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Thermal Buckling Analysis of Moderately Thick Composite
Cylindrical Shells under Axisymmetric Thermal Loading

M. Darvizehl, A. Darvizehz, A.R. Shaterzadeh® , and R. Ansari 4
Mech. Eng. Group, Guilan Univ.

ABSTRACT

In this paper, a semi-analytical finite element method is presented to study the thermal buckling behavior of
moderate-thick cylindrical shells. The theory is formulated based on first shear deformation assumptions.
Simplified Sanders theory and non simplified theory are employed for calculation of geometrical stiffness matrix.
The results obtained from these two theories are compared which shows that the critical thermal buckling
temperature based on non-simplified theory is higher than that of the simplified Sanders theory. The material is
high strength carbon and the boundary condition is clamped-clamped. Thednfluence of fiber angle orientations is
also studied.
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Introduction

Many key industries, such as Aero-space,
automotive, military are under constant pressure to
produce lighter and stronger structures. High
strength and stiffness to weight ratio of composite
materials are the main reasons for such demand.
Superior environmental, mechanical thermal and
electrical properties have made them so attractive in
many applications. As pointed by Earl Thornton [1]
in his recent review paper on thermal buckling of
plates and shells, the availability of studies on
thermal buckling in composite shells is scarce.
Toorani and Lakis [2] have performed a
generalization of geometrically linear shear
deformation theory for multilayered anisotropic
shell of general shape. Abir and Nardo [3] consider
the problem of thermal buckling in thin circular
cylindrical shells when there exits temperature
gradients in the circumferential direction. Patel et al
[4] have performed thermal buckling behavior of
laminated cross-ply oval cylindrical shells using
finite element approach. Ganesan and Kadoli [5]
have analyzed piezoelectric composite cylindrical
shells operating in a steady state axisymmetric
temperature using a semi-analytical finite element
method. Birman and Bert [6] considered studies on
the buckling and post buckling response of
composite shells subjected to high temperature
using the equilibrium equations for shells underthe
simultaneous action of thermal and axial load.

Problem Formulation

A cylindrical shell being exposed axi-symmetric
temperature is shown in Fig.1l. The reference
surface displacements according to the FSDT are
expressed as [7]:

u=u,tzy,
vV=v,tzy, 1
w=w,

where u#,,Vv,and W, are displacement of reference

surface along the s,0,z respectively,

W, also represent  the rotations of tangent to

the reference oriented along the s§,6 direction
respectively. The coordinate system for revolution
shells represented in fig. 2. In the semi-analytical
method displacement field is assumed to depend on
the circumferential direction hence the & direction
is expressed in a Fourier series given as:
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Where, n indicates the circumferential mode
number.
For the global revolution shells, the normal and
shear strain components are related to the
components of the displacement vector by:

o U, 1 &og U,
& =— 4L | !
oq, \/g—, 2g, Z‘Gak \/gj
o (U, ] o(U,
+

1
Vi T TT——1 8~ 8~ )
: +\ 8i&; 806./ \/EI jaai \/EJ

Li=1,2,3:i#]

=1,2,3,

(3)
Where,

a, =s,0, =0,0, =z,u;, =u,u, =v,u; =w

and,

2 2
=21+ 2| o, =21+ g =1
8 1( RI) &> 2( R &3

where, A4, ,R,,z are the Lames parameters, the
principal curvature radius and the thickness

coordinate respectively and U,

[

Parent element

Figure (1): Schematics of the description of
the cylindrical shell using three nodded
quadratic line element.

is displacement component [7]. Substituting
equation (1) into equation (3) the following strain
displacement relations for shell space is given as:
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Figure (2): Coordinate system for revolution

shells.

where, €.,7.9,7,, are the normal and shearing

. 0 .0 ,0 .0 .
strains and & ,&,,7,,Y, are the in-plane
normal and in-plane shearing strains respectively.
Ks,Kg,TS,Tg,/J?,,Ug also are the change in the

curvature and torsion of the reference surface
and the shearing strain components respectively. In
the special case for cylindrical shell we have:

1
A4 =1 4, =R , EZO, R, =R

1

)

b

Stiffness matrix

Potential energy continuum elastic structure is
defined as the sum of the strain energy and the
potential work, as:

Ir=uvu+w (6)
For semi-analytical investigation an isoparametric
element with three nodes is used in the axial
direction. Fig.1 represents the cylindrical shell
using this type of element, where each node has
five degree of freedom.

