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Geometric Approach to Fault Detection and Isolation in 
Multivariate Structural Systems: An Experimental Investigation 

 

ABSTRACT 
In this paper, fault isolation of a laboratory scale structural frame, as a multivariate system, has been 
investigated, using a geometric approach in conjunction with parametric system identification. The proposed 
geometric approach is based on the assumption that each fault mode may be regarded as a hyper-surface in an 
appropriate topological space, where the hyper-surfaces are constructed based on the estimated parameters. 
Finally, by defining proper metric and assuming the unknown mode (of a system) being as a point in space, 
where the estimated parameters are the coordinates, the fault mode can be identified by minimizing the obtained 
distances between the point and each of the hyper-surfaces. Based on the number of inputs and measured 
outputs, the frame was modeled by standard ARX and VARX models in four different forms as Single-Input 
Single-Output (SISO), Single-Input Multiple-Output (MISO), Single-Input Multiple-Output (SIMO) and 
Multiple-Input Multiple-Output (MIMO). Also, the performance of the scheme was evaluated in deterministic 
and probabilistic spaces. The obtained results revealed that the MIMO representation of the frame in the 
probabilistic space had an acceptable performance which was the highest in comparison with the others and the 
SISO representation system in the deterministic space had the lowest performance.  

Key Words: Fault Isolation, Multivariate Systems, Structural Systems, Parametric Estimation, Geometric 
Approach 

و  روآشكارسازي هايش هندسي درسيستمجداسازي عيب به
و خروجيسازه ـ بررسي تجربي چندگانههاي اي با ورودي

 چكيده
و نتايج حاصل از جداسازي عيب و اعتباربخـشي روش) شناسايي نوع( در اين مقاله، گزارش به روش هندسي در يك قـاب فـولادي ارائـه

و خروجي يابي سيستم مذكور براي عيب  هاي در روش هندسي كه يكي از روش. چندگانه انجام شده است هايهاي ديناميكي داراي ورودي
نظر سازي قاب مورد براي مدل. شودهاي پارامتري شناسايي سيستم انجام مي سازي با استفاده از روش مدل است، مدل يابي مبتني بر عيب

 هـاي يـك يـابي قـاب يادشـده بـه صـورت سيـستم عيـب. پارامتر اسـتفاده شـده اسـت8 با تعداد VARXو ARXهاي پارامتري از مدل 
 در (MIMO)دو خروجـيـو دو ورودي (MISO)خروجييكـ، دو ورودي (SIMO)دو خروجيـ، يك ورودي (SISO)خروجييكـ ورودي

و مقايسه نتايج صورت گرفته است و احتمالي انجام شده و در MIMOتم يابي قـاب مزبـور بـه صـورت سيـس نتايج عيب. دو فضاي معين
دقـاي احتـفض دق بوده، ول برخوردارـت موردقبـمالي از و پاييــ بالاترين ايـو در فـض SISOترين دقت مربـوط بـه سيـستمنـت را دارد
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1. Introduction 

Fault diagnosis methods are generally classified in 
two categories: System-Based and Model-Based 
methods. System-Based methods consist mainly of 
Hardware Redundancy (Voting) [1-2], Software 
Redundancy [3-4] and Fault-Sensitive-Filter 
methods[5-7] and despite being used easily, they 
have major limitations and drawbacks which are: 1) 
requiring detailed mathematical models (usually in 
the state space form) of the process; 2) being 
suitable for sensor and actuator fault detection, and 
are not, in general, applicable for system faults; 3) 
being suitable for the deterministic case and 
suboptimal in the presence of the noise[8]. 
Model-Based methods mainly consist of Multiple 
Model [9-11], Parametric Modeling [12-14] and 
Nearest Neighbor [15] methods which do not have 
the above mentioned limitations and drawbacks, but 
the major disadvantage of these methods is their 
failur if the operational mode is not exactly the 
same as any of the pre-modeled modes.  

Geometric approach in fault diagnosis does not 
have the mentioned limitation and has been 
employed for different systems; However, only the 
SISO systems have been investigated [16-18]. 
Recently, the geometric approach was modified and 
improved to cope with the MIMO systems [19-20]. 
In this paper, an experimental investigation of the 
geometric approach to fault isolation has been 
carried out for a laboratory-scale steel frame 
structure. Based on the number of the inputs and 
measured outputs, the frame was modeled in four 
different types including SISO, MISO, SIMO, and 
MIMO systems. 

In fault diagnosis by the geometric approach, 
each of the faulty modes are modeled as a hyper-
surface, and each hyper-surface is constructed by 
using a group of feature vectors associated with a 
specific faulty mode, where these feature vectors 
are obtained by the parametric system identification 
method. Each feature vector is a point and each 
hyper-surface is a subspace in n-dimensional 
configuration space. 

Fault diagnosis is achieved by calculating 
distances of the feature vector of an unknown 
operational mode with each of the hyper-surfaces; 
that is, the unknown operational mode is assigned 
to the mode in which the calculated distance is the 
minimal. 

