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Efficient Method for Prediction of Stability in Low Immersion
Milling
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ABSTRACT

This paper presents cutting force prediction algorithm for low immersion end-milling, using an efficient
dynamic force modeler. The geometric simulation of milling process was performed, using the B-Rep solid
modeling techniques. For predicting stability lobes, two methods were used for prediction of stability lobes: the
frequency domain technique and the time finite element analysis (TFEA). The frequency domain technique is
faster and except for low immersion milling, is accurate. The TFEA method forms an approximate solution by
dividing the cutting time into a finite number of elements. This approximated solution is then matched with the
exact one for free vibration to obtain a discrete linear map. The comprehensive time domain simulation is used,
in order to verify stability lobes diagram obtained by frequency domain technique and TFEA method.
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1. Introduction

Maximizing productivity is the main goal in the
machining processes. For the milling process, this is
equivalent to maximizing the material removal rate
(MRR). There are several methods for increasing
the MRR: 1) increasing the feed rate, 2) increasing
the cutting depth, and 3) increasing the spindle
speed.

Recent advances in machine technology have
enabled the machine tool manufacturers to produce
machines with spindle speeds exceeding 40,000
rpm [1]. High speed machining (HSM) enables
very high MRR for milling operations. Although
the definition of HSM is not so clear, it is usually
related to spindle speed. A wuseful definition
proposed by smith [2] is "machining at or near the
resonant frequencies of the tool or machine"

HSM is vastly used in aerospace industries in
order to produce flexible parts such as different
kinds of blades, fuselage components, and thin wall
housings, there are several advantages for HSM. In
comparison with conventional milling. the main one
is improving the production speed or MRR. In
addition, cutting forces and required, the power will
be reduced to some extent. Also, it is possible to
manufacture thin wall housings out of a single
block instead of assembling the from several parts.
These parts are simultaneously lighter, stronger,
cheaper and require a small fraction of the
machining time compared to the conventional
machining techniques [1].

There has been quite significant research for
predicting of machining forces with various levels
of accuracy and complexity [3, 4]. These force
models can be categorized as follows: 1) rigid force
model, 2) flexible force model and 3) regenerative
force model.

In the present study, the geometric simulation
of milling process is performed using B-Rep solid
modelling techniques [5]. The geometric modeller
must be capable of representing valid model of part
and tool, updating the model of part throughout the
machining operations, and constructing entities
required in machining simulations such as cutting
edges and chip geometries. The current work
incorporates ACIS' for the task of geometric
simulations [5].

HSM demands an accurate mathematical model
of milling process in order to predict stability limits
of the self excited type of vibrations which is called
chatter. Stability limits (or lobes) separate stable and
unstable machining regions and provide practical
guide for optimum machine and tool planning.
There are two types of stability lobes: those related
to secondary Hopf bifurcation, and those related to
period doubling (or flip) bifurcations. For the case

1- B-rep Solid Modeler

of flip lobes, the chatter frequencies linearly depend
on the spindle speed and for the Hopf lobes, the
number of chatter frequencies are duplicated. Two
methods are suggested for predicting the stability
lobes: 1) frequency domain with a continuous cutting
model or an interrupted cutting model [6] and 2)
time domain simulation, [7, 8]. Prediction of
stability lobes using frequency domain requires the
transfer function matrix at the cutter-workpiece
contact location and also the dynamic cutting
coefficient for the given cutting condition, [9]. A
newly proposed method incorporates time finite
element analysis (TFEA) to solve the delayed
differential equation of motion which can accurately
solve the low immersion milling dynamics, [10,11].
In this method, cutting time is divided into a number
of elements, where displacement and velocity
continuity are enforced between each element. An
approximate discrete linear map is then constructed
using time finite elements in the cut to exact
mapping of free vibration out of the cut. In this way,
stability lobes can be predicted from the eignvalues
of the discrete map. Henceforth, the paper is
organized as follows: the required geometric
simulations are presented in section 2. The
importance and efficiency of geometric simulation
in force modeling are clarified in section 3.
Mathematical model of 2DOF milling dynamics is
investigated in section 4 which was simulated using
MATLAB software [12]. The mechanics of low
immersion milling operation is discussed in section
5. Dynamic modeling of milling operations is done
in section 6. In the following section stability lobe
diagrams are obtained using frequency domain
method and TFEA. Sections 8 and 9 show the
results of different methods and compare them with
the time domain simulation results. Lastly, section
10 concludes the results obtained in this research.

