تحقيقات منابع أب ايران **Iran-Water Resources** Research

سال ششم، شماره ۲، تابستان ۱۳۸۹ Volume 6, No. 2, Summer 2010 (IR-WRR) 19-21



Extended Abstract

## Evaluating the Water and Wastewater Enterprises in Provincial Water Sector Using Mathematical Programming Model

# J. Rezaee<sup>1\*</sup>, H. Eydmohammadzadeh<sup>2</sup>, M. Faghihnasiri<sup>3</sup> and A. Garshasbi<sup>4</sup>

## Introduction

The optimal allocation of resources has always been a challenging issue for human life. It is important especially in allocating the factors of production in order to insert the choices that among other allocating options yield better living standards for humans.

The best allocation is achieved if factors are used in an "efficient" methods Understanding the concept of "efficiency" is the starting point in this process.

## **Objectives**

In this paper, the operational efficiencies of the Iranian provincial Water and Wastewater Enterprises are investigated. It is also examined whether the existing resources are allocated in an efficient manner. Economic development is simply formed over efficient allocation.

#### Methodology

Using non-parametric methods, which are mathematical programming, we will evaluate the efficiency of companies.

\*- Corresponding Author

In the non-parametric methods, there is no need to specify any production function. More than one output can be considered in these methods. Data envelopment analysis is one of the non-parametric methods that use programming techniques to analyze a companies efficiency. The DEA model is formulated as follows (Banker et al., 1984):

In the non-parametric methods, there is no need to specify any production function. More than one output can be considered in these methods. Data envelopment analysis is one of the non-parametric methods that use programming techniques to analyze the companies' efficiency. The DEA model is formulated as follows(Banker et al., 1984):

$$Minimize \ \theta \tag{1}$$

$$S.t - \sum_{r=1}^{s} u_r Y_{ro} + \sum_{r=1}^{s} \lambda_j Y_{ij} \ge 0 \quad j = 1, 2, ..., n$$

$$\theta \sum_{i=1}^{m} v_i X_{io} - \sum_{i=1}^{m} \lambda_j X_{ij} \ge 0$$
(3)

$$\lambda \succ 0 \tag{4}$$

Parametric methods are useful for analyzing efficiency with just one output or multiple outputs that can be converted into one.

Assume that we are going to compare two educational units that have more than one output. For example, the number of graduates and accepted scientific papers in reputed journals in each unit can be used as outputs. If

M.A. in Economics, Faculty member, Institue For Trade Studies & Research, E-mail: jrezaea@yahoo.com (Corresponding Author)
 M.A. in Economics, Faculty member, Allameh Mohadese Noori, E-mail:

H\_mohazadeh@yahoo.com 3- Ph.D. in Economics, Assistant professor, University of Payame Noor, Email: marjanin@yahoo.com

<sup>4-</sup> M.A. in Economics, Expert, Deputy Ministry for Planning and Economic Affairs, E-mail:h\_garshasbi13@yahoo.com

we are not able to integrate these two outputs then the parametric method cannot be used (Cooper et al., 1999). This is because there would be no unique output to estimate a frontier production function. Moreover, in parametric methods we should specify the production function form and classical assumptions about random error terms may be violated.

## **Discussion of Result**

In this study the DEA model is used to solve the problem. In this method, first, we created a virtual unit which is a linear combination of the other units. Then to evaluate the efficiency, we compared the output of the virtual unit obtained based on the inputs of a decision unit with the real output of that unit (Charnes et al., 1994).

