
Arc
hi

ve
 o

f S
ID

63                                                                                           Mech. & Aerospace Eng. J. Vol. 2, No. 2, Nov. 2006            

 
Approximate Analytical Solution to Flow over a Flat Plate  

by Variational Iteration Method 
 

M. Moghimi and H. Khoramishad H. R. Massah and S. M. Mortezaei 
Mech. Eng. Dep’t. 

Iran Univ. of Science and Tech. 
Physics Dep’t. 

Amirkabir Univ. of Tech. 
 

ABSTRACT 
Variational iteration method is employed to investigate the flow over a flat plate. General Lagrange multipliers 
are introduced in this method to construct correction functionals for problems. The multipliers in the functionals 
can be identified optimally via variational theory. Comparison with Adomian decomposition method and 
Howarth’s numerical solution reveals that the approximate solutions obtained by the proposed method are of 
high accuracy. 
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1. Introduction 

The Falkner-Skan equation describes a nonlinear, 
one-dimensional third-order boundary value 
problem, whose solutions are the similarity 
solutions of the two-dimensional incompressible 
laminar boundary layer equations. No closed-form 
solutions are available for this two-point boundary 
value problem [1].  
In 1908, Blasius [2] gave a solution in the form of a 
power series. Howarth [3], in 1938, used the 
Runge-Kutta numerical method and did hand 
computations to analyze the flat-plate flow. Lock 
[4, 5], in 1951, studied the laminar boundary layer 
between parallel streams. Later, Potter [6], in 1957, 
investigated laminar boundary layer solutions for 
mass transfer across the plane interface between 
two-current parallel fluid streams. Blasius solution 
for a flow past a flat-plate was investigated by 
Abussita, in 1994, and the existence of a solution 
was established [7]. Asaithambi [1], in 1998, 
presented a finite-difference method for the 
solution of the Falkner-Skan equation. Liao [8, 9], 
in 1998, gave an analytical solution in a family of 
power series with parameter h , by means of the 
homotopy analysis method, which is valid in the 
whole region [ )+∞∈ ,0x . Jianguo Lin [10], in 
1999, obtained an analytical solution by use of 
parameter iteration method. Recently, Abbasbandy 
[11], Wang [12] and Najafi et. al. [13] obtained an 
approximate solution to Blasius equation using 
Adomian decomposition method. 
The variational iteration method was first proposed 
by Ji-Huan He in 1998 [14, 15] who systematically 
illustrated in 1999 [16]. It was successfully applied 
to autonomous ordinary differential equations in 
[17], to nonlinear wave equations [18], to circuit 
theory [19], to nonlinear polycrystalline solids [20] 
and to some other fields, as well. A combination of 
a perturbation method, the variational iteration 
method, the method of variation of constants and 
an averaging method were used to establish an 
approximate solution to a one degree of freedom 
weakly nonlinear system [21]. The variational 
iteration method has many merits and has many 
advantages over the Adomian decomposition 
method [13, 22]. 
The present work is motivated by the desire to 
obtain analytical solution to classical Blasius 
equation using variational iteration method. The 
results obtained via variational iteration method 
(VIM) are compared with the numerical solutions 
[13, 23, 24] which confirms the validity of the 
proposed method. The differential equations will be 
taken in their dimensional form [25]: 
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Here, p is also independent of z. Since a plate 
placed edgewise will not greatly disturb a uniform 
stream, as suggested by experience with air and 
water, an ideal flow of primary interest is the 
uniform flow [25]: 
 
u ≡ U∞, v ≡ 0 for all x, y. (4) 
 
The classical Flat-Plate Problem is defined as that 
of finding a solution of (1-3) differing from (4) 
only in the neighborhood of the plate the extent of 
which shrinks to zero as ν→0. 
Since it is assumed the velocity of potential flow is 
constant, then dp/dx ≡ 0. The boundary-layer 
equations reduce to: 
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y = 0:  u = v = 0,  
y = ∞: u = U∞. (7) 

 
By reasoning there is no preferred length; one can 
suppose the velocity profiles at varying distances 
from the leading edge are similar to each other. The 
velocity curves, u(y), for varying distances, x, can 
be made identical by selecting suitable scale factors 
for u and y, the problem of affinity or similarity of 
velocity profiles. The scale factors for u and y 
appear quite naturally as the free-stream velocity, 
U∞, and the boundary-layer thickness, δx,
respectively. The thickness increases with the 
current distance, x. Hence the principle of 
similarity of velocity profiles in the boundary-layer 
can be written as: 
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Where, the function f must be the same at all 
distances, x, from the leading edge. It was found 
that δ~√νt, where t denoted the time from the start 
of the motion. In this case, time is substituted by 
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the time consumed by a fluid particle while 
traveling from the leading edge to the point x. For a 
particle outside the boundary layer this is t=x/U∞.
Hence δ~√νx/ U∞.
By introducing new dimensionless coordinate, 
η~y/δ, both partial differential equations (5,6) will 
be transformed into an ordinary differential 
equation for the stream function by the following 
similarity (stretching) transformations: 
 

xν
Uyη ∞= , (9) 

