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Flexural Vibration of Timoshenko Beams, Using Distributed 
Lumped Modeling Technique 
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ABSTRACT 
This paper focuses on the development of a complete model of the Timoshenko beam, based on considering the 
effects of shear deformation. A method based on distributed-lumped modeling approach is proposed to solve the 
governing equations. Natural frequencies obtained by this method are compared and verified with Chebyshev 
pseudospectral method. The effects of shear deformation on natural frequency of pinned and clamped beams are 
discussed for various diameters. In addition, the effects of lumped mass and its position are investigated for 
clamped and pinned rotors with different diameters. It is shown that, while the new method leads to highly 
accurate results, its simplicity and accuracy makes it appropriate for application on industrial systems. 
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1- Introduction 
The effects of shear deformation on the vibration 
and natural frequencies of thick beams have been 
investigated since long before. The frequencies of 
Euler-Bernoulli beam theory is considered in many 
articles and vibration textbooks, such as [1]. The 
vibration equations consisting shear effects were 
presented by Timoshenko [2] for the first time, and 
many efforts have been performed to solve the 
Timoshenko differential equation of vibration.  

Generally speaking, there are three types of 
solutions for this equation. Firstly, some analytical 
solutions are presented for very restricted cases and 
limited boundary conditions [2-4]. Secondly, the 
semi-analytic solutions are proposed for this 
problem such as differential quadrature method [5], 
the boundary characteristic orthogonal polynomials 
[6] and the Chebyshev pseudospectral method [7]. 
Finally, there are some numerical and approximate 
methods such as finite element and finite difference 
method. However, no general analytical and exact 
solution is provided for Timoshenko beam equation. 

The distributed-lumped modeling technique 
(DLMT) was introduced by Whalley [8] for the first 
time. This technique was applied by Aleyaasin et al. 
[9] for calculating the flexural frequencies of shafts 
using 4*4 matrices. Aleyaasin and Ebrahimi also 
obtained the frequency response of such systems 
[10]. Further investigations about the flexural 
vibration of rotor bearing systems was performed by 
Aleyaasin et al., see for example references [11] and 
[12]. The distributed-lumped method also can be 
applied to other systems, such as modeling the 
torsional [13] and longitudinal vibration and 
calculating frequency and time responses in forced 
systems [14]. It can also be applied to the fluid 
systems, as represented by Whalley et al [15]. 

In this paper, the flexural vibration of a 
Timoshenko beam is analyzed via distributed-
lumped modeling technique (DLMT). To verify the 
accuracy of present method, the results obtained by 
this hybrid modeling technique (DLMT) are 
compared with the results of Lee and Schultz [7]. 
The effect of beam thickness, disk mass and its 
position on the first natural frequency is investigated 
for clamped and pinned boundary conditions, and 
compared with the Euler-Bernoulli beam theory. 

 
2. The General Distributed-lumped Model 
Generally speaking, systems in the hybrid modeling 
technique are considered as the combination of two 
types of element: 
1) The distributed element, which is the main part of 

shafts and rotors; with the distributed mass or 
inertia and 

2) The lumped element, which is the supplementary 
part of shafts and rotors; with the concentrated 

mass or inertia such as disks, gears, propellers, 
pulleys, and so on. 

 
In this way, the final vibration model of system is 
obtained by setting the distributed and lumped 
matrices of different parts and combining them 
together. Distributed and lumped matrices are 
formed based on the analytical equations of motion, 
so this is the highly accurate technique in contrast 
with the other approximate techniques such as the 
transfer matrix method (based on lumped elements), 
finite element method, and so on. Another advantage 
of this technique, compared with analytical method, 
is that the continuity conditions between elements 
are simply satisfied and it remains only to apply the 
boundary conditions of the system to the model. 
 
