedure in each frequency, considering
the maximum iteration number. Unless the
convergence condition is met, it iterates again.
When the TL’s calculated at two successive
calculations are within a pre-set error bound, the
solution is considered to have converged. Fig. 3
shows the concept of this convergence. Changes in
the calculated TL as the number of modes increases
are shown in Fig. 4 for the case of a composite shell
specified in table 1 driven at 1000 Hz. Fig. 5 shows
the convergence trend for the same case but at
10,000 Hz, which indicates that with increasing the
frequency, the number of modes for convergence is
increased.
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Mode Number Calculation of TL at each
— Frequency

A

No

ABS (TL(n +1)-TL(n)) <1077

Find Optimum Mode Number

Fig. 3. Algorithm for identifying the optimum
mode number.

40

TL (dB)

0 5 10 15 20 25 30 35 40
Mode Number

Fig. 4. Mode convergence diagram for 10-
layers laminated composite at 1000 Hz.

60

0 I

Mode Number

Fig. 5. Mode convergence diagram for the 10-
layers composite shell at 10000 Hz.
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Tablel. Geometrical and environmental
properties.

Cavit | Ambie

Shell
y nt

Material . .
(Fluid) Al G/E Air Air
Density {260 | 1600 | 121 | 121
(kg/m*) ' '

E(GPa) | 71 [ 138 - -

E,(GPa) | 71 | 89 - -

G,(GPa) | 277 | 71

G, (GPa) 27.7 7.1

G,,(GPa) 277 6.2

v 0.3 0.26 - -

70

Sound
Speed 5316 | 5622 343 343
(m/s)

Incidence

Angle 4

I Il I I
0 50 100 150 200 250 300

Numerical result

Numerical results have been generated for
geometry typical of a narrow-bodied jet fuselage
made of the laminated composite shell with radius
R=1.83 m and total thickness h=1.59 mm. Both
internal and external fluids are considered at sea
level conditions, and its external flow Mach

number is assumed as M, =0 for the purpose of

this study, except where noted. In addition each
layer of the composite shell is made of
Graphite/Epoxy (table 1). The plies are arranged in
a [07,90°,45°,—45°,0" ] pattern. Comparison of
the transmission loss is made among classical shell
theory (CST) and FSDT for composite and
isotropic shells. The basic shell dimensions and
simulation conditions used in the study are listed in
Table 1. Parametric numerical studies of
transmission loss (TL) are conducted for broadband
frequency. These studies provide insight into the
effect of the acoustic properties of the fluids and the
structural or material parameters of the shells on
TL. The theoretical model developed can be used
very effectively in the basic design stage of
cylinder-shape vibro-acoustic systems and show the
effect of the acoustic properties of the fluids and the
structural parameters on TL.

Fig. 6 shows a comparison on TL for the thin
shell theory purposed by Koval [5] and the first-
order shell theory presented in this study. As
shown, three important frequencies are recognized:

ring frequency f (where the wavelength of a

longitudinal wave in the shell equal to the
circumference), critical pseudo-coincidence
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fpc (spatial coincidence in radial direction between

the wave vector projection of excitation and the
shell  circumferential wave number) and

coincidence frequency fC (where the trace velocity

of the acoustic wave is equal to the bending wave
velocity in the shell wall). The various zones

controlled by the stiffness(0—f ), the mass
(f - fpc) and the coincidence (f >f,) and the

resonant modes zone enclosed between fpC and fc

will be noted. At the lower frequency, the effects of
shear and rotation on TL are negligible. However,

Mech. & Aerospace Eng. J. Vol. 2, No. 2, Nov. 2006

in the high frequency range, the shear waves
transmit sound through the shell resulting in a
decrease of TL. Thus, the use of FSDT is strongly
recommended for high frequencies.

Different ambient conditions are considered here
table 2. A higher flight altitude, affecting on density
and sound velocity of fluid, will lead to a larger
acoustic impedance mismatch between the fluids
inside and outside the shells. As shown in Fig. 7,
increasing of acoustic mismatch makes the TL
increases in broadband of frequency. For instance
in some region it may be enhanced more than
10dB.