2. Geometric Simulation

During milling process, the portion of the tool
cutting edge that is engaged to workpiece at a given
instant of time, is defined as tool engagement.
Milling free-form surfaces, the tool engagement
varies along the tool path. The variation of tool
engagement results in corresponding variation in
the cutting forces. In some cases, sudden increase in
tool engagement may even result in tool breakage.
Therefore, tool engagement must be accurately
identified in order to predict cutting forces. Tool
engagement is influenced by the radial and axial
cutting depth of cut which are defined in Fig. 1.



Effictent Méthod for ... 73
Cutter
Rotation Rate (L)
Milling Cutter
r

Axial Depth of Cut

— fe— Radial Depth of Cut Fig. (3): Swept volume of tool.
Workplece The contact face and its boundary edges: AB, BC,

Fig. (1): Tool engagement in milling operation.

In order to calculate the tool engagement geometry
at a given instant, is required geometric simulation
of milling operations. For performing this, ACIS, a
B-Rep solid modeler, is used. The end milling tool is
represented by a cylinder with the diameter and
height equal to the diameter and cutting length of the
end mill. The cutting edge is modeled by a NURBS?
curve. The tool and cutting edge are illustrated in
Fig. 2.

TN
~_

Fig. (2): Cutting edge of end mill.

The part is updated as the tool cuts the part material.
In order to update the part, the swept volume of the
tool along the tool path is required. Fig. 3 shows the
swept volume of a linear tool path which has been
divided to three sections. 1- semi-cylinder at the
start point 2- swept volume of tool envelope 3-
semi-cylinder at the end point. These three volumes
are united and subtracted from the model due to
updating the part.

2 - Non-uniform Rational B-spline

CD, and DA are depicted in Fig. 4. The intersection
points of the helical edge with the contact face
boundaries are also shown in the same figure.

Fig. (4): Edge engagement with workpiece.

The boundaries AB and BC of the contact face
identify the start coordinates of edge engagement,
and the boundaries CD and DA show the end
coordinates of edge engagement. For down milling,
these tool engagement starts from the point C and
finishes at the point A, while for up milling, these
points play reverse roes. The entry and exit angles
of cutting edge at each instant can be calculated as
follows:

sing=2 = sin g, =% 5 §in”!
r r (1)

1

~N |Q>< ~ |r4>.<

. X .
sing, =—= = sin
r

3. Importance of Geometric Simulation in Force
Modeling

The simulation process in ACIS software, leads to
the simulation of milling operation for complicated
parts, see [13] for detail:

1- During the milling operation on complicated
surfaces, there is no analytical relationship for
calculating the entry and exit angle or for predicting
the chip loads and only they can only be predicted
by means of solid modeling software,

2- There is a high ability in ACIS software for
predicting or calculating the instantaneous chip
loads for complicated cutting edges geometry as
same as the ball nose, tapered ball nose or roughing
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end mills and

3- When workpiece or tool are flexible, the tool-
workpiece contact face will vary during the cutting
operation due to the dynamic deflections. ACIS will
simplify the modeling of contact face and
consequently will calculate the entry and exit angles
accurately.

4. Mathematical Model of 2- DOF End Milling
A schematic diagram of a two-degree-of-freedom
milling process is shown in Fig. 5.

Fig. (5): 2-DOF model of end milling.

Tool and structure are modeled by a single mode
vibration in two uncoupled and
orthogonal directions. The differential equation of
motion is given by [12]:
MX@t)+CX()+KX(@)=F(), 2)
where, X (1) =[x(t) y@®)]" is the two-element
position vector and M, C, and K are mass,
damping, and stiffness matrices, respectively.

The x and y cutting force components on the pth
tooth are given by [12]:

Fy () =[=F,()cos 0, () - F, ()sin 0, (1)]g, (). 3,
F, () =[F,(0)sin6,(1) = F,,(t)cos 0, (1)]g , (1),
where, g, (t) acts as a switching function equal to

one if the pth tooth is in-cut and zero if it is not
cutting. The tangential and normal cutting force

components, F, and F,  respectively, are

considered to be the product of linearized cutting
coefficients K; and K, the nominal depth of cut

(DOC) and the instantaneous chip width w ()
F, ,(t) =K, docw,(1),

F, ,(t) =K, .docw,(1),

where, w, (#) depends upon the feed per tooth, [,

“

the cutter rotation angle ¢, (¢) and regeneration in

the compliant structure directions:

w, () = f,sin 8, (¢) +[x(¢) — x(¢t = 7)]sin 6, (1)
+[y(@) - y(t —7)]cos 0, ().
In the above relationship, f,siné,(7) represents