The experimental setup is explained in section 
2 and parameter estimation of the frame model 
along with the feature vector representation of the 
system is given in details in section 3. In section 4, 
hyper-surface construction and fault isolation of the 
system are presented. Finally, the results and 

discussion are presented in section 5, and 
conclusion is explained in chapters 6. 

 
2. Experimental Setup 

The experimental setup of the laboratory-scale 
frame structure and its schematic view are shown in 
Fig's. 1-2, respectively 
 
.

Fig. (1): Schematic drawing of the frame 
experimental setup. 

 

Fig. (2): The experimental setup of the frame 
structure.  

As shown in the figure, the frame has 10 elements 
and 2 supports and its members have been made 
from 20 20× mm steel hollow section of which length 
is 300mm. The frame has been mounted on two 
shakers which are excited by support forces exerted 
from the shakers. Tests have been done by the 
PULSE™ system. 

During each test, the data was recorded for 20 
seconds with the sampling frequency of Fs=256 Hz. 
Tests of one input and/or two inputs were 
performed by exciting one or two shakers. The 
shaker which was off in the one-input test was 
considered as a spring support. The input signals 

1 2 3
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Shakers 
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were in the form of swept-cosine. Shaker No. 1 
swept up to 60 Hz and shaker No. 2 swept up to 50 
Hz. The recorded accelerations by the two 
accelerometers were used as the output signals of 
the system. 

 
3. Parameters Estimation and Feature Vector 
Extraction 

The parametric modeling and feature vector 
extraction are explained as follows. 
 
3.1 Parametric Modeling 

In parametric modeling, first an appropriate 
standard input-output model based on the physical 
nature of the system is selected and the order is 
chosen by the AIC criterion [21]. It is to be 
mentioned that in order to make the proposed 
m e t h o d  p r a c t i c a l  a n d  r e a l i s t i c ,  m o d e l 
parameterization (model structure and order) 
remains fixed during the experiments. A part of the 
input-output data of the actual system is fed to the 
selected model, and estimation of parameters is 
performed, then the obtained model is validated by               
one-step-ahead prediction by applying that part of 
data which has not been used in the modeling step.      
Parametric identification of the frame including 
modeling and validating will be explained next. 

3.1.1 Modeling 
One of the major steps in the proposed approach is 
modeling of the system. As the one-step-ahead 
prediction results show, an ARX (Auto Regressive 
with eXogenous input) and VARX (Vector Auto 
Regressive with eXogenous input) models were 
appropriate for modeling the frame. It should be 
mentioned that the proposed method is applicable 
to any type of parametric models. The ARX and 
VARX models are represented in the following 
forms [22]: 
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(4)  

where y, u, and w are output, input, and noise 
signals, respectively. Also, a and b are coefficients 
and 1q − is the backshift operator which is: 

1 ( ) ( 1)q y t y t− = − . (5) 
The first canonical form of the parametric models is 
used in VARX models and described as follows 
[23]. The general form of  VARX model is: 

1 1A( ) ( ) B( ) ( ) ( )q Y t q U t k W t− −= − + , (6) 
1A( )q − and 1B( )q − are matrix polynomials, 

where 1A( )q − in two-output models is as follows: 
1 1

1 21
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3 4
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The first canonical form is defined that the matrix 
polynomial 1A( )q − obeys the following conditions: 
I) 1A( )q − is lower triangular (i.e., 1

2 ( ) 0A q − = );  

II) A(0) = I  ; thus: 
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III) Degree of  1
3 ( )A q − ≤ degree of  1

4 ( )A q − (i.e., 
g r≤ );  
IV) 1B( )q − is arbitrary. 

All the above-mentioned models are written in the 
f o l l o w i n g  l i n e a r  r e g r e s s i o n  f o r m : 
 T( ) ( ) ( )Y t t W tΦ= θ + (9) 
where, ( )Y t and  ( )W t are the output and noise 
signals, respectively; in single-output and two-
output models, they are: 

1 1
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The inputs and outputs of the models are chosen to 
be: 

1 1 2 2 1 1 2 2

1 1 2 2 1

1 1
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MIMO MISO
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1F
uur and 

2F
uur are the forces exerted by the shakers 1 

and 2, and also 1ar and 2ar are the accelerations 
measured by the accelerometers  1 and 2, 
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,
,

,

respectively. Also ( )tΦ 's which include any type of 
the above models, are selected to be: 
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The parametric feature vector in all of the above 
mentioned models is: 

T

1 2 3 4 5 6 7 8 ]θ [θ θ θ θ θ θ θ θ= , (13) 
which consists of 8 entities (four of which 
correspond to the autoregressive estimated 
parameters and the remaining four are associated 
with the exogenous ones). By casting the obtained 
data from the tests in the linear regression form, the 
following set of equations are obtained: 
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M
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(14) 

where, N is the number of measurements (or the 
number of input-output sets). The compact form of 
Eq. (14) may be written as: 
Y W= Φ θ + , (15) 
inwhich, the prediction error vector is: 
W Y= − Φ θ . (16) 
Y and Φ for one-output models are an 1×N vector 
and an 8N × matrix and for two-output models are 

