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ABSTRACT 
Computations are performed to determine the steady 3-D viscous fluid flow forces acting on an impenetrable 
rotating spherical suspended particle at low and moderate Reynolds numbers in the range of 10010 ≤≤ Re. . In 
order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) 
method is used. Transformation of the governing partial differential equation to algebraic relations is based on 
the finite volume method and collocated variables arrangement. For solving the algebraic relations, the TDMA in 
a periodic state is used. To approximate the convective fluxes, the differencing scheme of Van Leer is used and 
the SIMPLEC algorithm handles the linkage between velocity and the pressure. Rotation increases the drag and 
lift forces exerted by flow at the surface of on the sphere. Using velocity components in Cartesian coordinates 
causes slight decrease in the run time of program with respect to using it in contra-variant and covariant 
coordinates. The flow patterns are changed with increasing rotation at x-y plane, but flow at x-y plane remains 
symmetric the present numerical results are in complete accord with other results of flow around a rotating 
sphere. 
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 ذرهميكرويك حول سه بعديبررسي عددي جريان كاملاً
و پايين كروي چرخان  درمحدوده اعدادرينولدز متوسط

4 علي مير بزرگي3 حميد نيازمند2غلامعلي عاطفيو1محمدرضا ميگون پوري

 مكانيكمهندسي دانشكده مكانيكمهندسي دانشكده دانشكده مهندسي مكانيك
 دانشگاه بيرجند دانشگاه فردوسي مشهد ايراناه علم وصنعتدانشگ

 چكيده
در جامدبه بررسي عددي جريان سه بعدي سيال غيرقابل تراكم در اطراف يك ذره كروياين مقاله در  محدودهمعلق در حال دوران

10010 ≤≤ Re.اب.پرداخته مي شود كد عددي سه بعدي نوشته شده كه براي گسسته سازي معادلات ديفرانسيليكين منظوره
و و براي جزئي با روش جبري از روش حجم محدود و براي مدل نمودن شارهاي جابجايي از روش ون لير با آرايش مرتب شده متغيرها

 از روش مختصات، حجم محدود روشهاي براي افزايش قابليت. روش سيمپل سي استفاده مي كندازرعتارتباط دادن ميدانهاي فشار وس
ميTDMAو سيستم معادلات جبري توسط الگوريتم منطبق بر مرز استفاده مي شود شددر. گردد حل كه چرخش اين مقاله مشخص

و و توزيع فشار مي كره باعث تغييرات زيادي در الگوي جريان  ذره كرويچرخش،در اعداد رينولدز پايين.دشوورتيسيتي جريان حول آن
در تاثير زيادي بر ضرايب درگ وليفت ندارد بربالاتر اعداد رينولدز ولي به،همچنين.مقادير ضرايب برا وپسا افزايش مي يابد تاثيرچرخش

و كون . مي شودحجم محاسبات باعث كاهش قابل ملاحظه تراوارينت كارگيري مولفه هاي كارتزين سرعت به جاي مولفه هاي كووارينت
.هاي مورد استفاده را تاييد مي كند مقايسه نتايج حاصله با نتايج ساير محققين صحت روند حل والگوريتم
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Symbols and Abbreviations 
A Area 
D Diameter of Sphere 
L Wake Length 
nr Normal Unit Vector 
p Pressure 
r, θ, ϕ Spherical Coordinates  
R Radius of Sphere 
Re Reynolds Number, Re U D ν∞=
t Time 
u, v, w Velocity Components in the  x, y, z 
cccccccccc Directions   
U∞ Free Stream Velocity 

V
r

Velocity Vector 
CD Drag Coefficient 
CLy Lift Coefficient in y Direction 
ν Kinematic Viscosity 
θs Separation Angle 
τ Non-Dimensional Time, tU Dτ ∞=
τt Viscous Stress Tensor 
f Fluid 
∞ Free-Stream  
 
