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Numerical Investigation of a 3-D Flow Past an | mpenetrable
Rotating Microparticleat Low and Moderate Reynolds Numbers

M.R. Meigounpoory* and GH. Atefi? H. Niazmand® A. Mirbozorgi*
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ABSTRACT

Computations are performed to determine the steady 3-D viscous fluid flow forces acting on an impenetrable
rotating spherical suspended particle at low and moderate Reynolds numbersin the range of 0.1< Re<100. In
order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC)
method is used. Transformation of the governing partial differential equation:toralgebraic relations is based on
the finite volume method and collocated variables arrangement. For solvingthe algebraic relations, the TDMA in
a periodic state is used. To approximate the convective fluxes, the differencing scheme of Van Leer is used and
the SIMPLEC algorithm handles the linkage between velocity and the pressure. Rotation increases the drag and
lift forces exerted by flow at the surface of on the sphere. Using velocity components in Cartesian coordinates
causes dight decrease in the run time of program with respect to using it in contra-variant and covariant
coordinates. The flow patterns are changed with increasing rotation at-x-y plane, but flow at x-y plane remains
symmetric the present numerical results are in complete accord:with other results of flow around a rotating
sphere.
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Symbolsand Abbreviations

A Area

D Diameter of Sphere

L Wake Length

n Normal Unit Vector

p Pressure

r,o ¢ Spherical Coordinates

R Radius of Sphere

Re Reynolds Number, Re=U_D/v

t Time

u, v, w Velocity Components in the x, y, z
Directions

U, Free Stream Vel ocity

V Velocity Vector

Co Drag Coefficient

Cy Lift Coefficient iny Direction

v Kinematic Viscosity

s Separation Angle

T Non-Dimensional Time, z =tU_ /D

T Viscous Stress Tensor

f Fluid

) Free-Stream

Introduction

Flow over spheres is a fundamental problem
encountered in many engineering problems. It is
well known that the motion of spherical particles
have many applications in industries, such as
hydrodynamic dispersion in quiescent sedimenting
suspensions, the dynamics of bubbles and drop or
particle in arbitrary motion at different Reynolds
numbers, Sedimentation of noncolloidal Particles,
osmotic phenomena, transport< of . groundwater
colloids, and the permeability reduction due to
migrating fines in enhanced  oil. recovery and
hydrodynamic dispersion; the .motion of fuel
droplets in combustors, solid particle in air, and
two phase flows, likeimotion spherical bubbles and
droplets in fluid flow, solid particle in air. It is well
known that the motion of spherical particles in
some applications also involves no-dip condition
such as the motion of fuel droplets in combustors,
solid particle in air, and some other motion of
spherical particles such as bubbles involves dip
condition on the surface.

Although particle rotation typicaly occurs
around an arbitrary axis in space, investigation of
cases with rotation axes normal and paralel to the
principal flow direction can provide fundamental
information. The characteristics of the flow field
for particle rotation in the stream wise direction
(spin) are quite different from that in the transverse
direction (rotation). Rotation displaces and reduces
the recirculation region of the wake such that at
sufficiently high rotational speeds it is completely
suppressed [1], while spin has the opposite effect.
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The structure of flow at the near wake region has a
strong influence on the behavior of the drag and
lifts forces as well as the other characteristics of the
particle, and therefore, deserves close examination.
For uniform flow past a sphere, the wake forms at
Re = 20 and undergoes several well-defined
transitions as the Reynolds number is increased.
Firgt transition occurs a Re = 212, where the
axisymmetric steady wake becomes planar-
symmetric yet steady and attached. In the second
transition, the steady planar-symmetric wake
becomes unsteady at Re = 270 forming a periodic
wake with vortex shedding. The details of the wake
structure in each wake regime have been
investigated both-experimentally and theoretically
[2-8]. However, a review of the relevant literature
provides limited information on the effects of
particle spin and rotation. The case of particle
rotation has attracted some attention in the
literature, where the experimental studies of Best
[1] 'and Brakla and Auchterlonie [9], Oesterle and
Dinh [10], and the numerical studies of Salem and
Oesterle [11], and Kurose and Komori [12] can be
mentioned among others. However, for the case of
a. spinning sphere much less information is
available in this Re range. The only known work is
the numerical study of Kim and Choi [13]. They
considered Re = 100 in the steady symmetrical
regime, Re = 250 in the steady non-symmetrical
regime, and Re = 300 in the unsteady wake regime,
for angular velocities of €2, <1. It isreported that