12 ×N vector, and a 2 8N × matrix, respectively. If 
the number of measurements in the one-output 
models is 8, Φ will be a square matrix and if Φ is 
non-singular, the parameter vector will have a 
unique answer which is obtained from solving the 
set of linear Eq. (14). Due to the disturbances and 
model errors, more data will be used (i.e., 8N > ). 
Also, since the first and second rows of Φ in the 
two-output models have 4 non-zero members, the 
number of measurements will be more than 4 times 

(i.e., 4N > ). Finally, the parameter vector θ in any 
of SISO, MISO, SIMO, and MIMO models will be 
obtained by minimizing the prediction errors and 
the least squares method in the following way [22]: 
 [ YΤ −1 Τθ = Φ Φ] Φ . (17) 

 
3.1.2 Validating 
In this step, the responses of the frame and 
parametric models are compared to validate the 
obtained parametric models. The input signals are 
shown in Fig. 3.

Fig. (3): Input signals. 
 

Fig. (4): Single-Input Single-Output responses of 
model and system 

Fig. (5): Two-Input Single-Output responses of 
model and system. 

,
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,
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,
,

.

Fig. (6): Single-Input Two-Output responses of 
model and system. 

 

Fig. (7): Two-Input Two-Output responses of 
model and system. 

 

In order to remove the instabilities of the beginning 
of the tests, the first 20 data in parameter estimation 
were not used. Parameter estimation was done by 
1700 data (21-1720) and validation was also 
performed by using 3400 data (1721-5120). For 
validation, the simulation and one-step-ahead 
prediction results for SISO, MISO, SIMO, and 
MIMO models are shown in Fig's. 4 -7.

3.2 Forming Feature Vector 
In different steps of the geometric approach, model 
parameters were obtained by using all the recorded 
data (except for the transient zone). Since the 
comparison of results corresponding to both 
probabilistic and deterministic spaces is considered 
in validation, the feature vector θ and the distance 
function in the two mentioned spaces will be used 
as follows [24]. In the following the formal 

definition of the distance function and distance 
between the two vectors in deterministic and 
probabilistic senses in our model, are given and 
then the methodology is extended to the distance 
between a point and hyper-surface(s). 
 

3.2.1 Deterministic Space and Distance Function 
The distance between the two deterministic vectors 

[ ]T
1 nx x= Lx and [ ]T

1 ny y= Ly in an n-
dimensional Euclidean space is: 

2 2

2

1

( , ) || ||

( ) .( )

( )

D
T

n

i i
i

d

x y
=

= −

= − −

= −∑

x y x y
x y x y (18) 

In the deterministic space, the members of the 
feature vector, θ , include only the model 
parameters. Therefore, in this space, θ and the 
distance function of two vectors are: 

[ ]TT
1 2 8[ ] ...θµ θ θ θ= =θ , (19)

T( ) [( )( ) ]u u uD tr θ θ θ θµ µ µ µ, = − −θ θ . (20) 
 

3.2.2 Probabilistic Space and Distance Function 

In the probabilistic space, the inner product of two 
elements, x and  y, is defined as: 
( | ) ( . )x y E x y= . (21) 
Since x and y are linear combinations of random 
variables with finite variances, their inner product 
can be calculated from the second-order statistics of 
the random variables. 
For the two scalar random variables x and  y: 
( | ) ( . )
( | ) . xy

x y E x y
x y x y σ

=
= +

 (22) 

where, ( )x E x= and ( . )xy E x yσ = are the 
expectation of x and cross-correlation of the 
random variables x and y, respectively. Hence, the 
norm of x, ||x||, may be written as: 

2 2|| || xx x σ= + , (23) 
and the distance squared between x and y will be: 

2 2

2

2 2 2

( , ) || ||

(( ) )
( ) 2

P

x y xy

d x y x y
E x y
x y σ σ σ

= −

= −

= − + + −

(24) 

where, 2
xσ and 2

yσ are the variances of the random 
vectors x and y, respectively. However, in practical 
application to FDI, the cross-correlation between 
two random variables, 

xyσ , is not a priori known. 
The above expression should be thus modified. 
Denoting as 2d the modified 2d , may be written 
as: 
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and 

,

,
.

,

.

.

.

,
,

,

,
,

,

,

.

2 2 2 2

2 2

( , ) ( ) 2 .

( ) ( )
P x y x y

x y

d x y x y

x y

σ σ σ σ

σ σ

= − + + −

= − + −
, (25) 

Notice that when the random vectors x and y are 
highly correlated the modified distance function is 
equivalent to the real distance function, which: 

( , ) ( , )P Pd x y d x y= . (26) 

Since the norm of the vector x with respect to the 
Modified Probabilistic space can be decomposed 
into two components, namely the mean and the 
variance, hence the modified distance between two 
random variables has a meaningful geometric 
representation. 

