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Flexural Vibration of Timoshenko Beams, Using Distributed
Lumped Modeling Technique

A. Farshidianfarl, S. Soheili,2 and M. Abachizadeh®
Mech. Eng. Dep’t., Ferdowsi Univ. of Mashhad

ABSTRACT

This paper focuses on the development of a complete model of the Timoshenko beam, based on considering the
effects of shear deformation. A method based on distributed-lumped modeling approach is proposed to solve the
governing equations. Natural frequencies obtained by this method are compared and verified with Chebyshev
pseudospectral method. The effects of shear deformation on natural frequency of pinned and clamped beams are
discussed for various diameters. In addition, the effects of lumped mass‘and its position are investigated for
clamped and pinned rotors with different diameters. It is shown that, while the new method leads to highly
accurate results, its simplicity and accuracy makes it appropriate for application on industrial systems.
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1- Introduction

The effects of shear deformation on the vibration
and natural frequencies of thick beams have been
investigated since long before. The frequencies of
Euler-Bernoulli beam theory is considered in many
articles and vibration textbooks, such as [1]. The
vibration equations consisting shear effects were
presented by Timoshenko [2] for the first time, and
many efforts have been performed to solve the
Timoshenko differential equation of vibration.

Generally speaking, there are three types of
solutions for this equation. Firstly, some analytical
solutions are presented for very restricted cases and
limited boundary conditions [2-4]. Secondly, the
semi-analytic solutions are proposed for this
problem such as differential quadrature method [5],
the boundary characteristic orthogonal polynomials
[6] and the Chebyshev pseudospectral method [7].
Finally, there are some numerical and approximate
methods such as finite element and finite difference
method. However, no general analytical and exact
solution is provided for Timoshenko beam equation.

The distributed-lumped modeling technique
(DLMT) was introduced by Whalley [8] for the first
time. This technique was applied by Aleyaasin et al.
[9] for calculating the flexural frequencies of shafts
using 4*4 matrices. Aleyaasin and Ebrahimi also
obtained the frequency response of such systems
[10]. Further investigations about the flexural
vibration of rotor bearing systems was performed by
Aleyaasin et al., see for example references[11] and
[12]. The distributed-lumped method also can be
applied to other systems, such ‘as modeling. the
torsional [13] and longitudinal “vibration and
calculating frequency and time responses in forced
systems [14]. It can also be applied to the fluid
systems, as represented by Whalley.et al [15].

In this paper, the flexural. wvibration of a
Timoshenko beam is. analyzed via distributed-
lumped modeling technique (DEMT). To verify the
accuracy of present method, the results obtained by
this hybrid ‘'modeling technique (DLMT) are
compared with the results of Lee and Schultz [7].
The effect of beam thickness, disk mass and its
position on the first natural frequency is investigated
for clamped and pinned boundary conditions, and
compared with the Euler-Bernoulli beam theory.

2. The General Distributed-lumped Model

Generally speaking, systems in the hybrid modeling

technique are considered as the combination of two

types of element:

1) The distributed element, which is the main part of
shafts and rotors; with the distributed mass or
inertia and

2) The lumped element, which is the supplementary
part of shafts and rotors; with the concentrated

mass or inertia such as disks, gears, propellers,
pulleys, and so on.

In this way, the final vibration model of system is
obtained by setting the distributed and lumped
matrices of different parts and combining them
together. Distributed and lumped matrices are
formed based on the analytical equations of motion,
so this is the highly accurate technique in contrast
with the other approximate techniques such as the
transfer matrix method (based on lumped elements),
finite element method, and so on. Another advantage
of this technique, compared with analytical method,
is that the continuity conditions between elements
are simply satisfied-and it remains only to apply the
boundary conditions of the system to the model.

2.1- Transfer Matrix of Distributed Element
According to Fig. 1, the Timoshenko beam equation
for athick beam with the density o0, modulus of

elasticity £ and shear modulus G can be expressed

as 1:
2

4 2

EI fo —pAa’y +(pl +',l)€—lg)a)2 Zx{ + ZGI 0'y=0.
)

In this equation, / denotes the area moment of inertia

and A is the cross sectional area of beam, while &

denotes the shear coefficient and @ is the frequency

of vibration. As it is clear from the latter terms, this

equation is consisting shear deformation and rotary

inertia effects.