the forces acting on the sphere are influenced by
spin, and the vortical structures behind the particle
are significantly modified. For higher Re flows over
spinning spheres, Clift et a. [14] have summarized
previous studies and pointed out that the transition
to turbulence, which is identified by a sudden drop
in the standard drag curve, occurs at lower Re with
increased spin. Similar behavior is observed in the
present study at moderate Re, such that increasing
particle spin reduces the transitional Re between the
different wake regimes. Niazmand and
Renksizbulut [15] and [16] carried out numerical
investigations of the flow and temperature fields
around rotating spheres with surface blowing. It is
shown that transient behavior of important flow
parameters such as the lift and drag coefficients are
significantly influenced by particle rotation and
surface blowing. However, the surface-averaged
heat transfer rates are not influenced appreciably by
particle rotation even at high rotational speeds,
whereas the local heat transfer rates are drastically
affected. Literature review shows that the lack of
study about flow around the rotating sphere at
moderate Reynolds numbers. Recently, Numerical
analysis of 3D flow past a stationary sphere with
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dip condition a low and moderate Reynolds
numbers has been investigated by Atefi et a [17].

The aim of the present study is to examine the
flow field around a rotating sphere numerically.
The range of Reynolds numbers considered here
are 1 to 100, and the dimensionless angular vel ocity
will be varied up to 1. The combined effects of
particle Reynolds number and rotation will also be
addressed. Important features of the flow properties
will be compared to their counterparts for rotating
spheres reported in literature review.

3. Problem Formulation
The flow geometry and sphere in generalized

coordinates(ﬁ,n,{ ) which in the present
problem lie aong the spherical coordinates
(H,go,r) respectively, are shown in Fig. 1.

Figure (1): Flow geometry and coordinates.

A uniform stream in the positive x-direction flows
over a sphere rotating with' constant angular
velocity o, around the principal. flow axis. The
laminar, constant-property, viscous' flow under
study is governed by the usual set of continuity and
momentum equations.as follows:

V.V =0, )
N VIV =E_LopwV,
ot P

where p, V are density and velocity vector, v
kinematic viscosity and P is pressure. Inflow
boundary conditions are simply U =1 and v=w=0.
On the surface of a solid sphere, the flow satisfies
the no-dlip boundary condition. For outflow, zero-
gradients along the streamlines are applied for

6 >120° to all variables such that:

VVf =0, (3

where, f =U,V,W. On the surface of a sphere,
rotation with a non-dimensional angular velocity of
Q=Rw,/U, aound the zaxis in the
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counterclockwise direction, the velocity
components are:

u =R, cospsing/U_,
v = R, cospcosé/U (4
w=0,

where, €, € and €, are unit vectors in the x, y

and z directions, respectively. Initial conditions
correspond to a sudden introduction of a rotating
sphere into an otherwise uniform free stream. The
initial pressure is specified as zero over the whole
computational domain. The resultant force acting
on the particle is obtained by integrating the normal
and tangential stresses on the sphere surface, as:

F=-[PhdA+ [7AdA. (5
A A
where,
FL = FLP + FLf = _J. PéyﬁdA+J.ﬁTéydAl (6)
A A

Fo =Fop + Py =—[ PE.dA+ [r8dA ()
A A

Here, €, ,éy are unit vectors in x and y axes. which

arenon-dimensionalized as C_ = ﬁ/(ﬁRZpuj/z).