6))

the circular tool path approximation of chip
thickness and 7 1is tooth passing period and given
by 7 =2x/Nn [s], where n is the spindle speed

given in rpm and N is the total number of cutting
teeth. The angular position of the pth tooth for a
tool with evenly spaced teeth is:

6,(t)=Qt+2z(p-1)/N, p=123,..,N, (6)

2m . .
as Q) 25. The total cutting force equations are

found by summing the forces on each cutting tooth
and substituting equations (4) and (5) into (3):

{ﬂ ng(t)dOC(f{ Kise _KS}
@)

y K,s* —-K,sc
_{—K,sc—](ns2 -K,’ —Knsc}[Ax}
Ks'-K,sc Ksc—K,c* |[Ayv]

where, s =sin @, (¢), ¢ =cos 0, ()
and Ax =x(t)—x(t—7), Ay=y(t)—y(t—1).

Finally, the comprehensive equation of motion can
be expressed by Eq. (10), where f (¢) and

K () are given by:

r= z (| Ko TR ®
& K 2 —KnSC ’
N -K,sc-K,s* —Kc'-K,sc
_ . . ‘ =1, 09)
K('(l) ;gp(t)l:K[sz -K sc K,sc—K”CZ :I
MX(t)+ CX(t) + KX (t) = (10)

K, (t)doc.[ X(£) - X(t—7)]+ f.(t)doc.
K_(t) and f.(t)are periodic functions with the
same period of tool passing. Since the cutting
stability has been influenced only by the dynamic
part of chip thickness, in Eq. (10) f.(¢).doc term
can be ignored and the final equation of motion is
presented by [14]:

MX () +CX(t) + KX (t) =
K, (t)doc[X(t)-X(t—-7)].
When the structure is only compliant in a single
direction, equation (10) can be modified by
eliminating the corresponding rows and columns of
the rigid direction. For instance, a structure
compliant only in the x direction would have the
following equation of motion:

an
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X(t)+280, X()+ 0 X (1) =

12)
K (t).doc (
T[X(t)—X(t—T)]-
Fig. 6. presents the specific cutting force variation
K (t) for different partial immersion up-milling
operation for a two fluted tool. The following
experimentally identified parameters were used:

K, =5.5x10°N/m" , K, =2x10°N/m’.

The discontinuity of the function is due to the tooth
passing effect. In the half immersion case, the entry
and exit angles are 0° and 90°, respectively. If the
angular position of  the teeth are
90° <@, <180° and 270° <¢, <360°, then both

teeth are out of cut and the function K(¢) would be
zero [15].
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Fig. (6): Specific cutting force variation.

5. Low Immersion

The radial depth of cut plays an important role in
milling forces, because as the radial depth of cut is
increased, the contact area increases and cutting
force magnitude becomes larger. Recent findings
indicate that tool wear rate for difficult-to-cut
materials such as titanium alloys, decreases
significantly along with the radial immersion
decrease [16]. Thus, the time domain simulations
are performed for six immersion cases. Tool
geometrics and cutting conditions are given in
table 1. The simulations are performed based on the
methodology proposed in section 4. The results of
the action are illustrated in Fig. 7. In each figure the
resultant of cutting forces, in x and y directions is
also presented. In this figure, it is demonstrated that
since the contact area is increased by accruing the
radial depth of cut. The milling forces increase as
well. More over, when the axial depth of cut is
increased, the length of engaged flutes increases,
and the milling forces increase. But the effect of
radial depth of cut on increasing the cutting forces
is more pronounced than that of the axial depth of
cut. Again, it shows that the shape of the measured

force becomes smooth when axial depth of cut
increases. This is due to the cutting edge
engagement, when the axial depth of cut is large
and the engaged length of the edge is constant.

Table (1): Parameters used in milling Process.

Axial depth of cut DOC=5,6,7,8 mm

Radial depth of cut WOC=1, 2,3 mm

Average specific Ks=1356 (N/mm”)[10]
cutting coefficient

(Ti-6A1-4V)

Number of tooth N=4

Helix angle £ =30

Feed per tooth f, =0.05mm

Tool diameter D=8 mm
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Fig. (7): Simulated forces with different
immersions.

