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ABSTRACT 
In this paper, a new method is introduced for recognition, location, and severity of damage in engineering stochastic 
structures, based on Autoregressive Moving Average (ARMA) parametric model and fuzzy classification. The 
important aspect of the proposed method is the fuzzy viewpoint on stochastic structural damage diagnosis, which 
uses estimated ARMA parameters as feature vector. Moreover, the proposed method eliminates the optimization 
stage in finding membership functions parameters of fuzzy system by substituting the variances of estimated ARMA 
parameters directly as tuning parameters in membership functions. Another important aspect of the proposed method 
is the inessentiality to measure the excitation input force applied to the structure. A finite element model of a frame 
for diagnosing damage, wherein the damage is modeled by different stiffness reduction and location, is considered as 
a case study. After obtaining satisfactory results from numerical simulations, the proposed method is applied to a 
simply supported beam as an experimental laboratory structure, where the spring connected to the structure in 
different locations with different stiffness is considered as the damaged object. the results are considerably 
satisfactory. 
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1- Introduction 
There is a vast research field with different 
approaches on damage detection of structures. In 
aerospace and modern structures, the fault diagnosing 
of these structures, before occurring catastrophic 
events, is of great importance. One of the approaches 
is using a parametric model, such as ARMA, in 
diagnosing the changes in physical parameters of 
structures. These researches can be grouped in time 
domain category of structural health monitoring 
(SHM) [1] where measuring the input of structures is 
often necessary for damage detection, in other words, 
the exogenous part of ARMAX model must be used 
for SHM [2-5]. Sohn et al. [2] have proposed a two-
stage time series analysis combining ARX and AR 
prediction models as pattern recognition technique 
for SHM where main object was to extract features 
and to construct a statistical model that distinguishes 
the signals recorded under different structural 
conditions of a boat. In the recent work of Sohn et al. 
[3], the ARX model parameters are fed to an auto 
associative neural network which is trained to 
characterize the underlying dependency of extracted 
features (parameter of ARX model) on the 
unmeasured environmental and operational variety by 
treating these environmental effects and conditions as 
hidden intrinsic variables in the neural network. 
When a new time signal is recorded from an 
unknown state of the system, the parameters of the 
time prediction model are computed for the new data 
set and are fed to the trained neural network. When 
the structure undergoes structural degradation, it is 
expected that the prediction error of the neural 
network will increase because of damage. Based on 
this premise, damage classifier is constructed using a 
new damage detection method, proposed in [3]. In [4] 
and [5] a geometric approach is proposed based on 
ARMAX modeling of a stochastic structure excited 
by white Gaussian noise and is measured on a 
predefined point of structure for fault diagnosis. In 
[6] a genetic fuzzy system is proposed for crack 
detection in beams and helicopter rotor blades. In [7] 
a generalized methodology for structural fault 
detection using FE and fuzzy logic is presented. In 
[8] a fuzzy rule-based system is used for damage 
detection of blade in a helicopter rotor which is 
modeled as a cantilever beam.  

In this work, a new method of damage detection 
and locating is proposed based on combining ARMA 
modeling of structure’s response and fuzzy logic 
reasoning. The important aspect of this paper is using 
only the output data (response) of structure excited 
by white Gaussian noise and modeling the response 

data by ARMA  model and system identification 
algorithm proposed in [9] for damage diagnosing. 
Another very important aspect of this work is 
eliminating the optimization or tuning process which 
is a necessary stage in fuzzy rule based systems. The 
optimization stage is very time consuming and 
sometimes leads to suboptimal results [10-14]. 
Generally the values of obtained parameters are 
related to membership functions in different 
applications of fuzzy systems. In this paper Gaussian 
membership function is used for classification of 
ARMA parameters. The parameters of Gaussian 
membership function are related to mean and 
covariance matrix of ARMA parameters, therefore 
the optimization process in fuzzy rule-based system 
is substitute by estimating the mean and covariance 
of ARMA model parameters. In this work the Monte-
Carlo simulation is used for covariance matrix 
construction of ARMA parameters [15-16]. The 
paper is organized as follows: 
In section two, parametric modeling for feature 
extraction (ARMA parameters) for damage detection 
and locating is described. In section three, the fuzzy 
rule-based classification method by using ARMA 
parameters as the features and their covariance as the 
parameters of the membership function is described. 
The numerical simulation of frame with definition of 
possible fault and the proposed damage diagnosing 
method are applied to a frame structure in section 
four. In section five, a laboratory structure is used for 
experimental validation of the proposed method. 
Finally the discussion and conclusion is presented in 
the last section.                     
 