The component of CF along the x-axis is the
drag coefficient C,. For flow over a rotating

sphere the components of CF aong the y axes

have finite values, and therefore, the lift coefficient
is defined as C_ .The drag and lift coefficient are
defined as:

C,=F,/05pU2A , C =F_/05pU%A (8

4-Numerical Solution Method

The governing equations given above were solved
numerically using a finite-volume method with
collocated variables in a generalized 3-D coordinate
system. To avoid the checker board affect, the
interpolation of Rhei-chow [18] was used in the
calculation of convecting mass flow rate. In order
to approximate the values of convected quantities at
location of each faces, the differenceing scheme of
Van-Leer was used a Re=100. The scheme of
SIMPLEC handles the likage between velocities
and pressure fields. The resulting algebric system
of equations was solved using a line-by-line
iterative method with TDMA.

More detailes of the numerical method has been
described in detail by Farhanieh [18] and further
improved by authors to properly capture the
numerical analysis of flow around of sphere at
moderate Reynolds numbers.



76

5-Computational parameter and Numerical
Accuracy

We study flow around of sphere in the range of
0.1<Re<100. Transport mechanism of fluid
properties at Re=100 is convection mechanism and
we use van Leer method for solving numerical
problem. The accuracy of numerical algorithm was
tested by predicting the axisymmetric flow around
a stationary solid sphere at Re=100. we examined
effects of grid resolution on drag coefficient,
separation angle and dimensionless wake length of
flow a Re=100. The details of the grid
independence study, as well as evidence of
accuracy in predicting wake features, fluid forces
and in the range of parameters considered here are
given elsawhere [21].

The flow is axisymmetric in this case and three
dimentional solution sheme is fully exercised in a
time accurate manner for al cases. As shown in
Fig. 2 for most cases considered here, a numerical
0id OF (&, 77 mac e ) = (62,52,62) has been
used, and the far-field boundary has been set at 10
radii from the center of the sphere.  Fig. 2. shows
Coordinates, flow geometry and mesh generation
around of sphere.

Figure (2): Coordinates, flow geometry and
mesh around a sphere.

Table 1 lists the drag coefficient as a function of
Reynolds number and compare them experimental
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results of Roos and Willmarth [3] and numerical
data presented by Clift et al. [14]. The table also
includes the separation angle, measured from front
stagnation point, which are in good agreement with
results from Clift et al. [14]. Asshown in Fig. 3, the
separation angle is measured from the rear
stagnation point by present method with Q,=0 and
they have compared with other numerica and
analytical results.

80
Separation angle
4
60 + &
¢
a |
= 9
&)MO T Iy
=
D L O Present numerical solution
A Karla
a Masliya
20 ¢ ¢ Taneda
O Raithby
i © Nakamura
0
0 S | 1
0 50 100 150 200
Re

Figure (3): Comparison of separation angle for
flow over an impenetrable stationary sphere.

The comparison is made with numerica results
of Nakamura [4], Raithby[18], Masliya [14] and
experiment results of Taneda [1] and Karla and
Uhlherr[20].

Table 2 shows grid independency of flow around
the rotating sphere at Re=100 and Q,=0.5 for
different grid densities. As shown in table 2 the
effect of grid resolution on drag and lift coefficient
of flow at Re=100 and different outer boundary
was investigated. The extend of grid expansion in
some cases was adjusted based on the number of
grid points and the location of the outer boundary to
achieve a comparable grid density near the surface
of the sphere. The maximum difference between
drag coefficient between all case is about 3%.
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Table (1): Comparison of our drag coefficient and separation angle with those of Clift et al. [14] and Roos &
Willmarth [3] for flow over a solid sphere.

Drag Coefficient Separation angle (6)?