Introduction 
Flow over spheres is a fundamental problem 
encountered in many engineering problems. It is 
well known that the motion of spherical particles 
have many applications in industries, such as 
hydrodynamic dispersion in quiescent sedimenting 
suspensions, the dynamics of bubbles and drop or 
particle in arbitrary motion at different Reynolds 
numbers, Sedimentation of noncolloidal Particles, 
osmotic phenomena, transport of groundwater 
colloids, and the permeability reduction due to 
migrating fines in enhanced oil recovery and 
hydrodynamic dispersion, the motion of fuel 
droplets in combustors, solid particle in air, and 
two phase flows, like motion spherical bubbles and 
droplets in fluid flow, solid particle in air. It is well 
known that the motion of spherical particles in 
some applications also involves no-slip condition 
such as the motion of fuel droplets in combustors, 
solid particle in air, and some other motion of 
spherical particles such as bubbles involves slip 
condition on the surface.  

Although particle rotation typically occurs 
around an arbitrary axis in space, investigation of 
cases with rotation axes normal and parallel to the 
principal flow direction can provide fundamental 
information. The characteristics of the flow field 
for particle rotation in the stream wise direction 
(spin) are quite different from that in the transverse 
direction (rotation). Rotation displaces and reduces 
the recirculation region of the wake such that at 
sufficiently high rotational speeds it is completely 
suppressed [1], while spin has the opposite effect. 

The structure of flow at the near wake region has a 
strong influence on the behavior of the drag and 
lifts forces as well as the other characteristics of the 
particle, and therefore, deserves close examination. 
For uniform flow past a sphere, the wake forms at 
Re ≅ 20 and undergoes several well-defined 
transitions as the Reynolds number is increased. 
First transition occurs at Re ≅ 212, where the 
axisymmetric steady wake becomes planar-
symmetric yet steady and attached. In the second 
transition, the steady planar-symmetric wake 
becomes unsteady at Re ≅ 270 forming a periodic 
wake with vortex shedding. The details of the wake 
structure in each wake regime have been 
investigated both experimentally and theoretically 
[2-8]. However, a review of the relevant literature 
provides limited information on the effects of 
particle spin and rotation. The case of particle 
rotation has attracted some attention in the 
literature, where the experimental studies of Best 
[1] and Brakla and Auchterlonie [9], Oesterle and 
Dinh [10], and the numerical studies of Salem and 
Oesterle [11], and Kurose and Komori [12] can be 
mentioned among others. However, for the case of 
a spinning sphere much less information is 
available in this Re range. The only known work is 
the numerical study of Kim and Choi [13]. They 
considered Re = 100 in the steady symmetrical 
regime, Re = 250 in the steady non-symmetrical 
regime, and Re = 300 in the unsteady wake regime, 
for angular velocities of 1xΩ ≤ . It is reported that 
the forces acting on the sphere are influenced by 
spin, and the vortical structures behind the particle 
are significantly modified. For higher Re flows over 
spinning spheres, Clift et al. [14] have summarized 
previous studies and pointed out that the transition 
to turbulence, which is identified by a sudden drop 
in the standard drag curve, occurs at lower Re with 
increased spin. Similar behavior is observed in the 
present study at moderate Re, such that increasing 
particle spin reduces the transitional Re between the 
different wake regimes. Niazmand and 
Renksizbulut [15] and [16] carried out numerical 
investigations of the flow and temperature fields 
around rotating spheres with surface blowing. It is 
shown that transient behavior of important flow 
parameters such as the lift and drag coefficients are 
significantly influenced by particle rotation and 
surface blowing. However, the surface-averaged 
heat transfer rates are not influenced appreciably by 
particle rotation even at high rotational speeds, 
whereas the local heat transfer rates are drastically 
affected. Literature review shows that the lack of 
study about flow around the rotating sphere at 
moderate Reynolds numbers. Recently, Numerical 
analysis of 3D flow past a stationary sphere with 
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slip condition at low and moderate Reynolds 
numbers has been investigated by Atefi et al [17]. 