2- Extracting ARMA Model Parameters as 
Feature Vector for Fault Diagnosing 
Because of stochastic nature of applied forces, the 
responses of these structures are also stochastic. In 
this paper the response of structure in time domain is 
used directly for damage detection. For this purpose 
the fuzzy classification method is applied. In fuzzy 
classification or clustering method, one of the most 
important factors, is feature selection. One of the 
very informative features is ARMA parameters in 
modeling of structure’s response [17-19]. One of the 
most important advantages of these methods which 
are based on ARMA parameter estimation is that the 
covariance matrix of parameters are obtained during 
the estimation process, in other words it is assumed 
that the parameters are random variables asymptotic 
with Gaussian distribution [15]. By this way the most 
difficult stage of fuzzy classification method, which 
is finding the uncertainty bound, can be eliminated or 
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transferred into ARMA model estimation stage 
directly. In this work, a polynomial-algebraic method 
is used for estimating the ARMA model parameters. 
This method was introduced by R. Benmrad et al. [9]. 
Here, the method is limited to estimation of ARMA 
model’s parameters in stationary systems (structures). 
By the method proposed in this paper the extension 
of damage detection procedure to non-stationary 
systems is straightforward. For estimation of ARMA 
model parameters, consider the output (response of 
structure) signal modeled by ( , )ARMA m n as: 
 

1 1 2 2

1 1 0

...
...

t t t n t n

t t m t m

x a x a x a x
w c w c w t t

− − −

− −

+ + + + =
+ + + >

, (1)                                           

 
where, t , 0t , tx , and tw are discrete time, starting 
time, signal for modeling, and white noise with 
variance 2

wσ , respectively. ia and ic are parameters 
of autoregressive and moving average part of ARMA 
model. Let B represents the backshift operator: 
 

[ ] )1()( −= txtxB . (2) 
 
Consider the ARMA model as: 
 

1

1

[ ] 1 ...
[ ] 1 ...

n
n

m
m

A B a B a B
C B c B c B

 = + + +
 = + + +

. (3)                       

 
The polynomial defined in (3) can be manipulated by 
defining the ⊗ as: 
 

:
[ ] : [ ]

i j i j

i i

B B B
B f t f t i B

+ ⊗ =


⊗ = −
. (4)                                                                                           

 
So the model in Eq. (1) can be written as: 

[ ] t tI B x w= , (5)  
 
where,      [ ]I B is defined by:     
 

[ ] 1[ ] [ ] [ ]I B C B A B−= ⊗ , (6) 
 
with, 
 

[ ] [ ] [ ]C B I B A B⊗ = . (7)  
 

The algorithm for estimation of model parameters is 
summarized as follows [9]:  
Step 1. Estimate parameters of [ ]I B by appropriate 
truncation in Eq. (5) by linear least square method,  
Step 2. Extract the initial estimate of MA parameters 
by using Eq. (6), 
Step 3. Determine AR parameters corresponding to 
initial MA parameters by Eq. (7), 
Step 4. Determine polynomial operator ( )Bβ from: 
 

1[ ] [ ] ( ) ( ) ( )I B C B A B A B Bβ−= ⊗ = ⊗ , (8)

Step 5. Filter the signal tx through ( )Bβ ,
Step 6. Determine the new AR coefficient by solving 
the linear least square equation: 
 

( ) t tA B x ε= , (9)

Where, tx is the filtered signal. Considering that the 
estimation process is carrying out correctly, the 
residual ( tε ) would be an accurate approximate of 

tw in Eq. (1). Hence tε can be used as a validation 
tool for estimation process, and 
Step 7. Update MA parameters using Eq. (6). 