The displacement parameters associated with
the element are as:
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Uy Vi W LW W 5l 5V, W

W Wan Uz V3 W3 W3 \Wips

d) =

e

(7

The subscripts 1, 2, 3 stand for the three nodes of
the element. The shape function V, in terms of the

axial coordinate are given by

st —sl P—s
2P ro0 0

5+l
=
®)

where, / indicates the length of element. From the
strain energy relation given as:

UES gofedA:g{de}T[Ke]{de}.

The stiffness matrix [Ke] , of each element is

N= , =

©)

obtained as:

271
[&.]1= [ [[8]" [D]B]rdsdo . (10)
00
The strain-displacement matrix [B] ,is expressed in
terms of the interpolation function and their
derivatives . The constitutive matrix [D] consist of

various integrated shell stiffness:

A..B..D. E JF. C .The matrix [B] and

/RSl 7/
[D] are given in appendix. Various integrated

shell stiffness are defined as follows:
N %

(AU’ ij? l/’ ij2 t/’ ) ZJ.(Q )((IZZZZ 2z )dé

=P

(11)

where, Qij are the reduced stiffness coefficients
and N is the number of lamina. More elaborate

details on the  above discussion are given in the
article presented by Toorani and Lakis [2].

Geometric Stiffness Matrix
The strain vector {80} due to temperature is

represented as:
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where, AT is the rise in temperature and using
Fourier series. The rise temperature in the
circumferential direction is:

AT = AT, cosn@. (13)

n=0
a, o, ,a,, are thermal expansion coefficients in
the shell co-ordinates and can be related to the
thermal expansion coefficients (0(1,0!2) in the
material principal directions, as:

a,=a,cos’ v+a,sin’ v
a, =a,sin’v+a,cos’ v (14)
a,=2(a, —a,)cosvsinv

where, U is the lamina orientation angle.

The work done by the initial state of stress due to
the applied thermal field is given as:

W= I( Sl rolel My ()

The non-linear strain components. are defined
as:

NL_1 au 2 6\} 2 aW )
Egs —5((5) +(g) +(g) )

NL_i v
Eoo 2 R(1+ /)) (( +W)

o (16)
+(%) +(%—V) )

N ou Ou
Yo _(R(1+%€ )((as 89)

ov._, oOv ow_, ow
(g)-(%"‘w)"'(a)(%—"))
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In the simplified Sanders theory [4] the non-linear
strain component are define as:

NL
Ess 2( Os )

9.9 =5(R(1+7) (%‘V) (17)

1 ow _, ow
=(———— )(—)(—— )
R(1+ A

Using Eq. (6) and considering the thermal effect,
the total potential energy is given as;

n=—{a Y1k Ja )+ eV [k Ja)

~{aJred e [oKebaa

A

(18)

where; [K Ge] and {Feth} are, respectively, element

geometrie stiffness matrix and element thermal load
vector and defined as:

K.J=[] zHB] gl [S][Z][B*][H jdz dsif

(19)
GRIPICICIAS (I HRM
(20)

where the sub matrices [Z ] and |Z] are defined as
follows:

[Z]:[Zl ZZI]
[Z]— Z, zZ, 2D
o o
SR _
0 IZ 0
S - ”ﬁe , (22)
! 1 (1) 0

and O, is null matrix of size 2*5.
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Submatrix [S] consists of the normal and shear

k
stresses. The strain-displacement matrix[ B ] is

expressed in terms of the interpolation function and
their derivatives according to non-linear strains.
One can also find more elaborate details on the
above discussion in the article presented by B.P
Patel et al. [4].