In order to solve Eq. (1), y is assumed to be the

function of x and @ in the following form:

y(x,w) = ce™ . 2
In this equation, n is a frequency dependent

function, and c is a constant calculated according to

the boundary conditions. It is clear that there is no

approximation in this solution, while it includes all

of the sinusoidal functions as well. It can be easily

applied to find other parameters. Substitution of this

equation in Eq. (1) gives:

n'+an’+b=0, 3)

in which, a and b are frequency dependent terms as
follows:

1 1.,
=(=+—)po , 4
. (E kG)p @
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Therefore, n is obtained by solving Eq. (3) as the
following form:

2
n:i\/—ai\/a —4b ' ©

2
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In this way, 4 quantities are obtained for n, hence,
Y(X,®) can be expressed as follows:

4
y=ZqW”. (7)

The shear force V, slope function & and bending
moment M should be stated by the geometry and
material parameters (independent of each other).

In order to obtain the The shear force ¥, momentum
equation for dx element is to be written in the
following form (see Fig. 1):

— -V ==plo’0 . (8)

According to Timoshenko beam theory, the slope is
the function of deflection and shear force as follows:

g=2+V )

Another relation is obtained by recalling mechanics
of materials:

00

M =FEl — (10)
Ox

and force equation could be stated as follows:

0

a—:—pAa)zy . (11)

bl ]

Fig. 1: Force and momentum of a distributed
element.

Substitution of Egs. (9), (10) in Eq. (8) would result
in:
'y . EI & )
Ela—}; 4 ELO IZ/ v mpier P PL y (12)
ox”  kAG Ox ox kAG
The shear force V' can be obtained by the substitution
of Eq. 11 into 12. The result can be stated as:

:(kAG)[EI?J;+pI(1+ 2w’ @}J/(kAG pla? ).
X
(13)

Substituting this relation in Egs. 9 and 10 gives:

9 o'y 2 Oy 2
0=+ E19 Y+ pr1+ kAG - plw?),
2 ( PR " o | eac = pio?)

X
(14)
Mzﬂaf+m{ﬂay+ma+ m;z{y@m plo?) .
ox 0. ox?
(15)

Since in Eq. 7, n; is independent of x,

differentiating y with respect to x in this equation
yieldS'

ZC (n)"e™ (16)

Where, m—l, 2, 3, 4. Equations (7), (13), (14) and
(15) can be written in the matrix form as:

y
=[r)){ch (17)

4
where, [T(x)] and {C} are the transfer matrix and

the coefficient vector, respectively. For the simple
representation of transfer matrix [T(x) , one can

assume that:
y,=e", i=1,2,3,4. (18)
The parameters &;, M; and V; are obtained by the

substitution of y; and its differentials in Eq’s. (14),

(15) and (13), respectively. Therefore, the transfer
matrix [T( x)] can be stated as:

L T, T

T,
T, T, T,
[T(x)] = S (192)
L, I, Ty Ty
Ty T, T, T
where,
T yz’ 2i 919 T3, _Mi’ T4i :_Vi 5 (19b)
and {C} is the coefficient vector as:
G
C
{ch=171 - 20)
G
Cy

The minus sign in Eq. (19b) is considered to change
the V direction to the positive direction of y.

Ignoring rotary inertia and shear deformation
effects, the transfer matrix components based on the
Euler-Bernoulli beam theory and its solution using
the above method are presented in Ref. [16].
Considering a beam with #n elements and focusing
our attention on jth element, for the initial point of
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shaft (for example, the left side of it), one should
assign x=0 in Eq. (17), as:

Shaft (for example the left side of it), one shoud
assign x=0 in Eq. 17, as:

¥(0)
00) | _
M) =[T(0)],{C}, . 1)
V(0)
Therefore, the coefficient vector can be expressed
| ¥(0)
_ 1]0(0)
{ch =m0t @)
V(0)

For the shaft element with length /, assuming x=/
gives:

()
o)
M)
iy J,

Substituting Eq’s. (22) into (23) and applying the
continuity equation as:

=[T()],[c], . (23)

»(0) y
0
#0) = o ) (24)
M (0) M
V(0) ; |4 i
would result in:
Yy Yy
0| _ 0
M _[TD]j M ) (25)
v J 4 J-1
where ,
[tp], =[r@)]; [t} 26)

where [TD] is the main transfer matrix for the

distributed element in DLMT, where the
components of it are presented in Appendix A.