( )ηfxUνψ ∞= , (10) 

,1)(f,0)0(f,0)0(f =∞′=′= (11) 

Where, f(η) denotes the dimensionless stream 
function. The resulting differential equation is 
nonlinear and of third order. The classical Blasius 
equation is: 
 

0.)(f)f(
2
1)(f =η′′η+η′′′ (12) 

 
It is a special case of two-dimensional laminar 
boundary layer flows over a semi-infinite flat plate 
which is governed by Falkner-Skan equation: 
 

0,]))(f(-m[1

)(f)1)f((m
2
1)(f

2 =η′

+η′′η++η′′′
(13) 

 
subject to the boundary conditions: 
 

,1)(f,0)0(f,0)0(f =∞′=′= (14) 
 
where m is a constant. As long as m>0, the 
solutions are known to exist and they are also 
unique [26]. 
 

Fig. 1. Boundary layer over a flat plate. 
For m ≥ 0 they are: 
m = 0: Blasius flow over a flat plate with a 

sharp edge. 
0<m<1: Flow over a wedge with half angle 

θ½=mπ/(m+1) with 0< θ½<π/2. 
m = 1: Heimenz flow toward a plane 

stagnation point. 

1<m<2: Flow into a corner with θ½>π/2. 
2<m: No corresponding simple ideal flow. 
Here, the special case, m=0 as in Fig. 1 is studied. 
 

2. Variational iteration method 
The variational iteration method has been shown to 
solve effectively, easily and accurately a large class 
of nonlinear problems with approximations 
converging rapidly to accurate solutions. To 
illustrate the basic concepts of the variational 
iteration method, consider the following 
differential equation: 
 

)x(gNuLu =+ ,
(15) 

 
Where, L is a linear operator, N a nonlinear 
operator, and g(x) a known analytic function. 
According to He’s variational iteration method [14-
22], A correction functional can be constructed as 
follows: 
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Where, λ is a general Lagrangian multiplier [14-
23], which can be identified optimally via the 
variational theory. The subscript n denotes the nth 
order approximation, nu) is considered as a 

restricted variation, i.e. 0uδ n =)
.

Eq. (16) is called a correction functional. For 
linear problems, its exact solution can be obtained 
by only one iteration step due to the fact that 
Lagrange multiplier can be exactly identified. 
 
3. Stationary conditions 
The problem of optimization is ubiquitous in 
nature. The simplest problem of the calculus of 
variation [16] is to determine a function y = f (x) 
for which the value of a given functional: 
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is a maximum or a minimum. The extremum 
condition (stationary condition) of the functional 
(17) requires that: 
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For arbitrary δy, from the above relation, we have: 
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and the boundary conditions 
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Equation (19) is called Euler–Lagrange’s 
differential equation, or Euler’s equation, and 
Equation (20) is known as the natural boundary 
conditions. 
 
4. Application to the Blasius equation 
The correction variational functional for Blasius 
equation can be expressed as follows: 
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Where, λ is a general Lagrangian multiplier. 
Making the correction functional Equation (21), 
stationary, noticing that: 
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yields the following stationary conditions: 
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The Lagrange multiplier, therefore, can be 
identified as: 
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2
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As a result, the following iteration formula is 
obtained: 
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Starting with the initial condition given by 
Equation (11), f0 is as follows: 
 

C
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Where, A, B, C are unknown constants to be 
further determined by imposing initial conditions. 
By the iteration formula and using the initial 
conditions given by Equation (11), and assuming 

)0(f ′′=σ , one can obtain the following results: 
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and so on, the rest of the components of the 
iteration formula (22) can be obtained using 

symbolic packages such as Maple. In 1938, 
Howarth [2] evaluated σ by means of a numerical 
technique. Inserting his value for σ, 332057.0=σ ,
into Equation (28) leads to the approximate 
solution of Blasius equation. 
 

5. Results and discussion 
The calculations are conducted up to five iterations 
and the results are shown in Figure 2 From this 
figure, it is obvious that the results are in good 
agreement with those reported in [2]. In table 1, we 
were compared the results for some iterations with 
the results obtained by five terms of ADM and also   
with those given by Howarth [2]. As it was shown 
there, the results achieved by five iterations of VIM 
is more accurate than five-term ADM solution. The 
maximum relative error with respect to numerical 
solution is 0.018 % for the values of f. Some of the 
computed results for the variations with η of the 
functions f′ and f′′ are listed in tables 2 and 3, 
respectively. It is evident that more accuracy will 
be achieved if more iteration is done, as it is shown 
in tables. 
 
