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ABSTRACT

In this paper, fault isolation of a laboratory scale structural frame, as a multivariate system, has been
investigated, using a geometric approach in conjunction with parametric system identification. The proposed
geometric approach is based on the assumption that each fault mode may be regarded as a hyper-surface in an
appropriate topological space, where the hyper-surfaces are constructed based on the estimated parameters.
Finally, by defining proper metric and assuming the unknown mode (of a system) being as a point in space,
where the estimated parameters are the coordinates, the fault mode can be identified by minimizing the obtained
distances between the point and each of the hyper-surfaces. Based on the number of inputs and measured
outputs, the frame was modeled by standard ARX and VARX models in four different forms as Single-Input
Single-Output (SISO), Single-Input Multiple-Output (MISO), Single-Input Multiple-Output (SIMO) and
Multiple-Input Multiple-Output (MIMO). Also, the performance of the scheme was evaluated in deterministic
and probabilistic spaces. The obtained results revealed that the MIMO representation of the frame in the
probabilistic space had an acceptable performance which was the highest in comparison with the others and the
SISO representation system in the deterministic space had the lowest performance.

Key Words: Fault Isolation, Multivariate Systems, Structural Systems, Parametric Estimation, Geometric
Approach
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1. Introduction

Fault diagnosis methods are generally classified in
two categories: System-Based and Model-Based
methods. System-Based methods consist mainly of
Hardware Redundancy (Voting) [1-2], Software
Redundancy [3-4] and Fault-Sensitive-Filter
methods[5-7] and despite being used easily, they
have major limitations and drawbacks which are: 1)
requiring detailed mathematical models (usually in
the state space form) of the process; 2) being
suitable for sensor and actuator fault detection, and
are not, in general, applicable for system faults; 3)
being suitable for the deterministic case and
suboptimal in the presence of the noise[8].
Model-Based methods mainly consist of Multiple
Model [9-11], Parametric Modeling [12-14] and
Nearest Neighbor [15] methods which do not have
the above mentioned limitations and drawbacks, but
the major disadvantage of these methods is their
failur if the operational mode is not exactly the
same as any of the pre-modeled modes.

Geometric approach in fault diagnosis does not
have the mentioned limitation and has been
employed for different systems; However, only the
SISO systems have been investigated [16-18].
Recently, the geometric approach was modified and
improved to cope with the MIMO systems [19-20].
In this paper, an experimental investigation of the
geometric approach to fault isolation has been
carried out for a laboratory-scale steel frame
structure. Based on the number of the inputs and
measured outputs, the frame was modeled in four
different types including SISO, MISO, SIMO, and
MIMO systems.

In fault diagnosis by the geometric approach,
each of the faulty modes are modeled as a hyper-
surface, and each hyper-surface is constructed by
using a group of feature vectors associated with a
specific faulty mode, where these feature vectors
are obtained by the parametric system identification
method. Each feature vector is a point and each
hyper-surface is a subspace in n-dimensional
configuration space.

Fault diagnosis is achieved by calculating
distances of the feature vector of an unknown
operational mode with each of the hyper-surfaces;
that is, the unknown operational mode is assigned
to the mode in which the calculated distance is the
minimal.

The experimental setup is explained in section
2 and parameter estimation of the frame model
along with the feature vector representation of the
system is given in details in section 3. In section 4,
hyper-surface construction and fault isolation of the
system are presented. Finally, the results and

discussion are presented in section 5, and
conclusion is explained in chapters 6.
2. Experimental Setup

The experimental setup of the laboratory-scale
frame structure and its schematic view are shown in
Fig's. 1-2, respectively

Accelerometers

No.1 No.2
l/ | |
1 2 3
1 b B
i 4 5 6 :
No.2 No.1
Shakers

Fig. (1): Schematic drawing of the frame
experimental setup.

Fig. (2): The experimental setup of the frame
structure.

As shown in the figure, the frame has 10 elements
and 2 supports and its members have been made
from 20 x 20 ., steel hollow section of which length
is 300,,,. The frame has been mounted on two
shakers which are excited by support forces exerted
from the shakers. Tests have been done by the
PULSE™ gystem.