The aim of the present study is to examine the 
flow field around a rotating sphere numerically. 
The range of Reynolds numbers considered here 
are 1 to 100, and the dimensionless angular velocity 
will be varied up to 1. The combined effects of 
particle Reynolds number and rotation will also be 
addressed. Important features of the flow properties 
will be compared to their counterparts for rotating 
spheres reported in literature review.  
 
3. Problem Formulation 
 The flow geometry and sphere in generalized 
coordinates ( ), ,ξ η ζ , which in the present 
problem lie along the spherical coordinates 

( ), , rθ ϕ  respectively, are shown in Fig. 1.

Figure (1): Flow geometry and coordinates. 
 
A uniform stream in the positive x-direction flows 

over a sphere rotating with constant angular 
velocity ωz around the principal flow axis. The 
laminar, constant-property, viscous flow under 
study is governed by the usual set of continuity and 
momentum equations as follows: 

,0. =∇ V
rr

(1) 

VPFVV
t
V rrrrrr
r

∆ν
ρ

+∇−=∇+
∂
∂ 1)..( , (2) 

where ρ, V
r

are density and velocity vector, υ
kinematic viscosity and P is pressure.  Inflow 
boundary conditions are simply 1u = and v=w=0.  
On the surface of a solid sphere, the flow satisfies 
the no-slip boundary condition. For outflow, zero-
gradients along the streamlines are applied for 

o120≥θ to all variables such that: 

0=∇f.V
rr

, (3) 

where, w,v,uf = . On the surface of a sphere, 
rotation with a non-dimensional angular velocity of 

∞=Ω UR zω around the z-axis in the 

counterclockwise direction, the velocity 
components are: 

,sincos ∞= URu z θϕω
,coscos ∞= URv z θϕω

,0=w
(4) 

where, xer , yer and zer are unit vectors in the x, y
and z directions, respectively.   Initial conditions 
correspond to a sudden introduction of a rotating 
sphere into an otherwise uniform free stream. The 
initial pressure is specified as zero over the whole 
computational domain. The resultant force acting 
on the particle is obtained by integrating the normal 
and tangential stresses on the sphere surface, as:  

,.. ∫∫ +−=
AA

dAndAnPF rrrr
τ (5) 

where,  
,... ∫∫ +−=+=

A
y

A
yLfLPL dAendAnePFFF rrrr τ (6) 

.... ∫∫ +−=+=
A

x
A

xDfDPD dAendAnePFFF rrrr τ (7) 

Here, yx e,e rr
are unit vectors in x and y axes. which 

are non-dimensionalized as ( )2 2 2FC F R Uπ ρ ∞=
r r

.

The component of FC
r

along the x-axis is the 

drag coefficient DC . For flow over a rotating 

sphere the components of FC
r

along the y axes 
have finite values, and therefore, the lift coefficient 
is defined as CL .The drag and lift coefficient are 
defined as: 

AU.FC,AU.FC LLDD
22 5050 ∞∞ == ρρ (8) 

 
4-Numerical Solution Method  
The governing equations given above were solved 
numerically using a finite-volume method with 
collocated variables in a generalized 3-D coordinate 
system. To avoid the checker board affect, the 
interpolation of  Rhei-chow [18] was used in the 
calculation of convecting mass flow rate. In order 
to approximate the values of convected quantities at 
location of each faces, the differenceing scheme of 
Van-Leer was used at Re=100. The scheme of 
SIMPLEC handles the likage between velocities 
and pressure fields. The resulting algebric system 
of equations was solved using a line-by-line 
iterative method with TDMA. 