Re Present work Roos& Willmarth °[3] Clift et al [14] Present work Clift et al [14]
1 27.327046 - 27.315 0 0

50 1.588 1.620 1.57 139.3 139.3

100 1.095 1.090 1.096 126.8 126.5

avalues of separation angle measured from the front stagnation point

b interpolated values are use

Table (2): Drag and lift coefficients as functions of grid density at Re=100 and at Q2,=0.5.

R, / R ‘fmax X170 X é“ma Radial expansion factor Lift coefficient Drag coefficient
10 51x50x51 1.09 -0.073361 1.176802
10 51x50x61 1.09 0.073466 1.177260
10 61x50%x61 1.05 0.073201 1.173813
10 71x50%x71 1.04 0.073265 1.171703
20 71x50%x71 1.04 0.073228 1.172564
30 81x50x81 1.04 0.0733459 1.173680

It is Clear that changing the location of the outer
boundary from 10 to 20 radii and to 30 radii does
not introduce considerable changes to the drag
coefficient. The grid points are expanded only in the
radial direction with an expansion ratio of about
104 a Re=100. A dimensionless time step
A7 =0.0025 based on diffusion time scale

(74 :%2 , where v is kinematic viscosity and t

is time) were used to initiate the calculation. It
should be note that, in this analysis, the spherical
particle does not accelerate owing to aerodynamic
forces acting on it from the flow field.

6-Results and Discussion

Simulations are performed in the range 0.1<Re<100
covering the Two different flow regimes of classical
flow past a stationary solid sphere: (1) steady
attached flow.. for Re<20, (II) steady
axisymmetric flow with separation for 20<Re<100,
The effects of particle rotation will be considered for
Re < 100, as representative of each flow regime.
Transient behavior of the lift, drag will be presented
for rotation in the range Q, <1. Computations at
different Reynolds number regimes in combination
with particle rotation will also be discussed. For
most cases considered here, a numerical grid of
(& s Co ) = (62,52,62) has been used, and

the far-field boundary has been set at 10 radii from
the center of the sphere. The grid points are
expanded only in the radial direction with an
expansion ratio of about 1.04 and a dimensionless
time step of A7 =0.0025 is used to initiate the
calculations. However, this time step is increased by
a factor of 1.02 to a maximum value in the range of

0.01<A7__ <0.05 depending on the Reynolds

max —
number and rotation speed.

Present calculations are confirmed that up to Re
= 20, uniform flow past a motionless sphere does
not separate despite the pressure asymmetry around
the particle. Particle rotation enhances this
asymmetry. If dimensionless angular velocity is
increased present calculations at different Q, and
Reynolds indicate the onset of variation in Pressure
coefficient and vortisity distribution, and other flow
characteristics on the surface of sphere and
dispersion of flow properties in flow around a
spherical particle. As shown in Fig. 4, there is a
symmetric wake region at the back of the sphere at
Re=100 and Q, =0 in x-y plane that is perpendicular
to rotating axes (2).

Global views of the effects of rotation and
Reynolds number on the flow structure at Re=100
are presented in Fig. 4. The streamlines pass through
the same grid points in the flow field around the
front stagnation point at different angular velocity.
As expected at presence of rotation, the streamlines
passing on the rotating sphere will not remain
symmetric. Flow over a sphere at Re=100, Q, =0
forms a closed-bubble with recirculating wake of

length L = 0.87D, which separates at6, =127".
Particle rotation forms an asymmetric wake with a
smaller size and sooner flow separation in x-y plane.

Two forces are exerted in the flow field around
of rotating spherica particle, and they are
momentums of flow and force created by rotation of
sphere.  When dimensionless angular velocity
increases, the shear stress force exerted by rotating
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effects is increased with respect to inertia force and
flow tends to move in rotating direction. Increasing
Q, >0.5 causes the growth of rotational force
whereas at the regions near the spherical surface
flow rotates completely around the sphere.