During each test, the data was recorded for 20
seconds with the sampling frequency of Fs=256 Hz.
Tests of one input and/or two inputs were
performed by exciting one or two shakers. The
shaker which was off in the one-input test was
considered as a spring support. The input signals
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were in the form of swept-cosine. Shaker No. 1
swept up to 60 Hz and shaker No. 2 swept up to 50
Hz. The recorded accelerations by the two
accelerometers were used as the output signals of
the system.

3. Parameters Estimation and Feature Vector
Extraction

The parametric modeling and feature vector
extraction are explained as follows.

3.1 Parametric Modeling

In parametric modeling, first an appropriate
standard input-output model based on the physical
nature of the system is selected and the order is
chosen by the AIC criterion [21]. It is to be
mentioned that in order to make the proposed
method practical and realistic, model
parameterization (model structure and order)
remains fixed during the experiments. A part of the
input-output data of the actual system is fed to the
selected model, and estimation of parameters is
performed, then the obtained model is validated by
one-step-ahead prediction by applying that part of
data which has not been used in the modeling step.
Parametric identification of the frame including
modeling and validating will be explained next.

3.1.1 Modeling

One of the major steps in the proposed approach is
modeling of the system. As the one-step-ahead
prediction results show, an ARX (Auto Regressive
with eXogenous input) and VARX (Vector Auto
Regressive with eXogenous input) models were
appropriate for modeling the frame. It should be
mentioned that the proposed method is applicable
to any type of parametric models. The ARX and
VARX models are represented in the following
forms [22]:

4 3
Zana y@E-n)= anh ut-n)+tw(t); a, =1 (M
n,=0

n, =0

a, y(t-n,)=
d -1 47| W (t) 2
Z I:bl +b,q~ bytbhyg ] +w(?) &
n, =0 uz (t)
»ay =1 s
|:1+a]ql +a,q” 0 :||:yl(l)}:
ayq” l+aq™ || »,(0) 3)

|:b1 +b2q]l:|u(l‘)+{wl(t):| ’
b, +b,q w, (1)

{Halq”azqz 0 Myl(t)}:
wi' 1rag o “

|:b1 b2}|:”1(t):|+|:wl(t)i|

by b |lu()] |w(®) ]’

where y, u, and w are output, input, and noise
signals, respectively. Also, a and b are coefficients
and ¢ ! is the backshift operator which is:

g y®)=y-1- )
The first canonical form of the parametric models is

used in VARX models and described as follows
[23]. The general form of VARX model is:

Alg™) Y (®)=B@") Ut-k)+W (), (6
A(g™") and B(g™') are matrix polynomials,

where A(g ") in two-output models is as follows:

A -y 4 -1

A(ql){ @) Aila l)} o
A,(q7) A,q7)

The first canonical form is defined that the matrix

polynomial A(g ™) obeys the following conditions:
I) A(g™") is lower triangular (i.e., 4,(¢7)=0);

II) A(0) =1 ; thus:
A](qil) :1+a11q71 +a12q72 +"'+a1/qil >

As(‘]_l):amq_l"'aazq_z +"'+a3gq_g ®)

2

A4(q71) :1+a41q71 ""142‘]72 +eta, g

IIT) Degree of 4,(g™') < degreeof 4,(¢™") (ie.,
g=<r);
IV) B(g ") is arbitrary.

All the above-mentioned models are written in the
following linear regression form:

Y (t)=@'(t) 0+W (t) ©
where, Y (¢) and W () are the output and noise
signals, respectively; in single-output and two-
output models, they are:

WH)=w) ,Y(©)=y¢) , and
[wo] o [xo (10)
o= Lw)} 0= Lzaj '

The inputs and outputs of the models are chosen to
be:

MMO:{FFI n=F MSO:{%:E w=F
NEa »=a y=q (11)
u=K u=HK
SIMO: , SISO:
Y=a y=a y=q

F, and F, are the forces exerted by the shakers 1

and 2, and also g, and g, are the accelerations

measured by the accelerometers 1 and 2,
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respectively. Also @(¢)'s which include any type of
the above models, are selected to be:

(i.e., N >4). Finally, the parameter vector 0 in any
of SISO, MISO, SIMO, and MIMO models will be
obtained by minimizing the prediction errors and
the least squares method in the following way [22]:
0=[® D] 'D"Y . (17)