For the two random vectors [ ]T
1 mx x= Lx

and [ ]T
1 my y= Ly , the inner product and norm 

cab are extended as follows: 

( , ) ( ( ))
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 (28) 

In the above, 
1

T

1 ,
mm x xx x σ σ =  L LPx and yP is 

also analogous to xP . Px , Py , and Pxy are the 
covariance matrices of the random vectors x, y, and 
their cross-covariance matrix. Tr[.] represents the 
trace of the indicated matrix. The squared distance 
between the two random vectors can be easily 
shown as: 

2

2 2 2

1 1

( , ) [( )( ) ] [ 2 ]

( ) ( 2 )
i i i i

T
P

m m

i i x y x y
i i

d Tr Tr

x y σ σ σ
= =

= − − + + −

= − + + −∑ ∑

x y xyx y x x y y P P P

(29) 
Also, the modified squared distance will be: 

2 ( , ) [( )( ) ]

[( ) ( )]

T
P

T

d Tr= − −

= − −
P P P P

P P P P

x y x y x y
x y x y

 (30) 

Equation (30) is obtained from Eq. (29) by 
approximating

i i i ix y x yσ σ σ= . Indeed, in the 
probabilistic space, the members of the feature 
vector, θ , include the model parameters as well as 
their variances. Therefore, in this space, θ and the 
distance function of two vectors are: 

1 8

TT T 2 2
1 8[ ( ) ]diagPθ θ θ θµ θ θ σ σ = =  L Lθ , (31) 

T 2 2 2 2 T( , ) [( )( ) ( )( ) ]u u
u u uD tr θ θ θ θ θ θθ θ

µ µ µ µ σ σ σ σ= − − + − −θ θ . (32) 

Parameters' variances which are the diagonal 
members of the parameters' covariance matrix are 
obtained as follows [25]: 

 0

0

:= Cov( ) = (

= [(Y (Y /( 12)

P
mean N

θ θ Τ −1

Τ

λ Φ Φ)

λ −Φθ) −Φθ)] −
(33) 

 

4. Modeling of Faulty Modes and Fault 
Detection and Isolation 
Consider that the actual fault locus depends upon 
the number of physical parameters involved in the 
fault mode. Thus, if a system fault corresponds to 
only one physical parameter variations (for 
example, K), the estimated parameters (in the 
estimated parameter space) will be functions of that 
parameter only. For instance, in the one-degree-of-
freedom example, three estimated parameters 
change because of changes in only one physical 
parameter, i.e., stiffness. Since in this study the 
small to moderate variations are considered, the 
actual fault locus is a line (hyper-surface) in the 3-
dimensional parameter spaces (generally speaking, 
hyper-space). The crack fault is represented by the 
variation of the physical parameters K (spring 
coefficient) and C (damping coefficient), and fault 
representation will be two lines correspond to the 
case where only K or C vary. As it may be seen, the 
hyper-surface associated with the variation of K 
and C can in this case be well approximated by a 
hyper-plane. 
 
4.1 Hyper-Planes Construction of the Frame’s 
Fault Modes  
Cracks with various severity and locations in 
members 4, 5, and 6 were considered as three 
different faulty modes. Then the tests were 
performed and the related feature vectors were 
formed. Finally, using the feature vectors in 
constructing the hyper-plane, modeling of the fault 
mode was carried out. 
For this purpose, three frames were prepared, each 
of which were used separately for modeling as well 
as validating the proposed fault isolating method. 
Testing and recording data of the faulty modes were 
started when the member had one crack, then by 
producing another crack, tests and data recordings 
were repeated This procedure continued until the 
necessary number of faults in each mode is 
obtained for hyper-plane construction, which in our 
case was 33 faults for each member. In order to 
control the test, and save time, the cracks are 
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.

initiated by producing grooves by coping as shown 
in Fig. 8.

Fig. (8): The cracked frame structure. 

 
The locus of feature vectors corresponds to ith mode 
( 1,2,3)i = is a hyper-plane (i.e., ( ) 0if =θ ). In the 
deterministic space (i.e., [ ]T

1 2 8θ θ θ= Lθ ), the 
equation of the  hyper-plane is: 
 

1 2 1 3 2 8 7 0
i i i i iθ θ α θ α θ α α+ + + + + 0  ;  = 1, 2,3L = , (34) 

where, i
jα ( 0,1,2, ,7)j K= are the  hyper-plane's 

coefficients, that is, the normal vector ni,
representing the ith hyper-plane is: 

T
1 2 7[1 ]i i i in α α α= L . (35) 

The system of equations to obtain the hyper-plane's 
coefficients will be: 

T
0( ) ( ) 0i i if n α= + =θ θ . (36) 

Any of the feature vectors obtained from a specific 
member fault related to the ith mode should yield 
the equation of the ith hyper-plane ( ( ) 0if =θ ). 
Therefore, by replacing the parameters from N
faults related to the ith mode in Eq. (34), N
equations will be obtained by which the hyper-
plane coefficients can be estimated. Considering the 
stochastic properties of the system and to estimate 
the hyper-plane coefficients properly, the number 
of equations is considered to be over two times of 
the number of hyper-plane coefficients [26]. As in 
Eq. (19), the members of the feature vector in the 
deterministic space are the same as the model 
parameters i.e. the number of the hyper-plane 
coefficients is the same as the number of model 
parameters. Therefore, in order to estimate the 
hyper-plane coefficients properly, the parameters of 
17 (2 8 1)× + different faults of each mode were 

used and consequently the following system of 
equations have been obtained: 