Fig. 5 shows the flow patterns of flow around the
rotating sphere in x-z plane at Re=100 and different
angular velocity. The streamlines of flow around the
rotating sphere at Re=100 and x-z plane is
symmetric. The wake length and separation angle
decreases with increasing Q, angular velocity of

Mech. & Aerospace Eng. J. Val. 3, No. 2, September 2007

rotating sphere. The physical reason of this behavior
is related to increasing the velocity gradient near the
spherical  surface. Increasing angular velocity
increases shear stress on the particle surface and
flow sense sphere presence on the flow field more
than before.

Increasing rotating number Q, is more profound at
higher rotation. Present calculations indicate the
wake length becomes smaller with increasing Q,
until it will be disappeared at Q, >0.5.

- P

Figure (4): Variation of streamlines patterns around the rotating sphere at Re=100 and at different angular
velocity in x-y plane.
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Figure (5):Variation of streamlines patterns around the rotating sphere at Re=100 and at different angular
velocity in x-z plane.

As shown in Fig. 6, increasing , decreases
eddy size and wake length and finally‘at Q, >0.5 this
small separation region will be-disappeared. As
shown in Fig. 6, the wake length is decreases from
L~0.87D at Q, =0 to about L~0.001D at Q, =0.45.
The wake length is defined as the distance from the
rear stagnation point to the end of the separated zone
along the main flow axis.

1

Wake length(L/D)
o o o
N (o2} [o0]

o©
N

0 0.2 0.4 0.6 0.8 1

Figure (6): Variation of the wake length with
respect to Q, in flow around the rotating sphere at
Re=100 and different angular velocity in x-z plane.

As it is obtained from Fig. 7, the separation angle
of flow around the rotating sphere in x-z plane
decreases with increasing Q, and at Q, >0.5 there is
not shown any separation of flow around the rotating
sphere at x-z plane.

The variation of vortisity distribution of flow
around the rotating sphere at different rotational speed
in x-y plane and Re=100 is shown at Fig. 8. As shown
in Fig. 8 when rotational speed increases, the vortisity
lines deviate toward the direction of rotating sphere
and the contours of vortisity dispersion is stretched at
rear of sphere,(see vortisity line 49.259).

The variation of vortisity distribution of flow
around the rotating sphere at different rotational speed
in x-z plane and Re=100 is shown at Fig. 9.
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Separation anglein x-z plane

07““1““1“ = ——

0O 02 04 06 08 1
Q,

Figure (7): Variation of the separation angle
with respect to Q, in flow around the rotating sphere
at Re=100 and at different angular velocity in x-z
plane.

Re=100, Q=0

113.135 49.259g

‘ 146156
0 Ty 2 3

Re=100, Q=0.25

‘
0 1y 2 3

Figure (8): Variation of vortisity patterns around
the rotating sphere at Re=100 and different angular
velocity in x-y plane.

As shown in Fig. 9 with increasing rotational
speed, shear stress effects on the spherical surface
increases and this causes that the contours of
vortisity dispersion is packed together at rear of
sphere,(see vortisity line 48.625).
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Re=100,0Q=0

0 1 5 2 3

Figure (9): Variation of vortisity patterns around the
rotating sphere at Re=100 and different angular
velocity in x-z plane.

Variation of surface pressure coefficient (Cp)
versus dimensionless angle € at different angular
velocity Q, in x-y plane and Re=100 is drawn in Fig.
10. It can be found that the computed results of
pressure coefficient at first stagnation point decreases
monotonically with increasing angular velocity Q, of
fluid on the surface.

The variation of the surface pressure (Cp) with
respect to 6(degree) in flow around the rotating sphere
at Re=100 and different angular velocity Q, in y-z
planeit isshown in Fig. 11.

As shown in Fig. 11 the surface pressure of
rotating sphere at Q, =0 is not changed in y-z plane
and we can conclude that any lift force (F.,) is not
exerted to the stationary sphere. Increasing Q, causes
to getting higher surface pressure coefficients (C.y) in
y-z plane and increasing lift force exerted by flow to
the rotating spherical particle.