More detailes of the numerical method has been 
described in detail by Farhanieh [18] and further 
improved by authors to properly capture the 
numerical analysis of flow around of sphere at 
moderate Reynolds numbers.  
 

y

ζη
x

z

R

U ∞

Ωz
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5-Computational parameter and Numerical  
Accuracy 
We study flow around of sphere in the range of 
0.1<Re<100. Transport mechanism of fluid 
properties at Re=100 is convection mechanism and 
we use van Leer method for solving numerical 
problem. The accuracy of numerical algorithm was 
tested by predicting the axisymmetric flow around 
a stationary solid sphere at Re=100. we examined 
effects of grid resolution  on drag coefficient, 
separation angle and dimensionless wake length of 
flow at Re=100. The details of the grid 
independence study, as well as evidence of 
accuracy in predicting wake features, fluid forces 
and in the range of parameters considered here are 
given elsewhere [21]. 

 The flow is axisymmetric in this case and three 
dimentional  solution sheme is fully exercised in a 
time accurate manner for all cases. As shown in 
Fig. 2 for most cases considered here, a numerical 
grid of ( ) ( )62,52,62,, maxmaxmax =ζηξ has been 
used, and the far-field boundary has been set at 10 
radii from the center of the sphere.    Fig. 2. shows 
Coordinates, flow geometry and mesh generation 
around of sphere. 
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Figure (2): Coordinates , flow geometry  and 
mesh around a sphere. 

 
Table 1 lists the drag coefficient as a function of 

Reynolds number and compare them experimental 

results of Roos and Willmarth [3] and numerical 
data presented by Clift et al. [14]. The table also 
includes the separation angle, measured from front 
stagnation point, which are in good agreement with 
results from Clift et al. [14]. As shown in Fig. 3, the 
separation angle is measured from the rear 
stagnation point by present method with Ωz=0 and 
they have compared with other numerical and 
analytical results. 
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Figure (3): Comparison of separation angle for 

flow over an impenetrable stationary sphere. 
 

The comparison is made with numerical results 
of Nakamura [4], Raithby[18], Masliya [14] and 
experiment results of Taneda [1] and Karla and 
Uhlherr[20].  

Table 2 shows grid independency of flow around 
the rotating sphere at Re=100 and Ωz=0.5 for 
different grid densities. As shown in table 2 the 
effect of grid resolution on drag and lift coefficient 
of flow at Re=100 and different outer boundary  
was investigated. The extend of grid expansion in 
some cases was adjusted based on the number of 
grid points and the location of the outer boundary to 
achieve a comparable grid density near the surface 
of the sphere. The maximum difference between 
drag coefficient between all case  is about 3%.
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Table (1): Comparison of our drag coefficient and separation angle with those of Clift et al. [14] and Roos & 
Willmarth [3] for flow over a solid sphere. 

Drag Coefficient Separation angle (θ )a

Re Present work Roos& Willmarth b [3] Clift et al [14] Present work Clift et al [14] 
1 27.327046 - 27.315 0 0 
50 1.588 1.620 1.57 139.3 139.3 
100 1.095 1.090 1.096 126.8 126.5 
a values of separation angle measured from the front stagnation point 
b interpolated values are use 

Table (2): Drag and lift coefficients as functions of grid density at Re=100 and at Ωz=0.5.
RR∞ mama ζηξ ××max  Radial expansion factor Lift coefficient Drag coefficient 

10 51×50×51 1.09 00.073361 1.176802 
10 51×50×61 1.09 0.073466 1.177260 
10 61×50×61 1.05 0.073201 1.173813 

10 71×50×71 1.04 0.073265 1.171703 
20 71×50×71 1.04 0.073228 1.172564 
30 81×50×81 1.04 0.0733459 1.173680 

It is Clear that changing the location of  the outer 
boundary  from 10 to 20 radii and to 30 radii does 
not introduce considerable changes to the drag 
coefficient. The grid points are expanded only in the 
radial direction with an expansion ratio of about 
1.04 at Re=100. A dimensionless time step 

0.0025τ∆ = based on diffusion time scale 
( 2D

t
dif

ντ = , where ν is kinematic viscosity and t 

is time) were used to initiate the calculation. It 
should be note that, in this analysis, the spherical 
particle does not accelerate owing to aerodynamic 
forces acting on it from the flow field. 

