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Thermal Buckling Analysis of Moderately Thick Composite 
Cylindrical Shells under Axisymmetric Thermal Loading 

 
M. Darvizeh1, A. Darvizeh2, A.R. Shaterzadeh3, and R. Ansari 4

Mech. Eng. Group, Guilan  Univ. 
 

ABSTRACT 
In this paper, a semi-analytical finite element method is presented to study the thermal buckling behavior of 
moderate-thick cylindrical shells. The theory is formulated based on first shear deformation assumptions. 
Simplified Sanders theory and non simplified theory are employed for calculation of geometrical stiffness matrix. 
The results obtained from these two theories are compared which shows that the critical thermal buckling 
temperature based on non-simplified theory is higher than that of the simplified Sanders theory. The material is 
high strength carbon and the boundary condition is clamped-clamped. The influence of fiber angle orientations is 
also studied. 
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 نسبتاًتحليل كمانش حرارتي پوسته هاي استوانه اي كامپوزيتي

 تحت بار حرارتي متقارن محوري ضخيم

 رضا انصاريو، عليرضا شاطرزادهابوالفضل درويزهمنصور درويزه،
 دانشگاه گيلانگروه مهندسي مكانيك،

 چكيده

بـه تئوري. ضخيم ارائه شده است هاي نسبتاًر كمانش حرارتي پوسته روش نيمه تحليلي المان محدود براي مطالعه رفتايك،در اين مقاله
 سـاده هاي تئوري،براي محاسبه ماتريس سختي هندسي. شده استل بندي اساس فرضيات تغيير شكل برشي مرتبه اول فرموبركار رفته 

و ساده نشده سندرز ب. استبه كار رفتهشده ايهنتايج تئدست آمده از همون دو دو.انـد شـده مقايسه ري با مقايـسه نتـايج حاصـل از ايـن
و ماده مورد بررسي.دهد كه دماي بحراني كمانش حرارتي در تئوري ساده نشده سندرز بالاتر است تئوري نشان مي   كربن بـا مقاومـت بـالا

. قرار گرفته است مطالعه مورد تأثير زاويه الياف نيز. شده استفرضدررگيدرشرايط مرزي دو سر

 محوري دماي متقارن، بار حرارتي، محدود نيمه تحليليياجزا:هاي كليدي واژه

1-Professor: Darvizeh@guilan.ac.ir 
2-Professor 
3-PhD Student (Corresponding Author): a-shaterzadeh@guilan.ac.ir 
4-PhD Student  

www.SID.ir



Arc
hi

ve
 o

f S
ID

100                                                                               Mech. & Aerospace Eng. J. Vol. 3, No. 2, September 2007 

Introduction 
Many    key    industries,     such    as Aero-space, 
automotive, military are under constant pressure to 
produce lighter and stronger structures. High 
strength and stiffness to weight ratio of composite 
materials are the main reasons for such demand. 
Superior environmental, mechanical thermal and 
electrical properties have made them so attractive in 
many applications. As pointed by Earl Thornton [1] 
in his recent review paper on thermal buckling of 
plates and shells, the availability of studies on 
thermal buckling in composite shells is scarce. 
Toorani and Lakis [2] have performed a 
generalization of geometrically linear shear 
deformation theory for multilayered anisotropic 
shell of general shape. Abir and Nardo [3] consider 
the problem of thermal buckling in thin circular 
cylindrical shells when there exits temperature 
gradients in the circumferential direction. Patel et al 
[4] have performed thermal buckling behavior of 
laminated cross-ply oval cylindrical shells using 
finite element approach. Ganesan and Kadoli [5] 
have analyzed piezoelectric composite cylindrical 
shells operating in a steady state axisymmetric 
temperature using a semi-analytical finite element 
method. Birman and Bert [6] considered studies on 
the buckling and post buckling response of 
composite shells subjected to high temperature 
using the equilibrium equations for shells under the 
simultaneous action of thermal and axial load. 
 