The tempora behavior of the lift coefficient with
increasing Q, at Re=100 isshownin Fig. 12.
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50 100 150
0
Figure (10): Variation of the surface pressure (Cp)
with respect to 6(degree) in flow around the rotating
sphere a8 Re=100 and at different angular velocity
Q, inx-y plane.
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Figure (11): Variation of the surface pressure(Cp)
with respect to 6(degree) in flow around the rotating
sphere at Re=100 and atdifferent angular velocity Q,
iny-z plane

Increasing angular velocity causes to increase in
the lift coefficient (C.). The effect of angular
velocity on lift coefficient is more significant at
higher angular velocity numbers such that C_ at

8l

Q,=1 is 38% larger with respect to Q, =0.5, and 78%
larger as compared to Q,=0.1.

03 T 1 ]
i Q=0 ]
0.2F ---- Q=01 E
. ————m 0=0.16 1
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0.1F .
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o i\ ]
= & 1
0.4F 0 7]
E A ]
O5F e =
- . . 1

06 50 100

Non dimensional time

Figure (12): Lift coefficient historiesat Re =100
for different angular velocity Q,.

A'study of the temporal behavior of the lift coefficient
at different angular velocity numbers indicates that lift
coefficient, C_, remains finaly steady despite its
considerable diminish in initia instants. A reducing
behavior of the lift coefficient is observed at very early
dimensionless times as shown in Fig. 12. This is
related to the sudden introduction of the rotating
sphere into the uniform and steady free stream. Initial
lift coefficient behavior is strongly affected by the
onset of flow separation and the rate of subsequent
wake growth. In an impulsive start, the effects of Q,
on flow separation and wake growth are immediate
whereas the effects of the background flow are delayed
(see Fig. 12) by about 20, which is approximately the
transit time of aflow over the spherical particle.
Surface global parameters, such as the drag
coefficients, are also influenced by variation of the
angular velocity of spherical surface. The drag
coefficient increases with increase of Q, on the sphere
surface and also the drag coefficient behavior depends
on the Reynolds number. The temporal behavior of the
drag coefficient with increasing Q, a Re=100 is
shownin Fig. 13. The effect of Q, on Cp at Re=100
is more significant at higher angular velocity such that
Cp a Q,=1 is 6% larger that that of Q, =0.5, and
11.8% larger as compared to Q,=0 (stationary sphere).
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Figure (13): Drag coefficient histories at Re = 100

for different angular velocity Q,.

A study of the drag coefficient histories at different
angular velocity numbers indicates that drag
coefficient (Cp) remains finally steady despite of its
considerable decrease in initia instants.

As shown in Fig. 14 the drag coefficient is
reduced with increasing Reynolds number and
decreasing angular velocity but this variation is-not
uniform in all ranges of Reynolds numbers. We can
investigate this subject with study of drag reduction
between special cases of Q,=1 and stationary sphere
at low and moderate Reynolds numbers regimes. As
it is shown in Fig.14 a low Reynolds regime,
Re=0.1, computed drag reduction in.Q,=0 with
respect to Q,=1is negligible and drag reduction at
Re=100 approximately is/ 16% and this feature
shows the angular velocity does not effect on drag
coefficients at low Reynolds number regimes and it
isimportant at moderate Reynolds numbers, Re>35.

Figs.15 shows thecomparison of the drag
coefficient (Cp) with respect to Reynolds numbers
in flow around the rotating sphere at different
angular velocity Q,. As shown in Fig. 15, the drag
coefficients of rotating spheres at present 3D
numerical analysis at different angular velocity Q, is
compared with other results of flow around of rigid
rotating spheres.
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Figure 14 Variation of drag coefficient (Cp) with
respect to Reynolds numbers in flowaround the
rotating.sphere at different angular velocity Q,.
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Figure (15): Comparison of the drag coefficient (Cp)
versus Reynolds numbers in flow around the rotating
sphere at different angular velocity Q,.