 
6-Results and Discussion 
Simulations are performed in the range 0.1<Re<100 
covering the Two different flow regimes of classical 
flow past a stationary solid sphere: (I) steady 
attached flow for 20Re ≤ , (II) steady 
axisymmetric flow with separation for 20<Re<100, 
The effects of particle rotation will be considered for 
Re < 100, as representative of each flow regime. 
Transient behavior of the lift, drag will be presented 
for rotation in the range Ωz ≤1. Computations at 
different Reynolds number regimes in combination 
with particle rotation will also be discussed. For 
most cases considered here, a numerical grid of 
( ) ( )62,52,62,, maxmaxmax =ζηξ has been used, and 
the far-field boundary has been set at 10 radii from 
the center of the sphere. The grid points are 
expanded only in the radial direction with an 
expansion ratio of about 1.04 and a dimensionless 
time step of 0.0025τ∆ = is used to initiate the 
calculations. However, this time step is increased by 
a factor of 1.02 to a maximum value in the range of 

max0.01 0.05τ≤ ∆ ≤  depending on the Reynolds 
number and rotation speed.  

Present calculations are confirmed that up to Re 
≅ 20, uniform flow past a motionless sphere does 
not separate despite the pressure asymmetry around 
the particle. Particle rotation enhances this 
asymmetry.  If dimensionless angular velocity is 
increased present calculations at different Ωz and 
Reynolds indicate the onset of variation in Pressure 
coefficient and vortisity distribution, and other flow 
characteristics on the surface of sphere and 
dispersion of flow properties in flow around a 
spherical particle. As shown in Fig. 4, there is a 
symmetric wake region at the back of the sphere at 
Re=100 and Ωz =0 in x-y plane that is perpendicular 
to rotating axes (z). 

Global views of the effects of rotation and 
Reynolds number on the flow structure at Re=100 
are presented in Fig. 4. The streamlines pass through 
the same grid points in the flow field around the 
front stagnation point at different angular velocity. 
As expected at presence of rotation, the streamlines 
passing on the rotating sphere will not remain 
symmetric. Flow over a sphere at Re=100, Ωz =0 
forms a closed-bubble with recirculating wake of 
length L = 0.87D, which separates at 127sθ = o .
Particle rotation forms an asymmetric wake with a 
smaller size and sooner flow separation in x-y plane.  
 Two forces are exerted in the flow field around 
of rotating spherical particle, and they are 
momentums of flow and force created by rotation of 
sphere. When dimensionless angular velocity 
increases, the shear stress force exerted by rotating 
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effects is increased with respect to inertia force and 
flow tends to move in rotating direction. Increasing 
Ωz >0.5 causes the growth of rotational force 
whereas at the regions near the spherical surface 
flow rotates completely around the sphere.  
Fig. 5 shows the flow patterns of flow around the 
rotating sphere in x-z plane at Re=100 and different 
angular velocity. The streamlines of flow around the 
rotating sphere at Re=100 and x-z plane is 
symmetric. The wake length and separation angle 
decreases with increasing Ωz angular velocity of 

rotating sphere. The physical reason of this behavior 
is related to increasing the velocity gradient near the 
spherical surface. Increasing angular velocity 
increases shear stress on the particle surface and 
flow sense sphere presence on the flow field more 
than before.  
Increasing rotating number Ωz is more profound at 
higher rotation. Present calculations indicate the 
wake length becomes smaller with increasing Ωz

until it will be disappeared at Ωz ≥0.5. 