Steps 4-7 may be repeated to reach an acceptable 
convergence to estimate model’s parameters. In 
validation stage, two validating methods can be 
applied [15]. The first one is one step ahead 
prediction method and the second one, as described 
previously, is correlation validating of tε in Eq. (9). 
Covariance matrix estimation of ARMA parameters 
is accomplished by using a direct method or an 
indirect one such as Monte-Carlo simulation which 
needs more data. The direct method is more difficult, 
because it needs some analytical equations which are 
usually unsolvable. In the case of using PE method 
for ARMA parameters’ estimation, there are some 
methods to solve the analytical equations under 
different assumptions and constraints on signal. In 
this case the Gaussian process of parameters can also 
be proved for PE estimation in ARMA modeling [15-
16]. Because of the mentioned difficulties, in this 
paper the Monte-Carlo simulation method is used for 
finding mean value and covariance matrix of 
parameters with Gaussian pdf:  
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1

1

ˆ

ˆ ˆ( )( )

N

i
i

N
T

i i x
i

p

θ θ

θ θ θ θ

=

=

 =

 = − −


∑

∑
, (10)                                                         

 
where, iθ̂ is the estimated parameter in ith run (no 
overlapping window) and N is the number of 
windows. It is noted that the assumption of Gaussian 
distribution of parameters is admissible in PE 
estimation method of ARMA model [15, 16]. In next 
section by using the mean value of iθ̂ (θ ) and 

variance of iθ̂ derived from covariance matrix ( p ), 
the parameters of membership function of each 
ARMA model’s parameters (used as features in fuzzy 
classifier) would be determined. Obviously the 
selection of parameters of the membership function 
must be carried in training stage and inside the 
predetermined different classes of structure. 
 
3- Damage Detection Using Fuzzy Classification 
with ARMA Parameters as Feature Vectors 
Fuzzy classification is one of the most important 
applications of fuzzy logic in engineering. In this 
section, the location of damage and its severity is 
diagnosed by the fuzzy classification method based 
on structures’ response and using of ARMA model 
parameters. In fact the ARMA model parameters of 
response signal, in any predetermined point of the 
structure, are considered as fuzzy classification 
features. 

Typical fuzzy classifiers consist of interpretable 
if-then rules with fuzzy antecedents and class labels 
in the consequent part. The antecedents (if-parts) of 
the rules partition the input space into a number of 
fuzzy regions by fuzzy sets, while the consequents 
(then-parts) describe the output of the classifier in 
these regions. Fuzzy logic improves rule-based 
classifiers by allowing the use of overlapping class 
definitions and improves the interpretability of the 
results by providing more insight into the decision 
making process. Each of the applied fuzzy 
classification rules describes one of the cN classes in 
the data set. The rule antecedent is a fuzzy 
description in the n-dimensional feature space and the 
rule consequent is a crisp (non-fuzzy) class label 
from { }1, 2, ..., cN [20]: 
 

1 1 2 2

:
....

1,2,..

i

i i n in

i c

R
if x is A and x is A and x is A

then
outputis class i N=

(11) 

Here n denotes the number of features, 

{ }1 2, ,..., T
nX x x x= is the input vector (features), 

iclass is the output of the ith rule and 

1 2, ,...,i i inA A A are the antecedent fuzzy sets. The 
“and” connective is modeled by the product operator 
(max operator), allowing for interaction between the 
propositions in the antecedent. The degree of 
activation of the ith rule is calculated as: 
 

1

1, 2,...,
n

i ij c
j

D A i N
=

= =∏ . (12)         

The output of the fuzzy classifier ( y ) is determined 
by the rule that has the highest degree of activation: 
 

*
1

, * arg max
c

i i
i N

y class i D
≤ ≤

= = . (13)

In this paper the inputs (features) of fuzzy 
classification system are ARMA model’s parameters 
and its outputs of it is the damaged element number 
and the degree of its severity. For every feature the 
antecedent fuzzy sets (membership function) may be 
defined as: 
 

2

( ) exp 0.5
j j

j i i
i j

i

f mfµ
σ

  −
 = − × 
   

, (14)

where, ( )jifµ is ith membership function of jth 

feature, j
if is the absolute value, j

im is the related 

mean value (midpoint) and j
iσ is the variance of the 

jth feature in ith class. Features are random 

(stochastic) variables, with Gaussian pdfs as 

discussed in previous section. It must be noted that, 
j
im and j

iσ are the mean value and variance of 

ARMA parameters for every damage location and 
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severity (every classes) which was calculated by the 

method explained in previous section by using Eq. 