3.1.2 Validating
In this step, the responses of the frame and
parametric models are compared to validate the

_y(t—l)_ >)’|(f*1) 0|
y(-2) yi(t-2) 0
y(-3) uy(t) 0
_lya-4 _|m@=n 0
(p(t)SISO - u, (1) > @(t)S’MO - 0 yi(@-1)
uy (t-1) 0 ya(t-1)
u, (t-2) 0 u(t)
Luy (t-3) | | o uy (t-1) |
(12)
[y -1 ] [y o]
y(t-2) yi(t=2) 0
y(t-3) uy (1) 0
_ly-4 _ | ux(®) 0
Dt)yus0 = u (t) |’ PO mo = 0 »ne-n|°
uy (t-1) 0 yo(t-1)
u,y (1) 0 uy (1)
luy (£-1) | L 0 uy(t) |

The parametric feature vector in all of the above
mentioned models is:

0=[6, 0, 0, 6, 6. 6, 0, 6,1, (13)
which consists of 8 entities (four of which
correspond to the autoregressive estimated
parameters and the remaining four are associated
with the exogenous ones). By casting the obtained
data from the tests in the linear regression form, the
following set of equations are obtained:

Y() =@ )0+ (1) >
Y(2)=@"(2)0+W(2) >

Y(N)=@"(N)O+W(N) > (14)
Y@ o' |6 ] (WD)
Y(2) |_ o' || 6, . w(2)
Y(N)| |@"(N) || 6| |W(N)

where, N is the number of measurements (or the
number of input-output sets). The compact form of
Eq. (14) may be written as:

Y=00+W, (15)
inwhich, the prediction error vector is:
W=Y-D6. (16)

Y and @ for one-output models are an y x1 vector
and an n xg matrix and for two-output models are
2N x1 vector, and a 2N x§ matrix, respectively. If
the number of measurements in the one-output
models is 8, ® will be a square matrix and if ® is
non-singular, the parameter vector will have a
unique answer which is obtained from solving the
set of linear Eq. (14). Due to the disturbances and
model errors, more data will be used (i.e., N >8).
Also, since the first and second rows of ® in the
two-output models have 4 non-zero members, the
number of measurements will be more than 4 times

obtained parametric models. The input signals are
shown in Fig. 3.

Input Signals Swept-fraquancy oosing
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Fig. (3): Input signals.
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Fig. (4): Single-Input Single-Output responses of
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Fig. (5): Two-Input Single-Output responses of
model and system.
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One-stepahead Predolion with the SIMO systern and modal
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Fig. (6): Single-Input Two-Output responses of
model and system.
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Fig. (7): Two-Input Two-Output responses of
model and system.

In order to remove the instabilities of the beginning
of the tests, the first 20 data in parameter estimation
were not used. Parameter estimation was done by
1700 data (21-1720) and validation was also
performed by using 3400 data (1721-5120). For
validation, the simulation and one-step-ahead
prediction results for SISO, MISO, SIMO, and
MIMO models are shown in Fig's. 4 -7.

3.2 Forming Feature Vector

In different steps of the geometric approach, model
parameters were obtained by using all the recorded
data (except for the transient zone). Since the
comparison of results corresponding to both
probabilistic and deterministic spaces is considered
in validation, the feature vector @ and the distance
function in the two mentioned spaces will be used
as follows [24]. In the following the formal

definition of the distance function and distance
between the two vectors in deterministic and
probabilistic senses in our model, are given and
then the methodology is extended to the distance
between a point and hyper-surface(s).

3.2.1 Deterministic Space and Distance Function
The distance between the two deterministic vectors

x”]T and y :[yI . yn]T in an n-
dimensional Euclidean space is:
dyey)= llx-yIf >

(x-p) (x-p) >

Zri:(xi —J/,-)z .

In the deterministic space, the members of the
feature vector, O, include only the model
parameters. Therefore, in this space, 6 and the
distance function of two vectors are:

0 :[/'IH]T :[91 o, GS]T’
D(0,0") =tr[(1, — 1)) (K, _/j;)T]‘

x:[xI

(18)

(19)
(20)

3.2.2 Probabilistic Space and Distance Function

In the probabilistic space, the inner product of two
elements, x and y, is defined as:

x[y)=Exy) @1
Since x and y are linear combinations of random
variables with finite variances, their inner product
can be calculated from the second-order statistics of
the random variables.