2.1- Transfer Matrix of Distributed Element  
According to Fig. 1, the Timoshenko beam equation 
for a thick beam with the density ρ , modulus of 
elasticity E and shear modulus G can be expressed 
as 1: 
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(1) 
In this equation, I denotes the area moment of inertia 
and A is the cross sectional area of beam, while k
denotes the shear coefficient and ω is the frequency 
of vibration. As it is clear from the latter terms, this 
equation is consisting shear deformation and rotary 
inertia effects. 
In order to solve Eq. (1), y is assumed to be the 
function of x and ω in the following form: 

.),( nxcexy =ω (2) 
In this equation, n is a frequency dependent 

function, and c is a constant calculated according to 
the boundary conditions. It is clear that there is no 
approximation in this solution, while it includes all 
of the sinusoidal functions as well. It can be easily 
applied to find other parameters. Substitution of this 
equation in Eq. (1) gives:  

,024 =++ bann (3) 
in which, a and b are frequency dependent terms as 
follows: 

,)11( 2ρω
kGE

a +=  (4) 

.)( 22 ρωωρ
kGEEI

Ab +−= (5) 

Therefore, n is obtained by solving Eq. (3) as the 
following form: 

.
2

42 baan −±−±= (6) 
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In this way, 4 quantities are obtained for n, hence, 
),( ωxy can be expressed as follows: 

.
4

1

)(∑
=

=
i

xn
i

iecy (7) 

The shear force V, slope function θ and bending 
moment M should be stated by the geometry and 
material parameters (independent of each other).  
In order to obtain the The shear force V, momentum 
equation for dx element is to be written in the 
following form (see Fig. 1): 

.2θωρIV
x

M
−=−

∂
∂

(8) 

According to Timoshenko beam theory, the slope is 
the function of deflection and shear force as follows: 

.
kAG
V

x
y +

∂
∂=θ (9) 

Another relation is obtained by recalling mechanics 
of materials: 

,
x

EIM
∂
∂= θ

(10) 

and force equation could be stated as follows: 

.2 yA
x
V ωρ−=
∂
∂

(11) 

 

Fig. 1: Force and momentum of a distributed 
element. 

Substitution of Eqs. (9), (10) in Eq. (8) would result 
in: 
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The shear force V can be obtained by the substitution 
of Eq. 11 into 12. The result can be stated as: 
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Substituting this relation in Eqs. 9 and 10 gives: 
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Since in Eq. 7, in is independent of x,
differentiating y with respect to x in this equation 
yields: 
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where, m=1, 2, 3, 4. Equations (7), (13), (14) and 
(15) can be written in the matrix form as: 
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where, [ ])(Τ x and {C} are the transfer matrix and 
the coefficient vector, respectively. For the simple 
representation of transfer matrix [ ])(Τ x , one can 
assume that: 

.4,3,2,1,)( == iey xn
i

i (18) 

The parameters iθ , iM and iV are obtained by the 

substitution of iy and its differentials in Eq’s. (14), 
(15) and (13), respectively. Therefore, the transfer 
matrix [ ])(Τ x can be stated as: 
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where, 
,,,, 4321 iiiiiiii VTMTTyT −==== θ (19b) 

and {C} is the coefficient vector as: 

{ } .

4

3

2

1





















=

c
c
c
c

C (20) 

The minus sign in Eq. (19b) is considered to change 
the V direction to the positive direction of y.

Ignoring rotary inertia and shear deformation 
effects, the transfer matrix components based on the 
Euler-Bernoulli beam theory and its solution using 
the above method are presented in Ref. [16]. 
Considering a beam with n elements and focusing 
our attention on jth element, for the initial point of 

www.SID.ir



Arc
hi

ve
 o

f S
ID

78                                                                                                            Mech. & Aerospace Eng. J., Vol. 4, No. 1, Spring 2008 

shaft (for example, the left side of it), one should 
assign x=0 in Eq. (17), as: 
 
Shaft (for example the left side of it), one shoud 
assign x=0 in Eq. 17, as: 

{ } .)]0([

)0(
)0(

)0(
)0(

jj

j

C

V
M

y

T=




















θ

(21) 

Therefore, the coefficient vector can be expressed 
as: 
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For the shaft element with length l, assuming x=l 
gives: 

[ ] .)]([

)(
)(

)(
)(

jj

j

l

lV
lM

l
ly

CT=




















θ

(23) 

Substituting Eq’s. (22) into (23) and applying the 
continuity equation as: 
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would result in: 
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where , 

[ ] [ ] [ ] 1)0(T)(TT −= jjjD l , (26) 

where [ ]DT is the main transfer matrix for the 
distributed element in DLMT, where the 
components of it are presented in Appendix A. 
 