(10). Obviously the stage of calculating of j
im and 

j
iσ may be referred as training stage in the proposed 

method of this paper.  Now, iD (degree of activation 

for the ith rule) is defined as: 
 

2

1

exp 0.5
j jn

i
i j

j i

f m
D

σ=

   −  = − ×       
∏ , (15)                                                                      

 
where, n is the number of features, jf is the jth 

feature (input into fuzzy system) and this feature is 

one of the response’s features (ARMA model 

parameters) of a structure, j
im is the mean value 

(midpoint of Gaussian membership function) and j
iσ

is the variance of jth feature in ith fuzzy class. After 

calculating iD , the damaged element and its severity 

is identified by the maximum iD :

1
* arg max

c

i
i N

i D
≤ ≤

= , (16)                                               

 
where, *i is the rule number with highest degree of 

activation. The correspondent class to ith rule 

represents the damaged element number and its 

severity. The location of damage and its severity are 

considered as crisp and linguistic variable sets 

respectively such as: 

 Location= [element 1, element 2, …, element n] 

Severity = [undamaged, tiny damage, moderate 

damage, severe damage, very severe damage]  

For example, when the number of elements is three, 

the fuzzy rules corresponding to different classes of 

structure may be such as shown in Table 1.

Membership function of severity set is assumed to be 
triangular as shown in Fig. 1.

Table (1): Fuzzy classes descriptions 
correspondent to Fuzzy rule number. 

 

Figure ( 1): Membership function of fuzzy set of 
severity. 

 

Stiffness Reduction (%) 

Tiny 
Damage Moderate 

Damage
Severe 
Damag 

Very 
Severe 
Damage

Undamaged 

Membership Function (D) 
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Arrange of the membership function are based on the 
definition of severity bounds. The designed fuzzy 
classification system generates two kinds of outputs, 
the fuzzy and crisp values that are related to severity 
and location of damage respectively. The crisp value 
which shows the damage location may also be 
interpreted as fuzzy number with considering the 
activation degree of iD calculated on different 
classes. The fuzzy output of the fuzzy system can be 
considered as fuzzy linguistic phenomenon on 
severity of damage in structure. 

In previous works on application of this kind of fuzzy 
classification method, some time consuming 
optimization method such as non-linear programming 
and genetic algorithms have been used for finding the 

j
im and j

iσ [10-14]. In this paper the process of 

finding j
im and j

iσ is cast directly into ARMA 
parameters’ estimation process. By using this kind of 
features, the most difficult stage of the fuzzy 
classification is eliminated. Certainly the effect of 
variance and mean value estimation in ARMA 
modeling has very important role in the accuracy of 
classification or fault diagnosis scheme. The whole 
process of fault diagnosis of a structure using ARMA 
model parameters and fuzzy classification is depicted 
in Fig. 2.

4- Numerical Simulation 
In the previous chapter, a new fault diagnosing 
method based on fuzzy classification method and 
ARMA modeling was introduced. In this section the 
proposed method is used in a FE model of a 
structural frame forced by a non-measured white 
Gaussian noise on one of its nodes and the response 
is measured on the other node, so the structure is 
completely stochastic. The Three scenarios of 
damage were designed and four degree of severity 
was considered as described in section three. The 
frame with ten elements is shown in Fig. 3.

Figure ( 2): Flowchart of proposed damage 
detection method. 