The computed drag coefficients at present study,
the steady-state values of Cp at different Q, and
0.1<Re<100, have good agreement with other results.

Figure.16 shows the variation of drag coefficient
(Cp) with respect to angular velocity Q, in flow around
the rotating sphere at moderate Reynolds numbers. As
illustrated in Fig. 16, with increasing angular velocity
Q, the drag coefficients of rotating spheresis increased
at moderate Reynolds, numbers regimes, (Re=50 and
100) but as shown in Figs. 16 and 17 variation of Q,
does not effects on drag coefficient values at low
Reynolds number regimes,(Re=1, 10 and 20).
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Figure (16): Variation of drag coefficient versus
angular velocity Q, in flow around the rotating
sphere at moderate Reynolds numbers.
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Figure (17): Variation of drag-coefficient versus
angular velocity in flow around the rotating sphere
at low Reynolds numbers.

Figure.18 shows the comparison of the lift
coefficient (C,) with respect to Reynolds numbersin
flow around the rotating sphere at different angular
velocity Q, with numerical results of references12]
and [15]. As shown in Fig. 19 the steady-state
values of C_ at different Q, and 0.1<Re<100, have
good agreement with other results.
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Figure (18): Comparison of the lift coefficient (C.)
with respect to Reynolds numbers in flow around the
rotating sphere at different angular velocity Q, with
numerical resultsof [12] and [15].

Conclusions

Fluid dynamics characteristics of laminar 3-D flow
past. an impenetrable rotating suspended spherical
particle have been studied with effect of rotation Q, <1
in the range 0.1<Re<200. The rotation causes the
streamlines passing on the rotating sphere not to
remain symmetric in x-y plane, but flow patterns
remain symmetric at x-z plane. The wake length and
separation angle at x-z plane increases with decreasing
Q, (angular velocity of rotating sphere). Increasing the
rotating number, Q, is more profound at higher
rotation and the present calculations indicate the wake
length becoming smaller with increasing Q, until it
disappears at Q, <0.5.

It can be found that the computed results of the
pressure coefficient at first stagnation point decreases
monotonically with increasing angular velocity Q, of
fluid on the surface.

A study of the temporal behavior of the lift and
drag coefficients at different angular velocities
indicates that lift and drag coefficients, C,, Cp, remain
finally steady despite its considerable diminish in
initial instants. This is related to the sudden
introduction of the rotating sphere into the uniform and
steady free stream. Initial behavior is strongly affected
by the onset of flow separation and the rate of
subsequent wake growth. In an impulsive start, the
effects of Q, on flow separation and wake growth are
immediate whereas the effects of the background flow
are delayed by about 20, which is approximately the
transit time of a flow over the spherical particle.

At low Reynolds regime, Re=0.1, computed drag
reduction in Q,=0 with respect to Q,=1is negligible
and drag reduction at Re=100 approximately is 16%
and this feature shows the angular velocity does not
effect on drag coefficients at low Reynolds number



regimes and it is important at moderate Reynolds
numbers, Re>35.

The effect of Q, on C_ is more significant at
higher angular velocity numbers such that C_ at
Q,=1 is 38% larger with respect to Q, =0.5, and
78% larger as compared to Q,=0.1.

It is shown that with increasing angular velocity
Q, the drag coefficients of rotating spheres is
increased a moderate Reynolds numbers
regimes,(Re=50, 100) but variation of Q, does not
effects on drag coefficient values at low Reynolds
number regimes,(Re=1 and 10,20).

It is interesting to say the initial lift coefficient
values in z direction at dimensionless time step
smaller than 40, which is approximately the transit
time of flow over the rotating spherical particle at
Q,.>0.25 isimportant and at higher time step these
values will be vanished.
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