 

Re=100
ΩΖ=0

Re=100
ΩΖ=0.1

Re=100
ΩΖ=0.16

Re=100
ΩΖ=0.25

Re=100
ΩΖ=0.5

Re=100
ΩΖ=1

Figure (4): Variation of streamlines patterns around the rotating sphere at Re=100 and at different angular 
velocity in x-y plane. 
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Re=100

Ω=0

Re=100

Ω=0.16

Re=100

Ω=0.25

Re=100

Ω=0.5

Re=100

Ω=1

Re=100

Ω=0.1

Figure (5):Variation of streamlines patterns around the rotating sphere at Re=100 and at different angular 
velocity in x-z plane. 

 
As shown in Fig. 6, increasing Ωz decreases 

eddy size and wake length and finally at Ωz >0.5 this 
small separation region will be disappeared. As 
shown in Fig. 6, the wake length is decreases from 
L≈0.87D at Ωz =0 to about L≈0.001D at  Ωz =0.45. 
The wake length is defined as the distance from the 
rear stagnation point to the end of the separated zone 
along the main flow axis. 
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Figure (6): Variation of the wake length with 
respect to Ωz in flow around the rotating sphere at 
Re=100 and different angular velocity in x-z plane. 

As it is obtained from Fig. 7, the separation angle 
of flow around the rotating sphere in x-z plane 
decreases with increasing Ωz and at Ωz >0.5 there is 
not shown any separation of flow around the rotating 
sphere at x-z plane.   

 The variation of vortisity distribution of flow 
around the rotating sphere at different rotational speed 
in x-y plane and Re=100 is shown at Fig. 8. As shown 
in Fig. 8 when rotational speed increases, the vortisity 
lines deviate toward the direction of rotating sphere 
and the contours of vortisity dispersion is stretched at 
rear of sphere,(see vortisity line 49.259). 

 The variation of vortisity distribution of flow 
around the rotating sphere at different rotational speed 
in x-z plane and Re=100 is shown at Fig. 9.

www.SID.ir



Arc
hi

ve
 o

f S
ID

80                                                                                    Mech. & Aerospace Eng. J. Vol. 3, No. 2, September 2007 

0

20

40

60

0 0.2 0.4 0.6 0.8 1

S
ep

ar
at

io
n

an
gl

ei
n

x-
z

pl
an

e

Ωz

Figure (7): Variation of the separation angle 
with respect to Ωz in flow around the rotating sphere 

at Re=100 and at different angular velocity in x-z 
plane. 
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Figure (8): Variation of vortisity patterns around 
the rotating sphere at Re=100 and different angular 
velocity in x-y plane. 

 
As shown in Fig. 9 with increasing rotational 

speed, shear stress effects on the spherical surface 
increases and this causes that the contours of 
vortisity dispersion is packed together at rear of 
sphere,(see vortisity line 48.625).  

 

48.6258110.828

x0 1 2 3

Re=100 ,Ω=0
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x0 1 2 3

Re=100 , Ω=0.25
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Figure (9): Variation of vortisity patterns around the 
rotating sphere at Re=100 and different angular 
velocity in x-z plane. 
 

Variation of surface pressure coefficient (Cp)
versus dimensionless angle θ at different angular 
velocity Ωz in x-y plane and Re=100 is drawn in Fig. 
10. It can be found that the computed results of 
pressure coefficient at first stagnation point decreases 
monotonically with increasing angular velocity Ωz of 
fluid on the surface. 

The variation of the surface pressure (Cp) with 
respect to θ(degree) in flow around the rotating sphere 
at Re=100 and different angular velocity Ωz in y-z 
plane it is shown in Fig. 11.

As shown in Fig. 11 the surface pressure of 
rotating sphere at Ωz =0 is not changed in y-z plane 
and we can conclude that any lift force (FLy) is not 
exerted to the stationary sphere. Increasing Ωz causes 
to getting higher surface pressure coefficients (CLy) in 
y-z plane and increasing lift force exerted by flow to 
the rotating spherical particle. 