Figure (3): FE model of frame. 
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Every three possible damage position are on an 
element numbered by one, two or three. The input 
force is applied on node-3 and the response is 
measured at node-5. Both of force and response are 
applied and measured concurrently in Y-direction. 
Physical parameters of structure (element) are 
selected as follow with considering that the 
simulation time to be as minimum as possible: 

3

4

6

70 , 780 ,

1 , 0.4 10
0.133 10 .

kgE kPa
m

L m A and
I

ρ

−

−

= =

= = ×

= ×

,

For real time simulation the Newmark Alpha-Hilbert 
method [21] with the following parameters is used: 
 

0.1, 0.3 0.6andα β γ=− = =

Based on obtained natural frequencies, the frequency 
range of interest, and Nyquist sampling theorem [22], 
the time step is selected as 0.1 seconds, with the total 
simulation time for each window being 100 seconds. 
Also, it should be noted that the state of white 
Gaussian noise is not fixed on different simulation 
windows. As an example the FRF of an undamaged 
and a damaged case on element 1 with severity 25% 
stiffness reduction are shown in Fig's. 4 and 5.

As it is seen, in these figures the damage 
occurrence is not visible neither in time domain nor 
in FRF plots, but as it will be shown, the proposed 
method of damage detection clarifies the position and 
severity of damage. The ARMA (10,10) is selected 
based on validating process. The one-step ahead 
prediction, residual and residual correlation method 
are illustrated by Figs. 6 and 7 for the mentioned 
undamaged and damaged states of structure, 
respectively. 
 

Figure( 5): FRF of damaged structure. 

Figure (4): FRF of undamaged structure. 
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Figure (7): Validation results of damaged 
structure, a) One-step ahead prediction method b) 
Residual, c) Auto-Correlation. The dashed lines 
give the 95 percent confidence level. 

Figure (6): Validation results of undamaged 
structure, a) One-step ahead prediction method, b) 
Residual, c) Auto-Correlation. The dashed lines 
give the 95 percent confidence level. 
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In designing of fuzzy system, it is assumed that the 
damage is on one of the frame  
elements 1, 2 or 3 with possible severity of 15% to 
75% reduction in stiffness. Table 2 shows fuzzy rule 
number corresponding to every damage element 
number and its severity.  
 

It must be noted that the damage was modeled as 
reduction of element stiffness. For the damage 
detection of the system, ten windows were 
considered for every fault case in frame. For 
verification of proposed method, each of the three 
elements of frame was damaged separately with 
reduction of stiffness 0%, 15%, 40%, 75% and 90%. 
Decision making process about damage was carried 
on ten no overlapping windows. The total results for 
ten windows are shown in Table 3.

The results show that the classification of structure 
state is satisfactory except for the 10’th fuzzy rule.  
As a sample the plot of iD when the fuzzy class is 1 
and 11 is shown in Fig's. 8 and 9 respectively.  
 

Table (3): Total results of simulation test            
(*indicating the incorrect result). 

Figure ( 8):  Plot of iD when the state of frame 
is corresponding to class 11. 

Figure ( 9):  Plot of iD when the state of 
frame is corresponding to class 1.

Table (2): Corresponding damage element 
number and severity for every fuzzy rule number. 

i

Window 
Number 

Di 

i

Window 
Number 

Di 
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As it is clear from the mentioned figures, by 
considering corresponding class to the highest level 
of iD , the competition is between classes 8 and 11 
in Fig. 8 as well as between the first four classes (1- 
4) in Fig. 9.

5- Experimental Test 
The results in previous section showed that the 
proposed method can detect the damage in structure 
and its location. A laboratory structure was 
considered for experimental evaluation of the 
proposed method. The structure was a simply 
supported beam, excited by a shaker. The exciting 
input force was white Gaussian noise in the 
frequency range of 0 to 1600 Hz applied by B&K 
shaker type 4809. The response was measured by an 
accelerometer. The time length of the test and time 
resolution was 0.2 and 0.00012 seconds respectively. 
Response is acceleration of structure measured with 
B&K accelerometer type 4508. By connecting a 
spring to the structure, an artificial damage was 
applied on the structure as shown in Fig. 10.