2.2- Transfer Matrix of Lumped Element  
According to Fig’s. 2 and 3, the relationship between 
the right and left side of jth lumped element such as 
a gear, pulley, and so on, regarding rotary inertia and 
gyroscopic effects, can be expressed as follows: 
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which can be expressed in the matrix form as: 

[ ] ,

1−




















=





















j

jL

j V
M

y

V
M

y
θθ

T (28) 

where, 
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Fig. (2):General model of vibrating shaft system. 

Fig. (3): Hybrid model of vibrating shaft system. 

3. Numerical Results and Discussions 
In this section, the methodology outlined previously 
is applied to the shaft with two different boundary 
conditions; pinned-pinned (P-P) and clamped-
clamped (C-C), which is a simplified model for 
common industrial and structural systems. The 
results are compared and verified with the results of 
Chebyshev pseudospectral method obtained by Lee 
et al. [7] for different thickness-to-length ratios (h/l= 
0.002, 0.02, 0.2). In addition, the relative changes of 
the first natural frequency for different thickness-to-
length ratios (h/l= 0.001 to 0.5) are plotted for these 
commonest boundary conditions. The effects of 
shear deformation, shaft thickness, disk mass and its 
position on the first natural frequency are 
investigated. The properties of the systems 
considered here are presented in Tables (1) and (2). 
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Table 1: Properties of the beam. 
Beam Length l 1 m 
Beam Width b 0.1 m 
Beam Thickness h 0.002, 0.02, 0.2 m 
Density of Shaft Material ρ 7800 

3kg/m

Modulus of Elasticity for 
Shaft E 200 GPa

Poisson Ratio v 0.30 
Shear Coefficient k 5/6 

Table 2: Properties of the rotor. 
Shaft Length L 1 m 

Shaft Diameter shaftd 0.02, 0.2 m 

Density of Shaft Material ρ 7800 
3kg/m

Modulus of Elasticity for 
Shaft E 200 GPa

Poisson Ratio v 0.30 
Mass of Disk 0-1000 kg 
Disk Position l 0.1, 0.3, 0.5 m 
Shear Coefficient k 9/10 

These examples verify the results of the new method 
and approve the accuracy of them as well. They also 
show the simplicity of formulation for modeling of 
structural and industrial systems with any boundary 
conditions. As it was already mentioned, the present 
method can be used for analyzing systems with any 
number of distributed and lumped elements without 
increasing in difficulty. It can be also applied on 
shafts with different sections just by setting the 
distributed matrices for each section and multiplying 
them. 
 
3.1. Verification of the Results 
The distributed-lumped modeling technique can be 
simply applied to various types of boundary 
conditions. In order to verify the proposed 
methodology, this technique is used to obtain the 
natural frequencies of different boundary conditions 
such as C-C and P-P. These conditions are applied as 
follows. 

Firstly, the Eq. (25) should be expanded into 4 
equations as: 

,0140130120111 VTMTTyTy +++= θ (30) 

,0240230220211 VTMTTyT +++= θθ (31) 

,0340330320311 VTMTTyTM +++= θ (32) 

.0440430420411 VTMTTyTV +++= θ (33) 

(a) C-C shaft: based on the boundary conditions, 
state vector in this case can be expressed as: 
{ } { }000 00 VMZ = , { } { }111 00 VMZ = .

Hence, in this case, Eqs. 30 and 31 can be 
rearranged as follows:  

,0014013 =+ VTMT (34) 

.0024023 =+ VTMT (35) 

For the nontrivial solution of the simultaneous 
homogeneous equations, the determinant of 
coefficients of 0M and 0V should vanish, that is: 

.0det
2423

1413 =







TT
TT

(36) 

Equation (36) is the frequency equation for the 
assumed model, since the natural frequencies are 
obtained by solving this equation. 

(b) P-P shaft: based on the boundary conditions, 
state vector in this case can be expressed as: 
{ } { }000 00 VZ θ= , { } { }111 00 VZ θ= .
Substitution of this relation in Eqs. 30 and 32 results 
in the characteristic equation for the P-P shaft as 
follows: 

.0det
3432

1412 =







TT
TT

(37) 

Tables 3 and 4 present the results obtained by 
DLMT for the shafts with h/l= 0.002, 0.02, 0.2 based 
on C-C and P-P boundary conditions, respectively; 
where h is the beam thickness and h=2r in circular 
cross sections. These frequencies are compared and 
verified in the mentioned tables with the results of 
Chebyshev pseudo spectral method obtained by Lee 
et al. [7], which show a very good agreement with 
them. The result shown in these tables are non-
dimensionalized frequencies calculated as follows: 