 

1 1 1 1
1 2 1 3 2 8 7 0

2 2 2 2
1 2 1 3 2 8 7 0

17 17 17 17
1 2 1 3 2 8 7 0

0

0

0

i i i i i i i i

i i i i i i i i

i i i i i i i i

θ θ α θ α θ α α

θ θ α θ α θ α α

θ θ α θ α θ α α

+ + + + + =

+ + + + + =

+ + + + + =

L

L

M M M M M M

L

(37) 

To estimate the hyper-plane's coefficients, the 
above-mentioned system of equations is in the form 
of linear regression as: 

 

1 1 1 1
2 3 8 0 1

2 2 2 2
2 3 8 1 1

17 17 17 17
2 3 8 7 1

1
1

1

i i i i i

i i i i i

i i i i i

θ θ θ α θ
θ θ θ α θ

θ θ θ α θ

     
     
     = −
     
     

         

K

K

M M M M M M

K

, (38) 

or, in the compact form: 
 

1ai i iψ α = − , (39)
where, iα and iψ are a 8 1× vector and a 17 8×
matrices, respectively. The hyper-plane’s 
coefficients vectors were estimated by the least 
squares method as follows[26]: 

T 1 T
1[( ) ] ( ) ( a )i i i i iα ψ ψ ψ−= − . (40) 

Estimating the  hyper-plane coefficients in the 
probabilistic space were performed in the similar 
way, but according to Eq. (31) the members of the 
feature vector in the probabilistic space include 
parameters variances as well as model parameters 
i.e., the number of the  hyper-plane coefficients is 
twice as much as the number of model parameters. 
Therefore, in order to estimate the hyper-plane 
coefficients properly, the parameters of 33 
(2 16 1)× + different faults of each mode were 
used. 
 

4.2 Fault Detection and Isolation 

Occurrence of a crack was considered as a fault, 
whereas the presence of crack(s) in any of the 
members 4, 5, or 6 was regarded as a faulty      
mode. By creating 1 to 39 cracks in each                
o f  the  members ,  and  per forming of  tes ts                 
by frame shaking, the data of 39 different           
faults for each of the aforementioned members 
were recorded and the data of 33 situations            
for modeling the faulty mode (in the probabilistic 
space) and the data of remaining situations             
(6 situations) were used as unknown operational 
modes which were tiny, moderate and sever faults. 
It is necessary to mention that modeling the faulty 
modes in the deterministic space was performed by 
using the data obtained from 17 situations. It   
should be noticed that the data used in the                    
u n k n o w n  o p e r a t i o n a l  m o d e s  w e r e  n o t                  
used for modeling the faulty modes. Considering 6 
unknown operational modes in each of the three 

,
,
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,
.

.

,

,
.

,

members, 18 unknown operational modes for fault 
i s o l a t i o n  w e r e  d o n e  a l l  t o g e t h e r . 
For fault isolation, the distance between feature 
vector of the unknown operational mode uθ , and 
each of the hyper-planes corresponding to the faulty 
modes are calculated by minimizing the distance 
between vector uθ to vector θ associated with each 
hyper-plane (minimizing the distance function is 
subject to the hyper-plane equation  ( ) 0if =θ ).  
In order to increase the computational efficiency 
and noting that the distance function is always non-
negative, the quadratic form of the distance 
function was minimized. To convert the constrained 
minimization to an unconstrained optimization, the 
Lagrange Multipliers approach is adopted [27]. The 
Lagrangian is obtained by using the Lagrange 
Multipliers and the distance function as follows: 

2

T
0

( , ) ( )
( )( ) (( ) )

u i

u u i i

L d f
n

γ

γ α

= +
= − − + +

θ θ θ

θ θ θ θ θ
 (41)                                           

where, γ and ( , )ud θ θ are the Lagrange multiplier 
and the distance between vector uθ and vectors θ ,
respectively. Optimizing L is equivalent to 
minimizing the distance function which is subject 
to the hyper-plane equation. The optimizing L and 
forming the following equations are performed by 
differentiation of L with respect to θ and γ :

0

0

L

L
γ

∂ = ∂
∂ =
∂

θ (42)                                                      

Therefore, a set of 1 8+ linear equations in the 
deterministic space and a set of 1 16+ linear 
equations in the probabilistic space were obtained 
and rewritten in the following form and by solving 
them a θ was obtained, in which the Lagrangian is 
optimal, i.e. the amount of the distance function is 
minimal: 