Problem Formulation 
A cylindrical shell being exposed axi-symmetric 
temperature is shown in Fig.1. The reference 
surface displacements according to the FSDT are 
expressed as [7]: 
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where 00 ,vu and 0w are displacement of reference    

surface    along    the zs ,,θ respectively, 

θψψ ,s also represent    the rotations of tangent to 

the reference oriented along the θ,s direction 
respectively. The coordinate system for revolution 
shells represented in fig. 2. In the semi-analytical 
method displacement field is assumed to depend on 
the circumferential direction hence the θ direction 
is expressed in a Fourier series given as: 
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Where, n indicates the circumferential mode 
number. 
For the  global revolution shells, the normal and 
shear strain components are   related to the 
components of the displacement vector by:  
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Where, 
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where, zRA ii ,, are the Lames parameters, the 
principal curvature radius and the thickness 
coordinate respectively and kU

Figure (1): Schematics of the description of 
the cylindrical shell using three nodded 

quadratic line element. 
 

is displacement component [7]. Substituting 
equation (1) into equation (3) the following strain 
displacement relations for shell space is given as: 
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Figure (2): Coordinate system for revolution 
shells. 

 
where, szsss γγε θ ,, are the normal and shearing 

strains and 0000 ,,, θθθ γγεε sss are the in-plane 
normal and in-plane shearing strains respectively. 

00 ,,,,, θθθ µµττκκ sss also are the change in the 
curvature and  torsion  of   the  reference  surface  
and  the shearing strain components respectively. In 
the special case for cylindrical shell we have: 

(5)RR
R

RAA ==== 2
1

21 ,01,,1

Stiffness matrix 
Potential energy continuum elastic structure is 
defined as the sum of the strain energy and the 
potential work, as:  
 

WU +=Π . (6) 
 
For semi-analytical investigation an isoparametric 

element with three nodes is used in the axial 
direction. Fig.1 represents the cylindrical shell 
using this type of element, where each node has 
five degree of freedom. 

The displacement parameters associated with 
the element are as: 
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The subscripts 1, 2, 3 stand for the three nodes of 
the element. The shape function iN in terms of the 
axial coordinate are given by 
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where, l indicates the length of element. From the 
strain energy relation given as: 
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The stiffness matrix [ ]eK , of each element is 
obtained as: 

[ ] [ ] [ ][ ]∫ ∫=
π

θ
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e RdsdBDBK . (10) 

The strain-displacement matrix [ ]B ,is expressed in 
terms of the interpolation function and their 
derivatives . The constitutive matrix  [ ]D consist of 
various integrated shell stiffness: 

ijijijij EDBA ,,, ijij CF ,, .The matrix [ ]B and 

[ ]D are given in appendix. Various integrated   
shell   stiffness   are   defined   as follows:   
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where, ijQ are the reduced stiffness coefficients 

and N is the number of lamina. More elaborate 
details on the    above discussion are given in the 
article presented by Toorani and Lakis [2]. 
 

Geometric Stiffness Matrix 
The strain vector { }0ε due to temperature is 
represented as: 
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where, T∆ is the rise in temperature and using 
Fourier series. The rise temperature in the 
circumferential direction is: 
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θθ ααα ss ,, are thermal expansion coefficients in 
the shell co-ordinates and can be related to the 
thermal expansion coefficients ( )21,αα in the 
material principal directions, as: 
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where, υ is the lamina orientation angle. 
The work done by the initial   state of stress due to 
the applied thermal field is given as: 
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The   non-linear   strain   components   are defined 
as: 
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In the simplified Sanders theory [4] the non-linear 
strain component are define as:  
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Using Eq. (6) and considering the thermal effect, 
the total potential energy is given as;  
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where, [ ]GeK and { }th
eF are, respectively, element 

geometric stiffness matrix and element thermal load 
vector and defined as: 
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where the sub matrices [ ]Z and [ ]Z are defined as 
follows: 
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and 1O is null matrix of size 2*5. 
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Submatrix [ ]S consists of the normal and shear 

stresses. The strain-displacement matrix [ ]∗B is 
expressed in terms of the interpolation function and 
their derivatives according to non-linear strains. 
One can also find more elaborate details on the 
above discussion in the article presented by B.P 
Patel et al. [4]. 

The stress resultants are given by [7]: 
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The quantities ( sss NNNN θθθ ,,, ) are called the 

in-plane stress resultant, and ( sss MMMM θθθ ,,, )

are called the stress coupled resultants ;( θQQs , )
denote the transverse force resultants. 

Using the following approximation: 
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We can write: 
 

[ ] [ ] [ ][ ] θRdsdBNBK thT
Ge ∫∫ ∗∗= , (25) 

where, [ ]thN represents the stress vectors. 
Minimization   of   Π with respect   to   the 
displacement vector { }ed leads to the following 
standard equation:  
 
[ ]{ } { } 0=− th

eee FdK . (26) 
 
Using Eq. (26) the displacement vector is computed 
and then vector of stresses and moment resultants 
are evaluated as follows: 

{ }
[ ][ ]{ } [ ]{ }0ε

θθθθθθθ

DdBD

MMMMQNNQNN

e

T
sssssss

−

=

(27) 
Where [ ]D is constitutive matrix according to 
thermal load vector. 
The stress resultants are found for each element and 
are used in Eq. (25) to compute the geometric 
stiffness matrix. 
 