6. Dynamic Modeling of Milling Operations

In this section, chip load is computed by ACIS and
the algorithms given by [17-20]. ACIS is a B-Rep
solid modeler and can vigorously compute chip
load for any shape of tool path and work piece
geometriy, Further detail can be found in [13, 21].
Fx, Fy and F force components for different
immersions are presented by useing two methods.
In order to study the frequency components of the
cutting force, the FFT of the resultant force has
been presented. The assuming parameter given in
table 2, figures 8-10 illustrates the results of
simulation for the given cutting conditions. It is
obvious that in a stable machining operation, the
dominant frequency is the tool passing frequency,
which can be calculated by:

Tool Pass Frequency [HZ] :% . (13)
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Table (2): Cutting conditions and modal
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i e

K, =6.6x10°N/m’

Modal Parameters £, fy =660 Hz
k., , k, =2x10'N/m

¢ - 6,=0.05

As illustrated in figures, by increasing WOC to
3mm, the amplitude of cutting force increases
significantly and the system becomes unstable. FFT
of the cutting shows that the this instability is due
the chatter frequency close to the most flexible
mode shape.
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Fig. (8): Up-milling, axial depth of cut =5 mm,

radial depth of cut = Imm.
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Fig. (9): up-milling, axial depth of cut =5 mm,
radial depth of cut = 2mm.
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Fig. (10): up-milling, axial depth of cut =5 mm,
radial depth of cut = 3mm.

7. Stability Lobes

There are two main differences in the stability of
low immersion milling:

1- The equation of motion when edge is not
engaged is free vibration and

2- There is no exact analytical solution when the
tool is in the cut.

The stability limit diagram (SLD) differentiates

two region: stable cutting and instability due to
chatter vibrations where variations of DOC versus
spindle speed is taken into consideration at onset of
chatter vibrations. By means of SLD, optimum
parameters which provide maximum material
removal rate without chatter, can be seen.
There are two kinds of instability in low immersion
milling. In this part, SLD are obtained using two
methods. Frequency domain [22] and TFEA [23-
24]. The main reason here is to find an efficient
method for obtaining SLD of low immersion
milling operations.

7.1 Calculation of Stability Lobes by Frequency
Domain Method

The frequency domain method can compute SLD of
machining operation system using frequency
response function (FRF) determined at the end of
the tool. In order to compute FRF, an accelerometer
is mounted at the end of the tool in x one, and it is
excited by means of a hammer in the same
direction. The same procedure is also performed for
the y direction. In addition to direction FRF

(ie ¢ and @, ), cross FRF (4, and @, )can be

obtained using same procedure.

The transfer function matrix which related forces to

displacements at tool tip is expressed by [25]:
g.(iw) ¢, (iw)

WEN= 5 o) ¢ Gw) | (9
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7.2. TFEA method

The dynamic behavior of the milling process is
governed by Eq. (10). Since this equation does not
have a closed form solution, an approximate
solution is sought to understand the behavior of the
system. One such technique used for dynamic
system is time finite element analysis (TFEA) [26].
This method was first applied for an interrupted
turning process by Bayly et al [27]. In low-radial
immersion milling, or for any cut less than a full
immersion, the tool switches between cutting and
not cutting. When the tool is out of the cut, the free
vibrations can be described exactly with a closed
form solution. But during cutting, there is no exact
solution due to the existence of time-delayed terms.
TFEA can break time in the cut into multiple
elements and approximate the vector displacement
on a single element as a linear combination of
polynomial trial functions [28].

7.2.1 Free Vibration
When the tool is not in contact with the workpiece,
the system experiences free vibration:

mi(t) + cx(t) + kx(t) =0 . (15)
which has the exact solution as follows:
x(t) = c,e™ +c,e™ .

where, /11,2 =—¢w, tiv,and o, =0, 1-&%is
damped natural angular frequency. If we let £,
duration of cutting and ¢ 7 duration of free

vibration, a state transition matrix can be obtained
relating the final state of free vibration to the initial
state [10]:

x(t, *+1,) _ 1
v, )| A -4,

(16)

—ﬂle%t’ +/?.ze;”'t’ —eM +eM |:x(tc )}
— A A, e A A,e = aet + A, | V()

7.2.2 Vibration During Cutting
When the tool is in-cut, an approximate solution for

displacement of the tool during the j, element of

the n, period of revolution can be assumed by:
4 n il :

X(t)zzlaj,-qﬁ,-(oj(t)). Here oj(t):t—nr—kzlt,( is
1= =

the “local” time within the j, element of the

n,, period, the length of the k,, element is #, and

the trial functions ¢, (07;(¢)) are the cubic Hermit
polynomials [29]:

),

o. o.
¢ (0;)=1-3(—)" +2(—
l‘j l‘j
O . O . 5 O . 3
$,(c;)=t,[(—)-2(—)" +(—)],
l‘j t/. l‘j
‘ (17)
0,2 0,3
$,(0;)=3(—)" -2(—)",
fj fj
o,, O
¢, (c,)=t,[-(—)" +(=)"].
lj t