T
0( ) 0

ui

ii

I n
n γ α

    
=      −    

θ θ , (43)                                                

where, I is an 8 8× identity matrix in the 
deterministic space and a 16 16× identity matrix in 
the probabilistic space. Considering Eqs. (41) and 
(42), minimization of L includes the hyper-plane 
equation ( ) 0if =θ , and the minimum distance of 

uθ to sθ related to the aforementioned  hyper-
plane. So, the distance between vector uθ and the 
hyper-plane ( ) 0if =θ which is the optimal of L is 
obtained by solving Eq. (43) in the following way: 

 
T 1 T

0

( , ( )) ( , ) ; ( )
[( ) ] [( ) ]

u i u i

i i i i u i

d f Min d f
n n n n α−

= ∈

= +

θ θ θ θ θ θ

θ
(44)

By repeating the above-mentioned procedure for 
each one of the operational modes, the distances 
between the vector uθ and the hyper-planes were 
obtained. Finally these calculated distances are 
compared with each other and the unknown 
operational mode is classified as the mode with 
which the calculated distance is the minimum. That 
is: 

( , ( )) ( , ( )) ; , 1, 2,3
( )

u i u j

u i

d f d f i j i j
f
< ∀ ≠ =

∈

θ θ θ θ

θ θ
 (45) 

 

5. Results and Discussion 
In this study two test sets, Set 1 with single input 
and two outputs, and Set 2 with two inputs and two 
outputs were carried out. The input-output signals 
from both set of the tests were recorded.  
Set 1 consists of the two SISO and SIMO subsets, 
and Set 2 includes the two MISO and MIMO 
subsets.  

For fault isolation, the distances of the feature 
vectors of the unknown operational modes to any of 
the faulty mode hyper-planes have been calculated. 
For example, the calculated distances in the 
probabilistic and deterministic spaces between the 
points of unknown operational modes and the faulty 
mode hyper-planes are presented in the form of 
MIMO system in the table 1. In this table, every 
line represents the distances of the feature vector of 
an unknown operational mode from the faulty mode 
hyper-planes. The minimum quantity in each line is 
bold typed, and the minimum quantity is underlined 
if it does not specify the correct answer.  

As it is seen, the results of the frame's fault 
isolation in the form of MIMO system in the 
probabilistic space is free from errors, in other 
words, the minimum distance in all lines is related 
to the hyper-plane corresponding to the faulty 
member. Also, 15 correct and 3 wrong answers 
were obtained after performing (fault isolation) 18 
times of the frame in the MIMO system in the 
deterministic space. 

Like the above-mentioned procedure, fault 
diagnoses of the frame were done by using one or 
two inputs and one or two outputs. The number and 
the percentage of the fault isolation errors of the 
frame in the forms of SISO, MISO, SIMO, and 
MIMO systems are presented in table 2.

.
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Table (1): Results of fault isolation of the frame in the form of MIMO system . 

 

Table (2): Number and percentage of the fault 
isolation errors. 

SISO SIMO MISO MIMO System 
Space 

4120Quantity 

22.22% 5.56% 11.11% 0%Percent 
Probabillistic 

5433Quantity 

27.78% 22.22% 16.68% 16.68% Percent 
Deterministic 

As it is considered, fault diagnoses of the frame in 
the forms of MIMO and SISO systems have the 
highest and lowest performance, respectively; this 
results are compared and shown in Fig. 9.

Fig. (9): Results of fault isolation in MIMO and 
SISO frame. 

 
The above results show that increasing the number 
of inputs improves the fault isolation performance; 
as classification error in MIMO model is less than 
SIMO one, and in MISO model less than the SISO 
one. The reason is the outputs' further enrichment 
which is caused by further activation of the system 
dynamics caused by increasing the number of 
inputs.  

Also, fault isolation scheme in two-output 
models performs better compared the single-output 
ones; as classification error in MIMO model is less 
than MISO one, and in SIMO model less than the 
SISO one.  The reason is to acquire further 
information on the system dynamics through 
increasing the number of outputs, while the 
parametric system identification in two-output 
models can be done by using less measurement 
( 4)N > than single-output models ( 8)N > .

By using probabilistic space in calculating of 
the distances and utilizing variances of the 
estimated parameters in addition to the parameters 
themselves, the FDI performance noticeably 
improved in comparison with the deterministic one. 
Fig. 10 compares the rate of errors of fault isolation 
in SISO, MISO, SIMO, and MIMO systems. 

Deterministic Distance from  Hyper-plane Probabilistic Distance from  Hyper-plane 
F3F2F1F3F2F1

Test 
Number Faults 

1
2
3
4
5

2.3200e-004 2.3093e-003    5.5144e-003 
2.3142e-004 2.0608e-003    5.3362e-003 
4.3686e-004 8.4591e-004    7.6335e-003 
2.8688e-005 4.2582e-005    8.3421e-003 
4.4380e-004 2.2077e-003    1.1217e-002 
2.5976e-004 1.3218e-003    8.7209e-003 

 2.3005e-012 1.6217e-011    1.0130e-011 
 1.3354e-012 1.5400e-011    9.5453e-012 
 1.1065e-012 1.8687e-011    3.2483e-012 
 1.9306e-014 2.1404e-011    3.1408e-012 
 8.4340e-013 1.8475e-011    6.8764e-012 
 2.3736e-012 1.7502e-011    6.0147e-012 6