— Present Study
80| - Koval /]
70 Ry
. Resonant Mode ¢
Stiffness-Control Control ,

60 < —> >t 7

S0} Mass-Control /ﬁ i
8 , J;
T 40- | .
—1 )
|_

30+ 8

20+ 8

[
10+ fpc ﬂi b 8
OF f Coincidence|
r Control
-10 Ll | & TR L mg L
10° 10’ 107 10° 10"
Frequency (Hz)
Fig. 6. Comparison of Presented study with Koval 10-layeres composite shell.
90 T
1st Condition
Table 2- Flight conditions. sor 2nd Condition 7
ol — = 3rd Condition // i

lst 2nd 3rd
Name
Cond. Cond. Cond.
Altitude (m) 3050 7600 | 10650
P (ke/m) 09041 | 0.5489 | 0.379
c(m/s) 328.55 | 309.96 | 296.5

60

50

40t

TL (dB)

30F

20

10° 10’ 10° 10° 10 10
Frequency (Hz)
Figure 7. TL curves for three ambient

conditions.
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External airflow influences the axial and radial
wave numbers; thus, the TL will be changed due to
this effect. Fig. 8, shows the effects of Mach
numbers with M = 0, 0.5, and 1.0, on TL. With
increasing Mach number, the TL is descending in
stiffness-controlled region (below the ring
frequency), whereas in upper frequency more than
ring frequency it is ascending. Also, the
coincidence frequency is shifted upwards with
increase of Mach number.

80

— M=0.0

701

60

50

TL (dB)

-10 0 ‘ 2
10 10 10 10 10
Frequency (Hz)

Fig. 8. TL curves for 10-layered laminated shell
subjected in uniform flow.

90

Graphite/Epoxy
801 | —— Aluminum

TL (dB)

-10 ! !
10° 10 10 10 10
Frequency (Hz)
Fig. 9. Comparison between Aluminium and 10-

layers laminate composite shell.

Fig. 9 shows a comparison between the cylinder
transmission loss for an aluminium shell and a 10-
layered composite shell of same weight. The figure
indicate that the ring frequency is shifted upwards,
so that there appear to be a gain in TL below the
ring frequency, but composite shell does not appear
to be effective as an aluminium shell above the ring
frequency. This appear to be due to the fact that the
critical frequency of a composite shell is lower than
it is for an aluminium shell, so that the TL curve is
never able to reach a full mass law behaviour
because the ring frequency and the critical
frequency are closer together. It thus appears that a
composite shell does not appear to offer significant
advantages over an aluminium shell, as regards
noise attenuation.

80

Fig. 10, shows the effect on TL of the angle of
warp, 0, of the individual layers of the composite
shell. In this Figure, all of the layers have the same
angle®, . The individual curves in Fig.10

Correspond to 0, =07,30",45°, 60°,90°. The
incidence angle of the incident plane wave
is® =30°. The results shown in the curve indicate
that the noise attenuation of a composite shell is
sensitive to the angle of warp and suggests the

possibility of tailoring a composite shell a specific
need.

80

—0=0
70F —— =20

||~~~ 6=45
— ~6=60

-10 0 ‘ 2 4
10 10 10 10 10
Frequency (Hz)

Fig. 10. Effect of fibre orientation on TL, at
vy =30° for a 10-layered composite shell.

Fig. 11 shows the effect of the composite material
on TL. Materials chosen for the comparison are
Graphite/Epoxy, Glass/ Epoxy and Boron/Epoxy as
shown in table (3). The figure shows that material
must be chosen properly to enhance TL at stiffness-
controlled zone. The best result is obtained from
Boron/Epoxy shell, which represents a desirable
level of TL at stiffness-control zone. It is readily
seen that, in higher frequency, because of density of
materials, the TL curves are ascending. Therefore
the TL of Glass/Epoxy is higher than the other
materials in mass-controlled region.
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Fig. 11. TL curves for 10-layers laminated
composite shell with different material.



81

Table3. Composite materials properties.
Material Grae? e (l:zl;l;)s(/ Boron/
/Epoxy y Epoxy
P (kg/m?) 1600 1900 1600
E, (GPa) 138 38.6 206
E,(GPa) 8.9 8.2 20.6
G,,(GPa) 7.1 4.2 6.89
G,;(GPa) 7.1 4.2 6.89
G,,(GPa) 6.2 3.45 4.1
Vi, 0.3 0.26 0.3

To properly reveal the effects of shear deformation,
a comparison between CST & FSDT is made for
two different shell thicknesses of h=1.59mm and
h=4.77mm in Fig. 12. As shown, with increasing of
shell thickness, the difference between CST and
FSDT is increased in high frequency. It appears
that, the effects of shear deformation on sound
transmission are increased when the wave length
are short enough i.e.; of the same order or less than
the thickness of the shell.