J

Substitution of the assumed solution into the
equation of motion (13) leads to a non-zero error.
The error for the assumed solution is “weighted” by
multiplying by a set of test functions and setting the
integral of the weighted error to zero to obtain two
equations per element. The test functions are chosen
to be the simplest possible, i.e. y(o;) =1 (constant)

O ;
and y,(o;) :Tj_% (linear). The integral is taken
J

over the time for each element, ¢ j :tC/E ,

thereby dividing the time in-cut, ¢ into E

c?

elements. The resulting equations are [17]:

[ {M[Z aj é (a,,)] * C(Za,;z 4o, (a,,)] *

(K-bK, (o, ))[Za FACHUS (o,)j
. (18)
+ch(o-j)[Za;il ¢i (O-j)‘//p(o-j)J_

b))y, (0))}do, =0
p=12

The displacement and velocity at the end of one
element are set equal to the displacement and
velocity at the beginning of the next. It is necessary
to mention that in TFEA method with increasing
the immersion (radial depth of cut), the cutting time
increases and in order to converge a solution, the
number of elements should be increased [24].

8. Prediction of Stability Lobes

The frequency domain method and TFEA are
implemented using MATLAB software in order to
obtain SLD. Parameters used for the simulations are
given in table 3.
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Table (3): Cutting conditions and modal
parameters.

Tool diameter D=8mm

Number of tooth N=2

Feed per tooth F=0.1 mm
Cutting K, =2x10°N/m’
Coefficient K,=6x10°N/m’

fo f} =922 Hz
Modal k., k. =134%10°N/m
Parameters * ’

¢ - 6, =0.011

The results of simulation for up-milling with 10%,
25% and 50% immersions are presented in figures
11-13, respectively. The variation of spindle speed
is chosen between 5000 rpm to 25000 rpm. The
number of elements in TFEA method for the
immersion above is set to 10, 20 and 30. For
WOC=0.5D (50% radial immersion), both methods
yield similar results. As radial depth of cut
decreases, the discrepancy between the frequency
domain method and TFEA in predicting stability
boundaries grows considerably. The most
prominent difference is the added set of lobes
located at the odd integer fractions of twice the
dominant eigen frequency, (2f,/(2k+1)). These
lobes are predicted only by the TFEA method and
correspond to the period doubling (flip) bifurcation
which causes periodic chatter [27].
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Fig. (11): stability lobes chart with two methods in
10% immersion.
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Fig. (13): stability lobes chart with two methods in

50% immersion.

9. Verification of Stability Lobes

In order to verify TFEA and frequency domain
simulations, the Euler time domain simulations are
used. That is a simple approach and also is has been
a proven method for simulating the behavior of
milling process [30-31].

The time domain simulations are performed for
5000, 5100, 5150 and 5200 rpm for different axial
depths of cut. Fig. 14 compares the results obtained
by the time domain simulation with the frequency
domain method and TFEA. In the figure stable and
unstable cutting conditions are identified by (O) and
(*), respectively.

The stable and unstable cutting conditions are
differentiated using FFT of the resultant force. F,,
Fy, x and y which obtained by simulation are also
depicted. Fig. 15 depicts time histories and FFT of
stable cutting conditions while Fig. 16 represents
time histories and FFT of unstable cutting
conditions.
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stability lobes for 2-DOF model (TFEA and Frequency Domain)
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Fig. (14): stability lobes chart in 10% immersion
for spindle speed between 4650rpm and 5500rpm.
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Fig. (15): up-milling, DOC =1 mm, n=5200rpm
(stable cutting condition).
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Fig. (16): up-milling, DOC =1.5 mm, n=5000rpm
(unstable cutting condition).

10. Conclusions
In this research, milling cutting forces are

evaluated, using analytical chip load algorithm and
chip load calculated by ACIS. The predicted cutting
forces are in a good accordance using both
methods.

The effects of radial depth of cut and the axial
one in cutting forces were studied and evaluated, It
was illustrated that role of the radial depth in
increasing the cutting forces is more pronounced
than the axial depth of cut. Stability lobes for the
up-milling case for various immersions are obtained
using frequency domain and TFEA methods.

It is clarified that for large immersion (25%
and 50% immersion), the stability lobe diagrams
resulted from two methods of frequency domain
and TFEA, are more or less identical, but with
decreasing the immersion (10% immersion), the
difference between the diagrams of the two
methods is noticeable. Consequently, in low
immersion milling, the TFEA method illustrates the
Flip-Lobes, while this phenomenon is not observed
in frequency domain method.
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