.22

EI
Alii

ρωλ = (38) 

The calculations show that the error of Chebyshev 
pseudo spectral method in respect to DLMT is less 
than 0.03% for the C-C shaft; and less than 0.1% for 
the P-P boundary conditions, which approves the 
accuracy of the DLMT method. 
The Euler-Bernoulli beam theory results as a 
classical method obtained by DLMT are also 
presented in the mentioned tables for both cases. As 
it is expected, the frequencies calculated by using 
the classical and Timoshenko beam theory are 
highly close together in the lower h/l ratios, while 
they are completely different in the higher h/l ratios. 
Actually, there are some extra frequencies in thick 
shafts which are neglected in the classical beam 
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theory, and only Timoshenko theory can predict 
them.  

 

3.2. The Effect of Shaft Diameter 
In order to investigate the effect of shaft thickness on 
its natural frequency, simply supported and clamped 
shafts with different thicknesses are considered. The 
first natural frequency for these shafts are calculated 
according to change in the thickness-to-length ratio 
(h/l= 0.001 to 0.5) for rectangular or circular cross 
sections, and the results are shown in Fig. 4. 

According to this figure, the clamped beam 
shows 31% decline in the first natural frequency 
( 1λ ) for the rectangular (k=5/6) cross sections, 
while the decline for the pinned one is nearly 13% in 
the maximum thickness. 

It is clear that more restricted boundary 
conditions leads to higher decline in the first natural 
frequency ( 1λ ) by increasing the shaft thickness. 
However, the Euler-Bernoulli beam theory shows 
nearly no changes in 1λ in any case. 
 
3.3. The Effect of Disk 
In this section, the application of DLMT on more 
complicated systems is investigated. It can be seen 
that how the distributed-lumped technique can be 
easily applied to calculate any natural frequency of 
highly complicated systems with any number of 
distributed and lumped elements and how it brings 
highly accurate results. 

In order to illustrate the effects of disk mass and 
its position on the natural frequencies of rotors, a 
rotor with only one disk (lumped mass) is studied 
with pinned boundary condition, which is more 
common in real systems. The rotor's radius is 
assumed as r=0.01, 0.1m and the disk position is 
considered as Ll / =0.1, 0.3, 0.5 for a shaft (circular 
cross section, k=9/10) with 1m length. 
To represent the main hybrid model of the system, it 
should be noticed that the system is combined with 
two distributed and one lumped elements Fig. 3. For 
the distributed elements 1 and 3 the transfer matrices 
can be written according to Eq. (25) as: 
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where, 

[ ] ,)]0([)]([ 1−= jjjD TlTT (40) 

 

and for the lumped element there will be: 
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Substituting Eq’s. (41) into (39) yields: 
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T

V
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y
θθ

(42) 

where, 

[ ] .][][][ 123 DLD TTTT = (43) 

Equation (42) is the main equation for flexural 
vibration of the system which relates left and right 
ends of the system.  

Figures 5 and 6 show the results for the P-P 
rotor with r=0.01, 0.1m, respectively. In the figures, 
the percentage of relative change in the first natural 
frequency, 100/)( 00 ×− ωωω , is plotted versus 

the disk mass ( dm = 0-1000 kg). As it is expected, 
the frequency shows more decrease by increasing 
the disk mass for the rotor with smaller diameter. 

The results also show more decline in the first 
natural frequency by increasing the disk mass for the 
disks closer to the middle of the rotor. Actually, the 
disk positions Ll / =0.3, 0.5 show more decline in 
the frequency and their decline quantities in both 
figures are closer together, while the position 

Ll / =0.1 shows less decrease and its quantities are 
absolutely higher than the other positions. According 
to Fig. 5, it can be seen that increasing the disk mass 
up to nearly 100kg brings nearly 90 percent decrease 
in the amount of frequency for Ll / =0.3, 0.5, while 
it is 80 percent for 200kg disk mass. More increasing 
the disk mass shows very few changes in the 
frequency. 