6. Conclusion 

The classical Blasius equation has been analyzed 
using the variational iteration method. The 
variational iteration method supplies reliable results 
in the form of analytical approximation. The results 
show that variational iteration method is an 
effective mathematical tool which can play a very 
important role in nonlinear sciences. 
 

Fig. 2. Variation with η of the functions f, f′ and f′′.

f' 

f’’ 
f/6

Howarth [2] 
VIM                 
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Table 1  Comparison between the results of VIM, ADM [13] and NS-numerical solution [1] for )(f η .

η Iteration 2 Iteration 3 Iteration 4 Iteration 5 5 terms of ADM NS 
0 0 0 0 0 0 0

0.4 0.0265598571 0.0265598571 0.0265598571 0.0265598571 0.0265598571 0.0265598545 
0.8 0.1061081146 0.1061081135 0.1061081135 0.1061081136 0.1061081136 0.1061080991 
1.2 0.2379485667 0.2379484768 0.2379484775 0.2379484774 0.2379484774 0.2379484616 
1.6 0.4203224242 0.4203203084 0.4203203451 0.4203203446 0.4203203446 0.4203202793 
2 0.6500473318 0.6500229272 0.6500237491 0.6500237248 0.6500237230 0.6500236442 

2.4 0.9224582617 0.9222793955 0.9222897261 0.9222892012 0.9222891315 0.9222890925 
2.8 1.2318523950 1.2308957420 1.2309825960 1.2309756580 1.2309741820 1.2309759131 
3.2 1.5726632550 1.5686086130 1.5691512670 1.5690873780 1.5690668780 1.5690931694 
3.6 1.9415750270 1.9272140110 1.9299109240 1.9294657590 1.9292598180 1.9295229916 
4 2.3407183420 2.2966396300 2.3078123340 2.3053280130 2.3037288970 2.3057439186 

Table 2 Comparison between the results of VIM, ADM [13] and NS-numerical solution [1] for )(f η′ .

η Iteration 2 Iteration 3 Iteration 4 Iteration 5 ADM NS 
0 0 0 0 0 0 0

0.4 0.1327640264 0.1327640264 0.1327640264 0.1327640264 0.1327640264 0.1327640265 
0.8 0.2647088860 0.2647088716 0.2647088717 0.2647088717 0.2647088717 0.2647088692 
1.2 0.3937765256 0.3937757028 0.3937757104 0.3937757104 0.3937757104 0.3937757132 
1.6 0.5167704689 0.5167559613 0.5167562812 0.5167562753 0.5167562750 0.5167562518 
2 0.6298931481 0.6297596134 0.6297653307 0.6297651251 0.6297651066 0.6297651170 

2.4 0.7297377137 0.7289251308 0.7289847460 0.7289810721 0.7289804954 0.7289812478 
2.8 0.8148264064 0.8111199451 0.8111199451 0.8111199451 0.8114952756 0.8115088384 
3.2 0.8877132152 0.8740566837 0.8763746377 0.8760440910 0.8759182113 0.8760805951 
3.6 0.9575540213 0.9149013723 0.9250542543 0.9230260695 0.9219093057 0.9233288380 
4 1.0428838270 0.9261633706 0.9636603096 0.9535805869 0.9458328284 0.9555173538 

Table 3 Comparison between the results of VIM, ADM [13] and NS-numerical solution [1] for )(f η′′ .

η Iteration 2 Iteration 3 Iteration 4 Iteration 5 ADM NS 
0 0.332070000 0.3320700000 0.332070000 0.332070000 0.332057000 0.332057000 

0.4 0.331469510 0.331469509 0.331469509 0.331469509 0.331469509 0.331469506 
0.8 0.327389122 0.327388943 0.327388943 0.327388943 0.327388943 0.327388947 
1.2 0.316595650 0.316588804 0.316588887 0.316588886 0.316588886 0.316588885 
1.6 0.296751001 0.296660665 0.296663253 0.296663194 0.296663190 0.296663203 
2 0.267378922 0.266716051 0.266752906 0.266751276 0.266751101 0.266751293 

2.4 0.231140035 0.227795886 0.228114304 0.228090173 0.228085653 0.228091533 
2.8 0.195259008 0.182275778 0.184216427 0.183985459 0.183915833 0.184006427 
3.2 0.172871465 0.131389991 0.140520745 0.138921057 0.138189373 0.139127959 
3.6 0.183946709 0.070045944 0.105217205 0.096590902 0.090864430 0.098086168 
4 0.255308458 −0.021656840 0.093887536 0.05578987 0.020336915 0.064234085 
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