Different spring positions and stiffness correspond to 
different damage positions and severities 
respectively. The possible damage position was 
assumed to be in one of the three locations of beam 
called A, B and C Fig. 11.

The severity of damage was considered to be 
related to the stiffness of spring. Springs with the 
same materials, equal lengths and diameters, but with 
different wire diameters (3.7, 4.2 and 5) are selected 
to simulate the damage severity. In this study three 
positions with three severities were used for 
constructing the fuzzy rules of fuzzy system in 
training stage. In validation stage of damage 
diagnosing process, the response from unknown state 
of structure was fed into the fuzzy system for 
evaluation of proposed method in diagnosing of 
position of spring and the severity. The fuzzy set of 
severity was defined as follow: 
 Severity = [no damage, tiny damage, moderate 
damage, severe damage]  
The fuzzy classes and corresponding rule numbers 
are shown in Table 4.

The applied membership functions are also shown in 
Fig. 12.

The centers of severity membership functions are 
related to the mentioned three stiffness of spring.  
In validating stage, three springs with different 
stiffness and positions were considered. The stiffness 
of the springs in validation stage was 3.5, 4.7 and 5.2. 
As an example the FRF of structure are shown in 
Figs. 13 and 14 in undamaged and damaged (sever 
damage in position A) state of structure respectively.  
 

A B C
Accelerometer 

force 

 

Figure (11): Schematic view of Beam.

Figure (10): Experimental setup. 

Table (4). Fuzzy classes descriptions correspondent 
to Fuzzy rule number 
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By considering over parameterization manner for 
capturing high frequencies of response, the order of 
ARMA model was selected (10, 10). The one-step 
ahead prediction, residual and residual correlation 
method are illustrated in Figs.15 and 16 for the 
mentioned undamaged and damaged states of 
structure respectively.  
The total results are presented in Table 5. The results 
are satisfactory except for the fuzzy rules with 
number three and nine. 
 
6- Conclusion 
 In this research, the ARMA parameters was used as 
the features for damage detection,   locating and 
severity prediction by using fuzzy classification. One 
of the important aspects of the present research was 
disregarding the optimization process of fuzzy 
classification by using the variance of ARMA 
parameters directly in Gaussian shape membership 
function of parameters. Also, Monte-Carlo simulation 
method was used for finding the variance of ARMA 
parameters. In numerical simulation of this study a 
FE model of frame was used for validating the 
proposed method. It was assumed that the damage is 
in one of three selected elements in the frame and is 
modeled by stiffness reduction of element. The 
diagnosing results were satisfactory except for one 
case. In experimental validation of the introduced 
method, a laboratory structure which was a simply 
supported beam was used. The damage in the 
structure was created by connecting a spring in some  

Figure (12): Membership function of fuzzy set   
of severity in experimental test.

Figure (13): FRF of undamaged structure in 
experimental test.

Figure (14): FRF of damaged structure in 
experimental test. 

Spring Stiffness (Spring Diameter, mm) 

Membership Function (D) 

Undamage

Moderate 
Damage  

Severe 
Damage  

Tiny 
Damage  
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Figure (15): Validation results of undamaged 
structure in experimental test, a) One-step ahead 
prediction method, b) Residual, c) Auto-
Correlation. The dashed lines give the 95 percent 
confidence level. 

Figure (16): Validation results of damaged 
structure in experimental test, a) One-step ahead 
prediction method, b) Residual, c) Auto-
Correlation. The dash ed lines give the 95 percent 
confidence level. 
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locations of beam with different stiffness. The 
damage diagnosing result was very satisfactory 
except for two cases. Both of the mentioned 
structures were excited by the white Gaussian noise 
and the excitation force was not measured. One of the 
reasons of incorrect cases in both of numerical and 
experimental simulation is related into selection of 
membership function shape. The overlaps of different 
classes or fuzzy rules may be minimized by 
considering different shapes. Another reason is 
related to selection of ARMA model’s order. In this 
paper, because of the algorithm using in estimation of 
ARMA parameters, there is limitation in choosing the 
order of model (the order of AR and MA part of 
ARMA model must be the same).  
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