The temporal behavior of the lift coefficient with 
increasing Ωz at 100Re = is shown in Fig. 12.
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Figure (10): Variation of the surface pressure (Cp)
with respect to θ(degree) in flow around the rotating 
sphere at  Re=100 and at different angular velocity 
Ωz in x-y plane. 
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Figure (11): Variation of the surface pressure(Cp)
with respect to θ(degree) in flow around the rotating 
sphere at Re=100 and atdifferent angular velocity Ωz
in y-z plane 

 
Increasing angular velocity causes to increase in 

the lift coefficient (CL). The effect of angular 
velocity on lift coefficient is more significant at 
higher angular velocity numbers such that CL at 

Ωz=1 is 38% larger with respect to Ωz =0.5, and 78% 
larger as compared to Ωz=0.1. 
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Figure (12): Lift coefficient histories at  Re = 100 
for different angular velocity Ωz.

A study of the temporal behavior of the lift coefficient 
at different angular velocity numbers indicates that lift 
coefficient, CL, remains finally steady despite its 
considerable diminish in initial instants. A reducing 
behavior of the lift coefficient is observed at very early 
dimensionless times as shown in Fig. 12. This is 
related to the sudden introduction of the rotating 
sphere into the uniform and steady free stream. Initial 
lift coefficient behavior is strongly affected by the 
onset of flow separation and the rate of subsequent 
wake growth. In an impulsive start, the effects of Ωz

on flow separation and wake growth are immediate 
whereas the effects of the background flow are delayed 
(see Fig. 12) by about 20, which is approximately the 
transit time of a flow over the spherical particle. 

Surface global parameters, such as the drag 
coefficients, are also influenced by variation of the 
angular velocity of spherical surface. The drag 
coefficient increases with increase of Ωz on the sphere 
surface and also the drag coefficient behavior depends 
on the Reynolds number. The temporal behavior of the 
drag coefficient with increasing Ωz at 100Re = is 
shown in     Fig. 13. The effect of Ωz on CD at Re=100 
is more significant at higher angular velocity such that 
CD at Ωz=1 is 6% larger that that of Ωz =0.5, and 
11.8% larger as compared to Ωz=0 (stationary sphere). 
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Figure (13): Drag coefficient histories at Re = 100 
for different angular velocity Ωz.

A study of the drag coefficient histories at different 
angular velocity numbers indicates that drag 
coefficient (CD) remains finally steady despite of its 
considerable decrease in initial instants.  

As shown in Fig. 14 the drag coefficient is 
reduced with increasing Reynolds number and 
decreasing angular velocity but this variation is not 
uniform in all ranges of Reynolds numbers. We can 
investigate this subject with study of drag reduction 
between special cases of Ωz=1 and stationary sphere 
at low and moderate Reynolds numbers regimes. As 
it is shown in Fig.14 at low Reynolds regime, 
Re=0.1, computed drag reduction in Ωz=0 with 
respect to Ωz=1is negligible and drag reduction at 
Re=100 approximately is 16% and this feature 
shows the angular velocity does not effect on drag 
coefficients at low Reynolds number regimes and it 
is important at moderate Reynolds numbers, Re>35.  

Figs.15 shows the comparison of the drag 
coefficient (CD) with respect to Reynolds numbers 
in flow around the rotating sphere at different 
angular velocity Ωz. As shown in Fig. 15, the drag 
coefficients of rotating spheres at present 3D 
numerical analysis at different angular velocity Ωz is 
compared with other results of flow around of rigid 
rotating spheres. 
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Figure 14:  Variation of drag coefficient (CD) with 
respect to Reynolds numbers in flowaround the 
rotating sphere at different angular velocity Ωz.
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Figure (15): Comparison of the drag coefficient (CD)
versus Reynolds numbers in flow around the rotating 
sphere at different angular velocity Ωz.

The computed drag coefficients at present study, 
the steady-state values of CD at different Ωz and 
0.1≤Re≤100, have good agreement with other results. 