Discussion 
The present formulation is developed for thermal 
buckling analysis of composite shells with non-
simplified and simplified Sanders theories. In this 
study                    High strength carbon-
Graphite/Epoxy composite cylindrical shell with 

048.1=Rl and clamped-clamped boundary 
conditions is utilized .The critical buckling 
temperatures are obtained based on the variation of 
circumferential mode numbers from 1 to 25. This is 
defined as the difference between ambient (20 Co )
and the final temperature. Temperature distribution 
in cylindrical shell is assumed to be axi-symmetric. 
The geometric details of the composite shell 
considered for the study are given in table 1.The 
properties of High strength carbon-Graphite/Epoxy 
material are listed in table 2. 
Static thermal buckling analysis is carried out using 
the following equation: 
[ ] [ ]( ){ } 0=∆− ∗ δUU

G
UU KTK . (28) 

 

Table (1): Details of cylindrical shell. 
Length 

(m) 
Radius (m) Thickness 

(m) 
B.C 

0 .914 0.876 0.0030 C-C 

In the Eq. (28)  [ ]UUK is    the global 

Structural stiffness matrix and  [ ]UU
GK ∗ is the 

global geometric stiffness matrix due to unit 
temperature rise. T∆ is the buckling eigenvalues 
and { }δ is the corresponding buckling eigenvector. 
The critical buckling temperature of composite   
cylindrical   shell with  048.1=Rl and for 
different fiber angle and two theories are plotted 
with respect to circumferential harmonic, refer to 
Figs.2-6. The lowest critical buckling modes for 
two theories are listed in table 3. 
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Table (2): Material properties High strength 
carbon-Graphite/Epoxy. 

 

Young 
Modulus (GPa) 332211 ,, EEE

181, 10.34, 
10.34 

 

Shear Modulus 
(GPa) 233112 ,, GGG 7.2 , 7.2 , 

7.2 

Poisson ratio 231312 ,, ννν 0.28 , 0.28 , 
0.28 

Density 
( 3/ mkg )

ρ 1389.23 
 

Coefficients of 
thermal  

expansion 

( Co
1 )

21 ,αα
11.34 e-6 , 
36.9 e-6 

 

Environment 
temperature 

( Co )
0T 20 

Conclusion 
In the present work, critical buckling temperatures 
are obtained using a semi-analytical finite element 
method. The results have been achieved based on 
both non-simplified and simplified Sanders theories 
by calculating geometric stiffness matrix. Based on 
the numerical results presented in this paper are 
obtained in the form of tables and figures the 
following conclusions may be drawn: 
1. The results, shows of critical thermal buckling 
increases with increment of fiber angle. 
2. The critical buckling temperature is the highest 
for fiber angle o75 .
3. Comparison of the results from two different 
theories shows that the critical thermal buckling 
temperature based on non-simplified is higher than 
simplified Sanders theory. 
4. The lowest critical buckling temperature is 
presented for two employed theories which 
correspond to different mode numbers. One can see 
no significant changes in mode numbers 
corresponding to simplified and non simplified 

sanders theory, expect for the shells with 75 and 90 
of fiber angle. This is due to the effect of increment 
of fiber angles on sanders theories. 
 

Table (3): Validation of the lowest critical 
buckling temperature for composite cylindrical 

shell with 048.1=Rl .

Fiber angle    lowest critical buckling  
 temperature ( Co )

Non Simplified         Simplified  
 sanders                   Sanders 

 0 46.96(15)∗ 45.75(15) 
 

15                62.76(16)                59.33(16) 
 

30                74.76(13)                71.56(13) 
 

60                88.82(9)                  88.6(9) 
 

75                159.4(15)                155.2(13) 
 

90                216.2(14)                204.2(8) 
 
∗Number in bracket indicate circumferential mode. 
 

Figure ( 3): Critical buckling temperatures of 
the first axial mode associated with 25 
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber 
angle o0 .
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Figure (4): Critical buckling temperatures of 
the first axial mode associated with 25 
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber 
angle o15 .

Figure (5): Critical buckling temperatures of 
the first axial mode associated with 25 
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber 
angle o30 .

Figure (6): Critical buckling temperatures of 
the first axial mode associated with 25 
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber 
angle o60 .

Figure (7): Critical buckling temperatures of 
the first axial mode associated with 25 
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber 
angle o75 .
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Where, θsin=s and  θcos=c and 321 ,, NNN ′′′ are derivative 321 ,, NNN respect to s. 
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