F1:
Faulty 

Member4 

7
8
9

10 
11 

7.6126e-004    9.7586e-005 7.1209e-003 
4.0388e-004 8.3286e-004    2.5229e-003 
1.8003e-003    3.0373e-004 5.1797e-003 
7.2743e-004    4.8334e-004 1.3036e-003 
1.6897e-003    8.9704e-004 4.9601e-003 
2.1886e-003    2.2853e-004 4.7232e-003 

 3.4241e-011    4.1363e-013 3.6151e-012 
 3.0898e-011    3.6468e-014 2.0231e-013 
 4.2078e-011    2.1039e-013 2.0450e-012 
 3.5401e-011    6.7073e-014 3.0478e-012 
 4.6462e-011    1.5614e-013 9.2019e-013 
 4.0829e-011    8.3354e-013 1.9650e-012 12 

F2:
Faulty 

Member5 

13 
14 
15 
16 
17 

4.4344e-003    2.1099e-003    1.1869e-005 
1.3698e-002    1.2593e-003    2.1204e-004 
2.1170e-003    5.6053e-004    3.7282e-004 
4.4330e-004    2.1853e-004 1.6509e-003 
3.3998e-003    1.1876e-003    2.6274e-004 
1.7846e-003 2.8420e-003    3.4080e-003 

 2.8930e-011    1.1257e-011    1.5490e-012 
1.2642e-010    3.2231e-011    7.2291e-013 
1.8278e-011    8.8013e-012    5.9336e-013 
1.0577e-011    7.4291e-012    1.6345e-012 
2.3523e-011    1.0914e-011    9.8662e-013 
8.0376e-012    3.2702e-012    2.8031e-012 18 

F3:
Faulty 

Member6 
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Fig. (10): Fault isolation errors in the probabilistic 
and deterministic spaces. 

 

In addition, the experimental results and the 
obtained results from simulation by a finite element 
model of the frame mentioned in Ref. [19] are 
compared in table 3 as follows: 
 

Table (3): Percentage of the fault isolation errors in 
experimental and simulation tests. 

SISO SIMO MISO MIMO System 
Space 

8.49% 7.78% 7.51% 5.81% Simulation 

22.22% 5.56% 11.11% 0%Experimental 
Probabillistic 

28.49% 18.11% 30.60% 8.51% Simulation 

27.78% 22.22% 16.68% 16.68% Experimental 
Deterministic 

The comparison between experimental and 
simulation results in the above table shows the 
agreement of the experimental results. 
 

6. Conclusion 
Fault isolation in a frame was performed 
successfully through the proposed geometric 
approach. The best performance of fault isolation 
scheme was obtained for MIMO case. Moreover, in 
all SISO, MISO, SIMO, and MIMO cases, the 
probabilistic distance function out formed the 
deterministic one. The least performance of fault 
isolation was obtained for SISO case and 
deterministic space with about 28% classification 
errors. A any way, increasing the number of input 
or output measurements improve the proposed 
method's performance. 
 

Acknowledgement 
The tests mentioned in this paper have been done in 
the Modal Analysis Research Laboratory of 
Mechanical Engineering Department in Tehran 
University. I should appreciate that laboratory 
staff's warm cooperation, especially Mr. Shervin 
Shahsavari's. 
 

References 
1-Willsky, A. S., "A Survey of Design Methods for 

Failure Detection in Dynamic System", 
Automatica, Vol. 12, No. 6, pp. 601-611, 1976. 

2-Gilmore, J. and McKern, R., "A Redundant Strap-
down Inertial Systems Mechanization", 
Presented at AIAA Guidance, Control, and 
Flight Mechanics Conf., Santa Barbara, CA, pp. 
17-19, Aug. 1970. 

3-Tokatli, F., Cinar, A., and Schlesser, J.E., 
"HACCP with Multivariate Process Monitoring 
and Fault Diagnosis Techniques: Application to 
a Food Pasteurization Process", Food Control, 
Vol. 16, No. 5, pp. 411-422, 2005. 

4-Lyde, T.L.  and Zimmerman, D.C., "Sensor 
Failure Detection and Isolation in Flexible 
Structure, Using System Realization 
Redundancy", AIAA J. Guidance, Control, and 
Dynamics, Vol. 16, No. 3, pp. 490-497, 1993. 

5-Frisk, E., Aslund, J., "Lower Orders of 
Derivatives in Non-linear Residual Generation 
using Realization Theory", Automatica, Vol. 41, 
No. 10, pp. 1799-1807, 2005. 

6-Weihua, Li and Sirish, L.Sh., "Structured 
Residual Vector-based Approach to Sensor 
Fault Detection and Isolation", J. Process 
Control, Vol. 12, No. 3, pp. 429-443, 2002. 