Figure.16 shows the variation of drag coefficient 
(CD) with respect to angular velocity Ωz in flow around 
the rotating sphere at moderate Reynolds numbers. As 
illustrated in Fig. 16, with increasing angular velocity 
Ωz the drag coefficients of rotating spheres is increased 
at moderate Reynolds, numbers regimes, (Re=50 and 
100) but as shown in Figs. 16 and 17 variation of Ωz
does not effects on drag coefficient values at low 
Reynolds number regimes,(Re=1, 10 and 20). 
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Figure (16): Variation of drag coefficient versus 
angular velocity Ωz in flow around the  rotating 
sphere at moderate Reynolds numbers. 
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Figure (17): Variation of drag coefficient versus 
angular velocity in flow around the rotating sphere 
at low Reynolds numbers. 

Figure.18 shows the comparison of the lift 
coefficient (CL) with respect to Reynolds numbers in 
flow around the rotating sphere at different angular 
velocity Ωz with numerical results of references[12] 
and [15]. As shown in Fig. 19 the steady-state 
values of CL at different Ωz and 0.1≤Re≤100, have 
good agreement with other results. 
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Figure (18): Comparison of the lift coefficient (CL)
with respect to Reynolds numbers in flow around the 
rotating sphere at different angular velocity Ωz with 
numerical results of [12] and [15]. 
 
Conclusions 
Fluid dynamics characteristics of laminar  3-D flow 
past an impenetrable rotating suspended spherical 
particle have been studied with effect of rotation Ωz <1 
in the range 0.1≤Re≤200. The rotation causes the 
streamlines passing on the rotating sphere not to 
remain symmetric in x-y plane, but flow patterns 
remain symmetric at x-z plane. The wake length and 
separation angle at x-z plane increases with decreasing 
Ωz (angular velocity of rotating sphere). Increasing the 
rotating number, Ωz is more profound at higher 
rotation and the present calculations indicate the wake 
length becoming smaller with increasing Ωz until it 
disappears at Ωz ≤0.5. 

 It can be found that the computed results of the 
pressure coefficient at first stagnation point decreases 
monotonically with increasing angular velocity Ωz of 
fluid on the surface. 

A study of the temporal behavior of the lift and 
drag coefficients at different angular velocities 
indicates that lift and drag coefficients, CL, CD, remain 
finally steady despite its considerable diminish in 
initial instants. This is related to the sudden 
introduction of the rotating sphere into the uniform and 
steady free stream. Initial behavior is strongly affected 
by the onset of flow separation and the rate of 
subsequent wake growth. In an impulsive start, the 
effects of Ωz on flow separation and wake growth are 
immediate whereas the effects of the background flow 
are delayed by about 20, which is approximately the 
transit time of a flow over the spherical particle. 

At low Reynolds regime, Re=0.1, computed drag 
reduction in Ωz=0 with respect to Ωz=1is negligible 
and drag reduction at Re=100 approximately is 16% 
and this feature shows the angular velocity does not 
effect on drag coefficients at low Reynolds number 
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regimes and it is important at moderate Reynolds 
numbers, Re>35. 

The effect of Ωz on CL is more significant at 
higher angular velocity numbers such that CL at
Ωz=1 is 38% larger with respect to Ωz =0.5, and 
78% larger as compared to Ωz=0.1. 
 It is shown that with increasing angular velocity 
Ωz the drag coefficients of rotating spheres is 
increased at moderate Reynolds numbers 
regimes,(Re=50, 100) but variation of Ωz does not 
effects on drag coefficient values at low Reynolds 
number regimes,(Re=1 and 10,20). 

It is interesting to say the initial lift coefficient 
values in z direction at dimensionless time step 
smaller than 40, which is approximately the transit 
time of flow over the rotating spherical particle at 
Ωz.>0.25 is important and  at higher time step these 
values will be vanished. 
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