For the two scalar random variables x and y:
x[y)=Exy) ,

(x[y)=xy+o,,

(22)

where, x =E(x) and o, =E(x.y)are the

expectation of x and cross-correlation of the
random variables x and y, respectively. Hence, the
norm of x, ||x||, may be written as:

x| = {x*+o’, (23)

and the distance squared between x and y will be:

dp(x,y) = llx=y |, 9
= E(x-v)) | 24)
- - —\2 2 2
- (x _y) +Ux +O—y _Zaxy *

where, o-f and g}? are the variances of the random

vectors x and y, respectively. However, in practical
application to FDI, the cross-correlation between
two random variables, o, is not a priori known.

The above expression should be thus modified.

Denoting as d > the modified d*, may be written
as:
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di(x,y) = (X-y)+o;+0; -20,.0, (25)

F-y)+(o, ~0,).

Notice that when the random vectors x and y are
highly correlated the modified distance function is
equivalent to the real distance function, which:

dp(x,y) = dp(x,y). (26)

Since the norm of the vector x with respect to the
Modified Probabilistic space can be decomposed
into two components, namely the mean and the
variance, hence the modified distance between two
random variables has a meaningful geometric
representation.

For the two random vectors x :[xl ox,

and y :[yl
cab are extended as follows:

(x.y) = Tr(E(xp"))>
TrE 37 1+THE (x -6y —5) 127
=Tr[x y" 1+Tr[P,]>

T

. ym]T, the inner product and norm

Tr(E(xxT ) >

= Trlx x 1+Tr[E((x =x)(x —X) )]> (28)

=
0

= Y &7 +Tr[P.]>
i=1

m

= Z(fiz +O'X2’)5
i=1

= xlx, .
_ _ T .

In the above, x, :[xl...xm,ax1 ...Gx/”] and yp is
also analogous to xp . P., P,, and P,, are the
covariance matrices of the random vectors x, y, and
their cross-covariance matrix. 77[.] represents the
trace of the indicated matrix. The squared distance
between the two random vectors can be easily
shown as:

dy(x.y) = Trl(x=X)(y —y) 1+Tr[P, +P, 2P ]

m

= (f

i

i

m
— \2 2 2
=yt (o +o, —20,,).
i=l

(29)

Also, the modified squared distance will be:
d; (x,y) = Trl(xp —yp)(xp _yP)T ], (30)

:[(xp _yP)T (xp _yp)] .

Equation (30) is obtained from Eq. (29) by
approximatingo, . =0, o, . Indeed, in the
probabilistic space, the members of the feature
vector, 0, include the model parameters as well as

their variances. Therefore, in this space, © and the
distance function of two vectors are:

T
0=[4,|(diagP,)' I =[ 60, o3 |- (31

D@8 )=t~ Xt~ )" +(0; ~0, Xoj o)) (32)
Parameters' variances which are the diagonal
members of the parameters' covariance matrix are
obtained as follows [25]:

PH = COV(H) = }\,O(CDTCD)71 4 (33)
and A, = mean[(Y —®0)" (Y — ®0)]/(N —12).

4. Modeling of Faulty Modes and Fault
Detection and Isolation

Consider that the actual fault locus depends upon
the number of physical parameters involved in the
fault mode. Thus, if a system fault corresponds to
only one physical parameter variations (for
example, K), the estimated parameters (in the
estimated parameter space) will be functions of that
parameter only. For instance, in the one-degree-of-
freedom example, three estimated parameters
change because of changes in only one physical
parameter, i.e., stiffness. Since in this study the
small to moderate variations are considered, the
actual fault locus is a line (hyper-surface) in the 3-
dimensional parameter spaces (generally speaking,
hyper-space). The crack fault is represented by the
variation of the physical parameters K (spring
coefficient) and C (damping coefficient), and fault
representation will be two lines correspond to the
case where only K or C vary. As it may be seen, the
hyper-surface associated with the variation of K
and C can in this case be well approximated by a
hyper-plane.

4.1 Hyper-Planes Construction of the Frame’s
Fault Modes

Cracks with various severity and locations in
members 4, 5, and 6 were considered as three
different faulty modes. Then the tests were
performed and the related feature vectors were
formed. Finally, using the feature vectors in
constructing the hyper-plane, modeling of the fault
mode was carried out.