7-Zhengang H., Weihua, L., and Sirish L.S., "Fault 
Detection and Isolation in the Presence of 
Process Uncertainties", Control Eng. Practice, 
Vol. 13, No. 5, pp. 587-599, 2005. 

8- Sadeghi, M.H. and Fassois, S.D., “Geometric 
Approach to Failure Identification in Stochastic 
Dynamical Systems,” Ph.D. Dissertation, Mech. 
Eng. Dep't., Univ. of Michigan, Ann Arbor, 
1994. 

9-Boukhris, A., Giuliani, S., and Mourot, G., 
"Rainfall-Runoff Multi-Modelling for Sensor 
Fault Diagnosis", Control Eng. Practice, Vol. 9, 
No. 6, pp. 659-671, 2001. 

10-Watanabe, K., Yoshimura, T., and Soeda, T.A., 
"A Diagnosis Method for Linear Stochastic 
Systems with Parametric Failures", ASME J. 
Dynamic Systems, Measurement and Control, 
Vol. 103, No. 1, pp. 28-35, 1981. 

11-Basseville, M.A., Benveniste, A., Moustakides, 
G.V., and Rougee, A., "Detection and 
Diagnosis of Abrupt Changes in Modal 
Characteristics of Nonstationary Digital 
Signals", IEEE Transaction on Information 
Theory, Vol. 32, No. 3, pp. 412-417, 1986. 

12-Isermann, R., "Fault Diagnosis of Machines via 
Parameter Estimation and Knowwledge 
Processing", Automatica, Vol. 29, No. 4, pp. 
815-835, 1991. 

13-Bachschmid, N., Pennacchi, T., and Venia, A., 
"Identification of Multiple Faults in Rotor 

Archive of SID

www.SID.ir

http://www.nitropdf.com/
http://www.sid.ir


Geometric Approach to …                                                                                                                                                          87

Systems", J. Sound and Vibration, Vol. 254, No. 
2, pp. 327-366, 2002. 

م-14 ن. همايون صادقي، سازي يك موتور مدل"،.و رحيمي،
هاي پارامتري شناسايي سوخت مايع با بكارگيري روش

مهندسي) بين المللي(، پانزدهمين كنفرانس سالانه"ستمسي
.1386مكانيك، دانشگاه صنعتي اميركبير، 

15-Gersch, W., Brotherton, and T., Braun, S., 
"Nearest Neighbor Time Series Analysis 
Classification of Faults in Rotating Machinary", 
ASME J. Vibration, Acoustics, Stress, and 
Reliability in Design, Vol. 105, No. 2, pp. 178-
184, 1983. 

16-Sadeghi, M.H. and Fassois, S.D., “Geometric 
Approach to Nondestructive Identification of 
Faults in Stochastic Structural Systems”, AIAA 
J., Vol. 35, No. 4, pp. 700-705, 1997. 

17-Sakellariou J.S. and Fassois S.D., "Parametric 
Output Error Based Identification and Fault 
Detection in Structures Under Earthquake 
Excitation", European COST F3 Conf. on 
System Identification and Structural Health 
Monitoring, Madrid, Spain, pp. 323-332, 2000. 

18- Sadeghi, M.H., “Failure Detection and Isolation 
in a Liquid Propellant Engine”, Technical 
Report of Shahid Hemat Group, 2003. 

19-Rahimi, N., Sadeghi, M.H., and Mahjoob, M.J. 
"Performance of the Geometric Approach to 
Fault Detection and Isolation in SISO, MISO, 
SIMO and MIMO Systems", J. Zhejiang Univ. 
SCIENCE A, Vol. 8, No.9, pp. 1443-1451, Sep. 
2007.  

ن-20 م. رحيمي، م.، همايون صادقي، و"،.و محجوب، آشكارسازي
 ـ  بـا اسـتفاده از روش هندسـيه جداسازي عيب در چرخدنده ب

ــي و خروج ــايورودي ــهه ــرانس" چندگان ــانزدهمين كنف ، ش
مهندسـي مكانيـك، دانـشگاه شـهيد بـاهنر) بين المللي(سالانه

.1387كرمان، 
21-Schwartz, G., “Estimating the Dimension of a 

Model”, Annals of Statistics, Vol. 6, No. 1, pp. 
461-464, 1987. 

22-Soderstrom, T. and Stoica, P., “System 
Identification”, Prentice Hall, U.K., 1989. 

23-Kashyap, R.L., and Rao, A.R., “Dynamic 
Stochastic Models from Empirical Data”, 
Academic Press, New York, 1976. 

24-Luenberger, D., “Optimization by Vector Space 
Method”, Wiley, 1986.  

25-Ljung, L., “System Identification Theory for the 
User”, Prentice Hall, 2nd Ed., New Jersey, 
1999. 

26-Myers, R.H., “Classical and Modern Regression 
with Applications”, Duxbury Advanced Series 
213-221, 1990. 

27-Strang, G. “Introduction to Applied 
Mathematics”, Wellsley, Mass., Wellsley-
Camridge Press, 1986. 

Archive of SID

www.SID.ir

http://www.nitropdf.com/
http://www.sid.ir