2.2- Transfer Matrix of Lumped Element
According to Fig’s. 2 and 3, the relationship between
the right and left side of jth lumped element such as
a gear, pulley, and so on, regarding rotary inertia and
gyroscopic effects, can be expressed as follows:

yj = yj_la
0. =0,
J B J-1 o7
Mj = Mj_] ,
V.=V, —ma’y,
which can be expressed in the matrix form as:
y y
0 0
R IR I (28)
V. V.
J J-1
where,
1 0 0 0
[T ] _ 0 L0 0 29
H 0 110
—mda)2 0 0 1
.u;.: My |II Il‘ M ‘_u_.‘
/EC‘ i NG
‘g , " rill III;-: ¥ I
. ; .
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 —
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Fig. (3): Hybrid model of vibrating shaft system.

3. Numerical Results and Discussions

In this section, the methodology outlined previously
is applied to the shaft with two different boundary
conditions; pinned-pinned (P-P) and clamped-
clamped (C-C), which is a simplified model for
common industrial and structural systems. The
results are compared and verified with the results of
Chebyshev pseudospectral method obtained by Lee
et al. [7] for different thickness-to-length ratios (h/I=
0.002, 0.02, 0.2). In addition, the relative changes of
the first natural frequency for different thickness-to-
length ratios (h/I= 0.001 to 0.5) are plotted for these
commonest boundary conditions. The effects of
shear deformation, shaft thickness, disk mass and its
position on the first natural frequency are
investigated. The properties of the systems
considered here are presented in Tables (1) and (2).
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Table 1: Properties of the beam.

Beam Length | I m

Beam Width b 0.1m

Beam Thickness h 0.002, 0.02, 0.2 m
Density of Shaft Material p | 7800 kg/m*
Modulus of Elasticity for 200 GPa

Shaft E

Poisson Ratio v 0.30

Shear Coefficient k 5/6

Table 2: Properties of the rotor.

Shaft Length L I m
Shaft Diameter shaf 0.02,0.2m

3
Density of Shaft Material P 7800 kg/m
Modulus of Elasticity for 200 GPa
Shaft E
Poisson Ratio v 0.30
Mass of Disk 0-1000 kg
Disk Position 1 0.1,03,0.5m
Shear Coefficient k 9/10

These examples verify the results of the new method
and approve the accuracy of them as well. They also
show the simplicity of formulation for modeling of
structural and industrial systems with any boundary
conditions. As it was already mentioned, the present
method can be used for analyzing systems with any
number of distributed and lumped elements. without
increasing in difficulty. It can be also applied on
shafts with different sections just by setting the
distributed matrices for each section and multiplying
them.

3.1. Verification of the Results

The distributed-lumped modeling technique can be
simply applied to various types of boundary
conditions. In order/ to verify the proposed
methodology, this technique is used to obtain the
natural frequencies of different boundary conditions
such as C-C and P-P. These conditions are applied as
follows.

Firstly, the Eq. (25) should be expanded into 4
equations as:

v =T + 1,60, + ;M + TV, (30)
6 =",y,+1,,6,+T M, +T,V, , 31
M, =Ty, +T;,60, +TyM + T,V . (32)
V=T, +Tp0, + T My + TV, . (33)

(a) C-C shaft: based on the boundary conditions,
state vector in this case can be expressed as:

{zo={o 0 My v}, {2z}, ={o0 M, 1}

Hence, in this case, Eqs. 30 and 31 can be
rearranged as follows:

TuMy+T,V, =0, (34)
T M, +T,V, =0 . (35)

For the nontrivial solution of the simultaneous

homogeneous equations, the determinant of
coefficients of M () and V) should vanish, that is:
T, T
det[ . 14}:0 . (36)
Ty Ty

Equation (36) is the frequency equation for the
assumed model, since the natural frequencies are
obtained by solving this equation.

(b) P-P_shaft: based on the boundary conditions,
state <vector in. this case can be expressed as:

{ZYo={0" 65 0 Vo}. {z},={0 6 0"} .