120

——FSDT h=4.77 mm
—CST h=4.77 mm 1
— ~FSDT h=1.59 mm

~—~ ~ CST h=1.59 mm /

100

80

60

TL (dB)

40+

20

o+

20 ‘ ‘ ‘ ‘
10° 10 10° 10 10

Frequency (Hz)
Fig. 12. Comparison of CST & FSDT in two
different shell thicknesses.

Figure 13 shows a comparison for the same radius
and thickness composite and aluminium shells
using both FSDT and CST. At the lower frequency,
the effects of shear on TL are negligible. However,
in the high frequency range, the shear waves
transmit sound through the shell resulting in a
decrease of TL. Tabular data is also generated
Table 4. The results show that, the difference
between FSDT and CST for laminated composite
shell is more than that of aluminium shell. It would
appear that, the effect of shear deformation on
sound transmission for composite becomes more
important than aluminum shell. Therefore, the use
of FSDT theory is suggested for composite shell.
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Figure 13. Comparison of CST & FSDT for
aluminium and composite shells.

Table4. Comparison of FSDT and CST for
composite and aluminium shell

Transmission Loss

Composite Aluminium

Frequenc | popy | g1 | FSDT | CST
y (Hz)

10 25.63 | 25.63 | 24.36 | 24.36

100 15.05 | 15.05 | 15.89 | 15.89
1000 1742 | 1742 | 22.26 | 22.26
5000 26.28 | 26.11 | 32.55 | 32.50
10000 15.09 | 14.85 | 18.99 | 19.09
20000 5343 | 5596 | 53.17 | 54.22
30000 63.45 | 67.78 | 66.57 | 68.04
40000 69.19 | 75.63 | 74.03 | 76.31
50000 73.00 | 81.58 | 79.18 | 82.43

Conclusions

In this paper, sound transmission through an
infinite laminated composite cylindrical shell has
been studied. A modal impedance method is used to
obtain TL, including the effect of the external
airflow. The frequency spectrum of TL is studied
by varying parameter of fluids and shells. The
following conclusions can be drawn from this
numerical study:

1- In higher altitude, acoustic impedance mismatch
increases. Therefore, TL in all frequency bands is
enhanced.

2- By increasing Mach number, the TL is
descending in stiffness-controlled region and the
coincidence frequency is shifted upward.

3- Comparison between aluminium and laminated
composite shell is done. It appears composite shell
to be a gain in TL below the ring frequency, but
composite shell does not appears to be effective as
an aluminium shell above the ring frequency.

4- The noise attenuation of a composite shell is
sensitive to the angle of warp of layers.
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5- Since, the effect of shear waves on sound
transmission for composite becomes more
important than aluminum shell, the use of FSDT
theory is strongly recommended for composite
shell.

Appendix A

The L j coefficients are given below
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Appendix B
Governing equations of thin laminated

composite shells
According to Kirchhoff hypothesis of neglecting

shear deformation and the assumption that the €, is

negligible, for laminated composite shell the mid-
surface strain and curvature changes as follows:

_Ou
800{ _a’
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Youb = 50" o
0*w
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ky =l 7 1 25
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oo\ R opoa

where, {u, Vv, W} are the displacements of the

shell at the neutral surface in the axial,
circumferential and radial directions respectively.
The forces N and moments M resultant, obtained by
integrating the stresses over the shell thickness, are:

N, A, A, A, B, B, By| .
N A, Ay Ay By By By |l gy
Nog - A Ay Ay Bis By B | Yoo
M, B, By, B Dy Dy Dy k,
M, B, By, By D;, Dy, Dy kg
_Maﬁ_ _B16 B)s Bg Dis Dy D66__ T
(B-2)

Equations of motion of a laminated composite thin
cylindrical shell in cylindrical coordinate as
follows:

ON, . 1 0N, _ -0du
+— +

, B-3
0z R0z00 T op ®3)
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The equation of motion can be written in terms of
displacements as:

L u, +Mt; =q, (B-6)
Where,
=[u, v, w ], (B-7)
{T i=j
M; = . (B-8)
0 J#]
=10,0,(p! +p*)-pI]|". (B-9)

The Lij coefficients are given as:
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