For this purpose, three frames were prepared, each
of which were used separately for modeling as well
as validating the proposed fault isolating method.
Testing and recording data of the faulty modes were
started when the member had one crack, then by
producing another crack, tests and data recordings
were repeated This procedure continued until the
necessary number of faults in each mode is
obtained for hyper-plane construction, which in our
case was 33 faults for each member. In order to
control the test, and save time, the cracks are
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initiated by producing grooves by coping as shown
in Fig. 8.

Fig. (8): The cracked frame structure.

The locus of feature vectors corresponds to i mode
(i =1,2,3) is a hyper-plane (i.e., ' (0)=0). In the
deterministic space (i.e., Q= [‘91 92...98]T ), the

equation of the hyper-plane is:

0, +0,a +0,04 +-+6ai +a, =0 ;i =1,2,3,(34)
where, a; (j =0,1,2,...,7) are the hyper-plane's
coefficients, that is, the normal vector n’,
representing the i hyper-plane is:

n' =l o a - all" (35)
The system of equations to obtain the hyper-plane's
coefficients will be:
f@=m")0+a =0. (36)
Any of the feature vectors obtained from a specific
member fault related to the i mode should yield
the equation of the i™ hyper-plane ( 77(0)=0).
Therefore, by replacing the parameters from N
faults related to the /™ mode in Eq. (34), N
equations will be obtained by which the hyper-
plane coefficients can be estimated. Considering the
stochastic properties of the system and to estimate
the hyper-plane coefficients properly, the number
of equations is considered to be over two times of
the number of hyper-plane coefficients [26]. As in
Eq. (19), the members of the feature vector in the
deterministic space are the same as the model
parameters i.e. the number of the hyper-plane
coefficients is the same as the number of model
parameters. Therefore, in order to estimate the
hyper-plane coefficients properly, the parameters of
17(2%x8+1) different faults of each mode were

used and consequently the following system of
equations have been obtained:
0 +0)c] +0)a, +40)cl +a) =0

07 +00al 40+t Gl e =0 L ()

911'17 +92il7ali +93il7a;' +u.+9§'17a;’ +aé :0 .
To estimate the hyper-plane's coefficients, the
above-mentioned system of equations is in the form
of linear regression as:

1 e 6 .. g a] [e

1 6> 6> ... 6°|a o |, (38)
1 021'17 93:17 98i17 a; 91i17

or, in the compact form:

v'a =-aj, (39)

where, o' and ' are a §x1 vector and a 17x8

matrices,  respectively. The  hyper-plane’s
coefficients vectors were estimated by the least
squares method as follows[26]:

a =)y ') () (40)
Estimating the hyper-plane coefficients in the
probabilistic space were performed in the similar
way, but according to Eq. (31) the members of the
feature vector in the probabilistic space include
parameters variances as well as model parameters
i.e., the number of the hyper-plane coefficients is
twice as much as the number of model parameters.
Therefore, in order to estimate the hyper-plane
coefficients properly, the parameters of 33
(2%16 +1)different faults of each mode were

used.

4.2 Fault Detection and Isolation

Occurrence of a crack was considered as a fault,
whereas the presence of crack(s) in any of the
members 4, 5, or 6 was regarded as a faulty
mode. By creating 1 to 39 cracks in each
of the members, and performing of tests
by frame shaking, the data of 39 different
faults for each of the aforementioned members
were recorded and the data of 33 situations
for modeling the faulty mode (in the probabilistic
space) and the data of remaining situations
(6 situations) were used as unknown operational
modes which were tiny, moderate and sever faults.
It is necessary to mention that modeling the faulty
modes in the deterministic space was performed by
using the data obtained from 17 situations. It
should be noticed that the data used in the
unknown operational modes were not
used for modeling the faulty modes. Considering 6
unknown operational modes in each of the three
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members, 18 unknown operational modes for fault
isolation were done all together.
For fault isolation, the distance between feature
vector of the unknown operational mode 0", and
each of the hyper-planes corresponding to the faulty
modes are calculated by minimizing the distance
between vector 8 to vector O associated with each
hyper-plane (minimizing the distance function is
subject to the hyper-plane equation f/(0)=0).