The stress resultants are given by [7]:

Ns Gs
Ns€ TSH
z
, =<7 1+ —|dz
Qé ! Sz ( R2 J
M zZo,
MSH ZTSH
(23)
N, Oy
NHS THS
_ z
O, = I To (1 + R_IJdZ
M, “lzo,
M&s ZTHS

The quantities (N, N,, N ,, N, ) are called the
in-plane stress resultant, and (M  ,M ,sM , .M ,)

are called the stress coupled resultants ;(Q,,0,)

denote the transverse force resultants.
Using the following approximation:

;;1_3{3]2:.“ (24)
(1 +zj R \R

R
We can write:
[KGE]=”[B*]T[N’h][B*]Rdsdﬁ, 25)

where, [ N* ] represents the stress vectors.
the
displacement vector {de} leads to the following

Minimization of Il with respect to

standard equation:

[k Ya.}-{Fr}=o0.

Using Eq. (26) the displacement vector is computed
and then vector of stresses and moment resultants
are evaluated as follows:

(26)
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(NN, QNN QM M, M M}
GEGRGE .

Where lBJ is constitutive matrix according to
thermal load vector.

The stress resultants are found for each element and
are used in Eq. (25) to compute the geometric
stiffness matrix.

Discussion

The present formulation is developed for thermal
buckling analysis of composite shells with non-
simplified and simplified Sanders theories. In this
study High strength carbon-
Graphite/Epoxy composite cylindrical shell with

1/ R =1.048 and clamped-clamped boundary

conditions is utilized .The critical buckling
temperatures.are obtained based on the variation of
circumferential mode numbers from 1 to 25. This is

defined as thé difference between ambient (20°C')
and the final temperature. Temperature distribution
in cylindrical shell is assumed to be axi-symmetric.
The geometric details of the composite shell
considered for the study are given in table 1.The
properties of High strength carbon-Graphite/Epoxy
material are listed in table 2.

Static thermal buckling analysis is carried out using
the following equation:

[ kv ]-at] kv Yo} =0. (28)

Table (1): Details of cylindrical shell.

Length | Radius (m) | Thickness B.C
(m) (m)
0.914 0.876 0.0030 C-C
In the Eq. (28) [ K% ] is the global

Structural stiffness matrix and [ K ZUU ] is the
global geometric stiffness matrix due to unit
temperature rise. AT is the buckling eigenvalues
and {5} is the corresponding buckling eigenvector.
The critical buckling temperature of composite
shell with l/R = 1.048 and for

different fiber angle and two theories are plotted
with respect to circumferential harmonic, refer to
Figs.2-6. The lowest critical buckling modes for
two theories are listed in table 3.

cylindrical
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Table (2): Material properties High strength
carbon-Graphite/Epoxy.

sanders theory, expect for the shells with 75 and 90
of fiber angle. This is due to the effect of increment
of fiber angles on sanders theories.

181, 10.34
Young ’ ’ . R "
Modulus (GPa) EE, . E 10.34 Tal?le (3): Validation of the lowest cr.1tlc;.11
buckling temperature for composite cylindrical
shell with7/R = 1.048 .
Shear Modulus 72,72,
(GPa) 12,051,053 7.2
Fiber angle lowest critical buckling
temperature (°C)
. . 0.28,0.28 , Non Simplified Simplified
Poisson ratio ViasVi35V a3 028 sanders Sanders
0 46.96(15) " 45.75(15)
Density D 1389.23 15 62.76(16) 59.33(16)
3
(kg/m™)
30 74.76(13) 71.56(13)
Coefficients of
thermgl 11.34 e-6, 60 88.82(9) 88.6(9)
expansion a,,a, 369 e-6
1 75 159.4(15) 155.2(13)
(/s C)
. 90 216.2(14) 204.2(8)
Environment
temperature T, 20 -
CC) Number in bracket indicate circumferential mode.
Conclusion 100 ; . . .
In the present work, critical buckling temperatures . | == Simplified Sanders theary
are obtained using a semi-analytical finite element a0 i | =2 Non simplified theory