Substitution of this relation in Eqs. 30 and 32 results
in the characteristic equation for the P-P shaft as
follows:

T, T
det| * " |=0 . (37)
T, T,

Tables 3 and 4 present the results obtained by
DLMT for the shafts with 4//=0.002, 0.02, 0.2 based
on C-C and P-P boundary conditions, respectively;
where / is the beam thickness and #=2r in circular
cross sections. These frequencies are compared and
verified in the mentioned tables with the results of
Chebyshev pseudo spectral method obtained by Lee
et al. [7], which show a very good agreement with
them. The result shown in these tables are non-
dimensionalized frequencies calculated as follows:

ph :a;l.lﬂ/'o—A : (38)
EI

The calculations show that the error of Chebyshev
pseudo spectral method in respect to DLMT is less
than 0.03% for the C-C shaft; and less than 0.1% for
the P-P boundary conditions, which approves the
accuracy of the DLMT method.

The Euler-Bernoulli beam theory results as a
classical method obtained by DLMT are also
presented in the mentioned tables for both cases. As
it is expected, the frequencies calculated by using
the classical and Timoshenko beam theory are
highly close together in the lower A/ ratios, while
they are completely different in the higher A// ratios.
Actually, there are some extra frequencies in thick
shafts which are neglected in the classical beam



80

Mech. & Aerospace Eng. J.. Vol. 4, No. 1, Spring 2008

theory, and only Timoshenko theory can predict
them.

3.2. The Effect of Shaft Diameter
In order to investigate the effect of shaft thickness on
its natural frequency, simply supported and clamped
shafts with different thicknesses are considered. The
first natural frequency for these shafts are calculated
according to change in the thickness-to-length ratio
(h/I= 0.001 to 0.5) for rectangular or circular cross
sections, and the results are shown in Fig. 4.
According to this figure, the clamped beam
shows 31% decline in the first natural frequency

(A1) for the rectangular (k=5/6) cross sections,

while the decline for the pinned one is nearly 13% in
the maximum thickness.

It is clear that more restricted boundary
conditions leads to higher decline in the first natural
frequency (A;) by increasing the shaft thickness.
However, the Euler-Bernoulli beam theory shows
nearly no changes in /; in any case.

3.3. The Effect of Disk
In this section, the application of DLMT on more
complicated systems is investigated. It can be seen
that how the distributed-lumped technique can be
easily applied to calculate any natural frequency of
highly complicated systems with any number ‘of
distributed and lumped elements and how it brings
highly accurate results.

In order to illustrate the effects of disk mass and
its position on the natural frequencies of rotors, a
rotor with only one disk (lumped mass) is studied
with pinned boundary condition, which is more
common in real systems.The rotor's radius is
assumed as =0.01, 0.1m and the disk position is

considered as // L =0.1;0.3, 0.5 for a shaft (circular
cross section, k=9/10) with 1m length.

To represent the:main hybrid model of the system, it
should be noticed that the system is combined with
two distributed and‘one lumped elements Fig. 3. For
the distributed elements 1 and 3 the transfer matrices
can be written according to Eq. (25) as:

8g Yo Y3 Vs

ol % L% L 1% L, 69
M, M, [ M, M,

4 V, 8 v,

where,

[7,], =(r@n, oy (40)

and for the lumped element there will be:

Va2 Vi
92 01

=T , 41
i, 7.1, v @1
v, 4

Substituting Eq’s. (41) into (39) yields:

V3 Yo
0 0
=g b, 42)
M3 MO
v, 4
where,
[7] = (#5108, 1,17, ], - (43)

Equation (42) is the main equation for flexural
vibration of the system which relates left and right
ends of the system.

Figures 5 and 6 show the results for the P-P
rotor with 7=0.01, 0.1m, respectively. In the figures,
the percentage of relative change in the first natural

frequency, (@ — @)/ wg %100, is plotted versus
the disk mass (7 = 0-1000 kg). As it is expected,

the frequency shows more decrease by increasing
the disk mass for the rotor with smaller diameter.

The results also show more decline in the first
natural frequency by increasing the disk mass for the
disks closer to the middle of the rotor. Actually, the
disk positions //L=0.3, 0.5 show more decline in
the frequency and their decline quantities in both
figures are closer together, while the position
1/ L=0.1 shows less decrease and its quantities are
absolutely higher than the other positions. According
to Fig. 5, it can be seen that increasing the disk mass
up to nearly 100kg brings nearly 90 percent decrease
in the amount of frequency for // L =0.3, 0.5, while
it is 80 percent for 200kg disk mass. More increasing
the disk mass shows very few changes in the
frequency.