In order to increase the computational efficiency
and noting that the distance function is always non-
negative, the quadratic form of the distance
function was minimized. To convert the constrained
minimization to an unconstrained optimization, the
Lagrange Multipliers approach is adopted [27]. The
Lagrangian is obtained by using the Lagrange
Multipliers and the distance function as follows:

L=d*0",0)+y'(8) (41)
=(0"-0)(0" —6)' +y((n" )0 +ay),

where, y and 4(0“,0) are the Lagrange multiplier

and the distance between vector @ and vectors 0,
respectively. Optimizing L is equivalent to
minimizing the distance function which is subject
to the hyper-plane equation. The optimizing L and
forming the following equations are performed by
differentiation of L with respect to 6 and y :

8714 - O

0 42)
8714 = 0

o

Therefore, a set of 1+8 linear equations in the
deterministic space and a set of 1+16 linear
equations in the probabilistic space were obtained
and rewritten in the following form and by solving
them a @ was obtained, in which the Lagrangian is
optimal, i.e. the amount of the distance function is
minimal:

1 n' |:9:|: 0" ) (43)
()" 0 lr] [-e

where, / is an 8x8 identity matrix in the
deterministic space and a 16x16 identity matrix in
the probabilistic space. Considering Eqs. (41) and
(42), minimization of L includes the hyper-plane
equation £ /(@) =0, and the minimum distance of

0" to Os related to the aforementioned hyper-
plane. So, the distance between vector 6" and the
hyper-plane 7' (9) =0 which is the optimal of L is
obtained by solving Eq. (43) in the following way:

d(e",f’(e)):Mln d(e",e) 5 eEf,(e)a (44)
=0 [ 0 )0 4]

By repeating the above-mentioned procedure for
each one of the operational modes, the distances
between the vector 0" and the hyper-planes were
obtained. Finally these calculated distances are
compared with each other and the unknown
operational mode is classified as the mode with
which the calculated distance is the minimum. That
is:
d®.f'(0)<d(®./ ' ®) Vizj ;i,j=123
8" cf'(®) -
(45)

5. Results and Discussion

In this study two test sets, Set 1 with single input
and two outputs, and Set 2 with two inputs and two
outputs were carried out. The input-output signals
from both set of the tests were recorded.

Set 1 consists of the two SISO and SIMO subsets,
and Set 2 includes the two MISO and MIMO
subsets.

For fault isolation, the distances of the feature
vectors of the unknown operational modes to any of
the faulty mode hyper-planes have been calculated.
For example, the calculated distances in the
probabilistic and deterministic spaces between the
points of unknown operational modes and the faulty
mode hyper-planes are presented in the form of
MIMO system in the table 1. In this table, every
line represents the distances of the feature vector of
an unknown operational mode from the faulty mode
hyper-planes. The minimum quantity in each line is
bold typed, and the minimum quantity is underlined
if it does not specify the correct answer.

As it is seen, the results of the frame's fault
isolation in the form of MIMO system in the
probabilistic space is free from errors, in other
words, the minimum distance in all lines is related
to the hyper-plane corresponding to the faulty
member. Also, 15 correct and 3 wrong answers
were obtained after performing (fault isolation) 18
times of the frame in the MIMO system in the
deterministic space.

Like the above-mentioned procedure, fault
diagnoses of the frame were done by using one or
two inputs and one or two outputs. The number and
the percentage of the fault isolation errors of the
frame in the forms of SISO, MISO, SIMO, and
MIMO systems are presented in table 2.
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Table (1): Results of fault isolation of the frame in the form of MIMO system .

Test Probabilistic Distance from Hyper-plane | Deterministic Distance from Hyper-plane