 
4. Conclusions 
In this paper, a new solution for the Timoshenko 
beam equation is presented. Combined with 
distributed-lumped modeling technique, it brings a 
highly accurate model of vibrating systems. The 
results obtained by this method are compared with 
Lee and Schultz [7] results for various boundary 
conditions, and good conformity is achieved. The 
effect of beam thickness, disk mass and its position 
on the first natural frequency is investigated for 
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clamped and pinned (C-C and P-P) rotors. The total 
decline of iλ for various thickness ratios of beams 
is studied. It is shown that the shaft with more 
restricted boundary conditions shows more decline 
in the first natural frequency by increasing the 

thickness. It is also shown that closer disk to the 
middle of rotor brings more decline in natural 
frequencies. 
 

Table 3: The comparison of natural frequencies using the DLMT and the pseudospectral method for C-C shaft. 
h/l= 0.002 h/l= 0.02 h/l= 0.2 

Mode 
No. 

Classical 
Theory Present 

Method 
Lee and 

Schultz [2] 
Present 
Method 

Lee and 
Schultz [2] 

Present 
Method 

Lee and 
Schultz 

[2] 
1 4.7300404531 4.7299750076 4.72998 4.7232057299 4.72350 4.2420125440 4.24201 
2 7.8532044883 7.8509797784 7.85295 7.8281714212 7.82817 6.4179365061 6.41794 
3 10.994607704 10.994983051 10.9950 10.934115990 10.9341 8.2853167355 8.28532 
4 14.136022955 14.134813042 14.1359 14.015425157 14.0154 9.9037211976 9.90372 
5 17.278759576 17.276573252 17.2766 17.067780178 17.0679 11.348744396 11.3487 
6 20.419651146 20.416300642 20.4168 20.086796613 20.0868 12.640244949 12.6402 
7 23.561946198 23.556683501 23.5567 23.068118989 23.0682 13.456738980 13.4567 
8 26.702863279 26.696049952 26.6960 26.008606177 26.0086 13.810137261 13.8101 
9 29.844968384 29.835224673 29.8348 28.905184798 28.9052 14.480557252 14.4806 

10 32.984082317 32.973191671 32.9729 31.755991198 31.7558 14.938292031 14.9383 

Table 4: The comparison of natural frequencies using the DLMT and the pseudospectral method for P-P shaft. 
h/l= 0.002 h/l= 0.02 h/l= 0.2 

Mode 
No. 

Classical 
Theory Present 

Method 
Lee and 

Schultz [2] 
Present 
Method 

Lee and 
Schultz [2] 

Present 
Method 

Lee and 
Schultz 

[2] 
1 3.1386487017 3.1386487017 3.14158 3.1405008298 3.14053 3.0453306363 3.04533
2 6.2831850577 6.2831001317 6.28310 6.2746813177 6.27471 5.6715511345 5.67155
3 9.4232086948 9.4232086948 9.42449 9.3963090742 9.39632 7.8395173454 7.83952
4 12.565488166 12.565689332 12.5657 12.499397265 12.4994 9.6570915656 9.65709
5 15.707404630 15.706632851 15.7066 15.578404324 15.5784 11.222039287 11.2220
6 18.849555899 18.846417389 18.8473 18.628231865 18.6282 12.602210880 12.6022
7 21.991148790 21.986881963 21.9875 21.644305550 21.6443 13.032326963 13.0323
8 25.132337376 25.126892762 25.1273 24.622664891 24.6227 13.444274238 13.4443
9 28.273860645 28.266687894 28.2666 27.559948783 27.5599 13.843285665 13.8433

10 31.412903703 31.405280425 31.4053 30.453648939 30.4533 14.437763890 14.4378

Fig. 4: DLMT solution: Relative change of the first natural frequency vs. beam thickness. 
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Fig. 5: Relative change of the first natural frequency vs. disk mass for a P-P shaft (with r=0.01 m). 

Fig. 6: Relative change of the first natural frequency vs. disk mass for a P-P shaft (with r=0.1 m).  
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Appendix A 
 
Considering Eq. 26, the main transfer matrix for a 
shaft with the length x could be stated as: 
[ ] 1)]0()][([ −= TxTT (A1) 

Assuming the relation (19a) as the transfer matrix 
for the distributed element (shaft), in which rotary 
inertia and shear effects are considered, the main 
transfer matrix would have the following elements: 
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(A2) 
In which 1s to 32s are the following relations: 
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and 1h to 13h can be expressed as: 
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where: 
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