4. Conclusions

In this paper, a new solution for the Timoshenko
beam equation is presented. Combined with
distributed-lumped modeling technique, it brings a
highly accurate model of vibrating systems. The
results obtained by this method are compared with
Lee and Schultz [7] results for various boundary
conditions, and good conformity is achieved. The
effect of beam thickness, disk mass and its position
on the first natural frequency is investigated for
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clamped and pinned (C-C and P-P) rotors. The total

decline of ﬂ,[ for various thickness ratios of beams

is studied. It is shown that the shaft with more
restricted boundary conditions shows more decline
in the first natural frequency by increasing the

thickness. It is also shown that closer disk to the
middle of rotor brings more decline in natural
frequencies.

Table 3: The comparison of natural frequencies using the DLMT and the pseudospectral method for C-C shaft.

h/l=0.002 h/l=0.02 h/l=0.2
MNoo(%e C%?lsei::;l Present Lee and Present Lee and Present Iéiijlr‘z(zi
Method Schultz [2] Method Schultz [2] Method 2]

1 4.7300404531 |4.7299750076 | 4.72998 |4.7232057299| 4.72350 |4.2420125440| 4.24201

2 7.8532044883 | 7.8509797784 | 7.85295 |7.8281714212| 7.82817 [6.4179365061 | 6.41794

3 10.994607704 | 10.994983051 | 10.9950 |10.934115990| 10.9341 |8.2853167355| 8.28532

4 14.136022955 | 14.134813042 | 14.1359 | 14.015425157| 14:0154° {9.9037211976 | 9.90372

5 17.278759576 | 17.276573252 | 17.2766 |17.067780178 | A7.0679 |11.348744396| 11.3487

6 20.419651146 (20.416300642 | 20.4168 |20.086796613 | 20.0868 |12.640244949 | 12.6402

7 23.561946198 [ 23.556683501 | 23.5567 |23.068118989|. 23.0682 < |13.456738980 | 13.4567

8 26.702863279 | 26.696049952 |  26.6960 |26.008606177 |  26.0086 |13.810137261| 13.8101

9  129.844968384 |29.835224673 | 29.8348 [28.905184798 | +28.9052 |14.480557252| 14.4806
10 32.984082317(32.973191671 | 32.9729 |31.755991198| 31.7558 |14.938292031 | 14.9383
Table 4: The comparison of natural frequencies using the DLMT and the pseudospectral method for P-P shaft.

h/l=0.002 h/l=0.02 h/l=0.2
MNOO(%G Cllises(;s}e:l Present Lee and Present Lee and Present Iéiijlrtlg
Method Schultz [2] Method Schultz [2] Method 2]

1 3.1386487017 |3.1386487017 | 3.14158 |3.1405008298 | 3.14053 |3.0453306363 | 3.04533

2 6.2831850577 |6.2831001317 | 6.28310 /[6.2746813177| 6.27471 |5.6715511345]5.67155

3 9.4232086948 | 9.4232086948 | 9.42449 |9.3963090742 | 9.39632 |7.8395173454 | 7.83952

4 12.565488166 | 12.565689332 | :12.5657 | 12.499397265| 12.4994 |9.6570915656| 9.65709

5 15.707404630 | 15.706632851 | 15.7066 |15.578404324 | 15.5784 |11.222039287|11.2220

6 18.849555899 | 18.846417389 | . 18.8473 | 18.628231865| 18.6282 |12.602210880 | 12.6022

7 21.991148790 | 21.986881963.| 21.9875 |21.644305550| 21.6443 |13.032326963 | 13.0323

8 25.132337376 [ 25.126892762 | 25.1273 |24.622664891 | 24.6227 |13.444274238| 13.4443

9  [28.273860645 | 28.266687894 | 28.2666 |27.559948783 | 27.5599 |13.843285665 | 13.8433
10 |31.412903703 | 31.405280425| 31.4053 |30.453648939| 30.4533 |14.437763890]| 14.4378

(<100
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&
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= P-P boundary conditions
= C-C boundary conditions