method. The results have been achieved based on

both non-simplified and simplified Sanders theories

e TP

by calculating geometric stiffnessmatrix. Based on

BO----m--r- &, Sy ﬂi """""

the numerical results presented in this paper are

obtained in the form of tables and figures the

Critical ternperature buckling(C)

following conclusions.may be drawn: e T -: --------- : --------- .L ---------
1. The results, shows of critical thermal buckling i i E E
increases with increment of fiber angle. |- i ........ j: ......... E _________ :r _________
2. The critical buckling temperature is the highest E E E E

for fiber angle 75°. : ! : E

3. Comparison of the results from two different DI:I 5| 1.0 1:5 2;3 75

theories shows that the critical thermal buckling G e E e

temperature based on non-simplified is higher than

simplified Sanders theory.

4. The lowest critical buckling temperature is
presented for two employed theories which
correspond to different mode numbers. One can see
no significant changes in mode numbers
corresponding to simplified and non simplified

Figure ( 3): Critical buckling temperatures of
the first axial mode associated with 25
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber
angleo-.
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Figure (4): Critical buckling temperatures of
the first axial mode associated with 25
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber
angle1s-.
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Figure (5): Critical buckling temperatures of
the first axial mode associated with 25
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber
angle3o°.
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Figure (6): Critical buckling temperatures of
the/ first -axial mode associated with 25
harmeonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber
angle60’.
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Figure (7): Critical buckling temperatures of
the first axial mode associated with 25
harmonic. High strength carbon-
Graphite/Epoxy cylindrical shell with fiber
angle7s".
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Appendix
Nie 0 0 0 -2 N.s 0 0 0 0
R
, n 1
0 N/s 0 LN, 0 -—N,s 0 0 0
R R
0 0 Nl 1w 0 ~EZNs 0 0 0
R R
0 0 N, 0 0 0 Nle 0 0 - L N.s
0 0 0 0 0 N s 0 N/s LN,
Nic 0 0 0 - LN, 0 0 0 0
R
, n 1
0 N ;s 0 —N ,c 0 - —N,s 0 0 0
R R
[B] =| o 0 Nic Jen.¢ 0 - L N,s 0 0 0
R R
0 0 ,c 0 0 0 Nic 0 0 - LN,
0 0 0 0 0 N,s 0 Nis %Nzc
Nie 0 0 0 -2 N, 0 0 0 0
R
0 Nisi 002N, 0 Ly o 0 0
: R R
0 0 e Ly 0 -2 N, 0 0 0
R R
0 0 Jc 0 0 0 Nie 0 0 - L N,s
0 0 0 0 0 N,s 0 Nis %Nsc

Where, s =sin@ and ¢ =cosé and

N/{, N}, N;are derivative N,, N,, N, respect tos.
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Gll GIG 0 A12 AIG 0 Hll H16 BIZ BIG
G61 G66 0 A62 A66 0 Hél H66 B62 B66
0 0 AA 0 0 A, 0 0 0 0
AZ] A26 O GZ'Z G2'6 0 BZ] B26 HZ'Z H2'6
[D] - 61 A66 0 GG'Z Géé 0 BGI B66 HéZ Héé ’
0O 0 4, O 0 BB, O O 0 0
Hll H16 0 BIG B16 0 Jll J16 D12 D16
H61 H66 0 BG6 BG6 0 J61 J66 DGZ D66
BZ] B26 O H;() H;() 0 D21 D26 JZ'Z J2'6
_BGI B66 0 H£6 Hé6 0 DGI D66 JéZ Jéé _
where
T St VA H IO
R, R, R, R, R, R'R,
1 1 1 1 1 1
“CrRTR 0 PTR R TR 0 TR
and

G,=4;, +a B, +a,D; +a,kE,
H,.j :Bij +a1Dl.,. +a2Eij +a3Fij
G,=A4,+bB;, +b,D, +b,E;
H)=B,+bD, +b,E; +b,F,
J. =D +aE +aF, +a,C,
ij ij [ 20 37
J. =D_+bE +bF +bC. i,j=1,6,2,6
ij ij [ 270 37
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