Faults | \fumber F, F, F, F, F, F,
1 2.3005e-012 1.6217¢-011 1.0130e-011 | 2.3200e-004 2.3093¢-003 5.5144e-003
B 2 1.3354e-012  1.5400e-011 9.5453e-012 | 2.3142e-004 2.0608e-003 5.3362¢-003
Falllity 3 1.1065e-012 1.8687e-011 3.2483e-012 | 4.3686e-004 8.4591e-004 7.6335e-003
Memberd 4 1.9306e-014 2.1404e-011 3.1408e-012 | 2.8688e-005 4.2582e-005 8.3421e-003
5 8.4340e-013 1.8475e-011 6.8764e-012 | 4.4380e-004 2.2077e-003 1.1217e-002
6 2.3736e-012 1.7502e-011 6.0147e-012 | 2.5976e-004 1.3218e-003 8.7209e-003
7 3.4241e-011 4.1363e-013 3.6151e-012 | 7.6126e-004 9.7586e-005 7.1209¢-003
F 8 3.0898¢-011 3.6468e-014 2.0231e-013 | 4.0388e-004 8.3286¢-004 2.5229¢-003
Fauﬁty 9 4.2078e-011 2.1039¢-013 2.0450e-012 | 1.8003e-003 3.0373e-004 5.1797e-003
Members 10 3.5401e-011 6.7073e-014 3.0478e-012 | 7.2743e-004 4.8334e-004 1.3036e-003
11 4.6462e-011 1.5614e-013 9.2019e-013 | 1.6897e-003 8.9704e-004 4.9601e-003
12 4.0829e-011 8.3354e-013 1.9650e-012 | 2.1886e-003 2.2853e-004 4.7232e-003
13 2.8930e-011 1.1257¢-011 1.5490e-012 | 4.4344¢-003 2.1099¢-003 1.1869e-005
E.: 14 1.2642¢-010 3.2231e-011 7.2291e-013 | 1.3698e-002 1.2593e-003  2.1204e-004
Faliity 15 1.8278e-011 8.8013e-012 5.9336e-013 | 2.1170e-003 5.6053e-004 3.7282e-004
Member6 16 1.0577e-011 7.4291e-012 1.6345e-012 | 4.4330e-004 2.1853e-004 1.6509¢-003
17 2.3523e-011 1.0914e-011 9.8662e-013 | 3.3998e-003 1.1876e-003 2.6274e-004
18 8.0376e-012 3.2702e-012 2.8031e-012 | 1.7846e-003 2.8420e-003 3.4080e-003

Table (2): Number and percentage of the fault
isolation errors.

System | viivo | Miso | siMo | siso
Space
Probabillistic | U0ty v 2 ! 4
Percent 0% 11.11% 5.56% 22.22%
Deterministic Quantity 3 3 4 5
Percent 16.68% 16.68% | 22.22% | 27.78%

As it is considered, fault diagnoses of the frame in
the forms of MIMO and SISO systems have the
highest and lowest performance, respectively; this
results are compared and shown in Fig. 9.

100%
80%
60%
40%

20%

0%

MIMO MIMO sIso sIso
Probabilistic Deterministic ~ Probabilistic =~ Deterministic

Fig. (9): Results of fault isolation in MIMO and
SISO frame.

The above results show that increasing the number
of inputs improves the fault isolation performance;
as classification error in MIMO model is less than
SIMO one, and in MISO model less than the SISO
one. The reason is the outputs' further enrichment
which is caused by further activation of the system
dynamics caused by increasing the number of
inputs.

Also, fault isolation scheme in two-output
models performs better compared the single-output
ones; as classification error in MIMO model is less
than MISO one, and in SIMO model less than the
SISO one. The reason is to acquire further
information on the system dynamics through
increasing the number of outputs, while the
parametric system identification in two-output
models can be done by using less measurement
(N >4) than single-output models v >g).

By using probabilistic space in calculating of
the distances and utilizing variances of the
estimated parameters in addition to the parameters
themselves, the FDI performance noticeably
improved in comparison with the deterministic one.
Fig. 10 compares the rate of errors of fault isolation
in SISO, MISO, SIMO, and MIMO systems.
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Fig. (10): Fault isolation errors in the probabilistic
and deterministic spaces.

In addition, the experimental results and the
obtained results from simulation by a finite element
model of the frame mentioned in Ref. [19] are
compared in table 3 as follows:

Table (3): Percentage of the fault isolation errors in
experimental and simulation tests.

System | yivo | Miso | siMo | siso
Space

Probabillistic | Simulation | 581% | 7.51% | 7.78% | 8.49%

Experimental 0% 11.11% 5.56% 22.22%

S Simulation 8.51% 30.60% | 18.11% | 28.49%
Deterministic

Experimental | 16.68% | 16.68% | 22.22% | 27.78%

The comparison between experimental and
simulation results in the above table shows the
agreement of the experimental results.

6. Conclusion

Fault isolation in a frame was performed
successfully through the proposed geometric
approach. The best performance of fault isolation
scheme was obtained for MIMO case. Moreover, in
all SISO, MISO, SIMO, and MIMO cases, the
probabilistic distance function out formed the
deterministic one. The least performance of fault
isolation was obtained for SISO case and
deterministic space with about 28% classification
errors. A any way, increasing the number of input
or output measurements improve the proposed
method's performance.
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