=== Euler-Bernoull beam results
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Fig. 4: DLMT solution: Relative change of the first natural frequency vs. beam thickness.
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Fig. 5: Relative change of the first natural frequency vs. disk mass for a P-P shaft (with 7=0.01 m).
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Fig. 6: Relative change of the first natural frequency vs. disk mass for a P-P shaft (with 7=0.1 m).
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Appendix A Assuming the relation (19a) as the transfer matrix
for the distributed element (shaft), in which rotary
Considering Eq. 26, the main transfer matrix for a inertia and shear effects are considered, the main
shaft with the length x could be stated as: transfer matrix would have the following elements:
[7]=treonr o’ (A1)
2
Ty == 4(s15 +517)50204 Plsy (plo” —kAG) + 57 (sg + 510)
16(,0]602 - kAG)pw2s1
T, = 520/ £53 (=817 * 515) + 519/ I512 (519 — 53)
20,/ ps153512
Tis kG(s17 * 515 =510 —53)
2w, pls;
Ty = 513353 (=517 *+ 815) * 554512 (510 = 58)
20kAG pIS1S3S12
2
Ty == 4(s32 +531)82004 plsy (plo” — kAG) +559)(s30 +529)
16(plo’ — kAG) por’sy
Ty, = 20V Is3 (=32 *531) + 519~/ £512 (530 =29)
2m./ ps153812
Tys = kG(s33 + 531 =530 —$29)
2w,/ pls
Ty = 513453 (=532 +531) * 554/512.(530 = 520)
20kAG pIS1S3S12
7. = Z3EL(s98 + 59738000 plsy (Pl @ —kAG) + Elsy (535 +524)
31~
16(,0]602 - kAG)pw2s1
$20E1\Is3(=528 * 527) + s19E1Is15 (525 — 524)
2a,] ps153512
T EIkG(sp8 + 537 —S25 —524)
2w,/ pls
B Elsyzas3 (=sp8 +527) + Elsss13 (55 = $24)
) 2wkAG,| pls|s3512
Ty, = - 4kAG(S1 gt s16)522a)1/p151 (,0](02 —kAG)+ kAGSzl(Sl 1t S9)
41
16(plw? — kAG)? pw’s,
Ty = $520kAGIs3 (—s18 + 516) + 519kAG Is15 (511 — 59)
Z(pla)2 - kAG)a),/psls3s12
2 2
Tis k= AG™(s18 + 516 =11 = 59)
2 pla? - kAG)wy pls,
Tys = 513453 (=518 *516) + 55+/512 (511 = 50)
2(pla? - kAG)wy plsisysy,
(A2)

In which s to §35 are the following relations:
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81 :hl

A\ :h4
—2h

53 = 13
EkG

S4 =h2

S5 =h3
_ o |ph

S =——a|—
EKGV 1

_ 23
EkG

sg =y

_ = Iy yhypfhy

T G

7

510 =ho

_ Ihyohia\Jhy
4kG

s13 = hg

=

S5 =hg

— Ihyhy3Jhs

4kG

S11

516

s17 =he

_ Ihghy3Jhs
I8 =T 4kG
519 =hy3

520 =ha

551 =—40° (kG~ E)(plw? —kAG)pZIZW/'OIhI
+16(kAG)(kGE) pew? (plo* — kAG)
+41p% 0* (kG - E)? (plw? - kAG)

s2p =—po” (kG - E) - hy

_—hs
2EkG

523

N

hy3hyhg

4=
AEK?G? (plw® - kAG)
hyzhyohg

525

4EK*G? (plw? - kAG)

_—lp
2EkG

$26
S = My h7hs
AEK>G? (plw® - kAG)
_ hiahehs
28 2,2 2
4EK%G? (plo® - kAG)
_ Mmihghe
4kG(plw’ - kAG)
539 = hyohg+hg
4kG(pla*=kAG)
_ Imhyhs
4G (plw® = kAG)
hehs | hs
~4kG(plw® - kAG)

and /1y to hj3 can be expressed as:

N

N

$29

§31

832 =

hl =n

h2=1a) ﬂ
V I

hy =2k2G2 A - plo? (kG - E) + Ia)wf%

[
hy = oL
4 I
2p0? (kG + E) - 20, /%

he =—

> kGE

2pa)2(kG+E)—2a)1/%

he =exp| —\|—

6 =P S kGE

2pa)2(kG+E)—2a)1/%

hy =exp| —=\/—-

[ kGE

hg =2k2G2 A - pla? (kG - E) - Iw,/%

2p0? (kG + E) + 20, /%
h9 =

- kGE

(A3)
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i 2pw2(kG+E)+2w1/?
hig =exp| =1/—
10 = %P5 kGE
2pw? (kG + E) + 2a)1/%
hyp =exp| —=\—
e Ty kGE

hiy = po? (kG + E) — o %

hi3 = pa® (kG + E) + o, /%

where:

n = plo* (kG - E)? +4AEk>G? (A5)

(A4)