In this paper, using the inputs and outputs for the Iranian year of 1385, we assess the efficiency of the provincial Water and Wastewater Enterprises with the DEA model. We have used both Constant Return to Scale (CRS) and Variable Return to Scale (VRS). Table (1) shows the results of the model.

| Returns to Scale | SE                 | AE                      | TE                     | Province                   |
|------------------|--------------------|-------------------------|------------------------|----------------------------|
|                  | (Scale Efficiency) | (Allocative Efficiency) | (Technical Efficiency) |                            |
| Decreasing       | •/785              | •/934                   | •/733                  | East Azarbayjan            |
| Decreasing       | •/843              | •/829                   | •/699                  | West Azarbayjan            |
| Increasing       | • /997             | •/558                   | •/566                  | Ardebil                    |
| Decreasing       | •/816              | •/766                   | •/626                  | Esfehan                    |
| Increasing       | •/993              | • /527                  | •/523                  | Khozestan                  |
| Increasing       | •/759              | 1                       | •/759                  | Ilam                       |
| Increasing       | •/851              | •/840                   | •/715                  | Boshehr                    |
| Constant         | 1                  | 1                       | 1                      | Tehran                     |
| Increasing       | •/929              | •/722                   | •/671                  | Chaharmahal and Bakhtiyari |
| Decreasing       | •/956              | • /739                  | •/706                  | Khorasane Razavi           |
| Increasing       | • /744             |                         | • /744                 | Southern Khorasan          |
| Increasing       | •/730              | •/985                   | •/719                  | Northern Khorasan          |
| Constant         | 1                  | 1                       | 1                      | Zanjan                     |
| Increasing       | •/815              | 1                       | •/815                  | Semnan                     |
| Constant         | 1                  | 1                       | 1                      | Sistan and Balochestan     |
| Constant         | •/818              | 1                       | •/818                  | Fars                       |
| Constant         |                    | 1                       | 1                      | Qazvin                     |
| Increasing       | •/803              | •/875                   | •/702                  | Qom                        |
| Increasing       | •/969              | •/549                   | •/527                  | Kurdistan                  |
| Decreasing       | •/999              | 1                       | •/999                  | Kerman                     |
| Increasing       | •/990              | •/736                   | •/729                  | Kermanshah                 |
| Constant         | 1                  | 1                       | 1                      | Kohkeloye and Boyerahmad   |
| Increasing       | •/936              | • /908                  | •/850                  | Golestan                   |
| Decreasing       | •/942              | •/520                   | •/490                  | Gilan                      |
| Decreasing       | •/969              | •/793                   | •/768                  | Lorestan                   |
| Constant         | 1                  | 1                       | 1                      | Mazandaran                 |
| Constant         | 1                  | 1                       | 1                      | Markazi                    |
| Constant         | 1                  | 1                       | 1                      | Hormozgan                  |
| Constant         | 1                  | 1                       | 1                      | Hamedan                    |
| Increasing       | •/987              | •/733                   | •/724                  | Yazd                       |
|                  | •/219              | •/867                   | •/796                  | Average                    |

تحقیقات منابع آب ایران، سال ششم، شماره ۲، تابستان ۱۳۸۹ Volume 6, No. 2, Summer 2010 (IR-WRR) 20 ا ا ا

## Conclusion

The results showed that for year 1385 the average of the technical efficiency index of companies was 0.796 which is not an ideal number. Besides. only 9 companies were operating in 100 percent efficiency. However, allocated efficiency of the companies was in average of 0.867, which was fair, such that 14 companies in this index were efficient. In addition, the scale efficiency was in average of 0.921, which showed better status. Finally, it can be concluded that 21 percent of the network capacity is not used and benchmarking from Hamedan Company can optimize the performance of the network as well as using network capacity completely.

*Keywords:* Technical Efficiency, Management Efficiency, Scale Efficiency, Data Development Analysis, Mathematical Programming.

#### References

- Banker, R.D., Charnes, A. and Cooper, W.W. (1984), "Some Models For Estimating Technical Scale Efficiencies in Envelopment Analysis", *Management Science*. Vol.30.No9 ,pp.1078-1092
- Charnes, A., Cooper, W.W. and Lewin, A.Y. (1994), Data Envelopment Analysis: Theory, Methodology and Application, *Kluwer Academic Publishers*, Boston, MA.
- Cooper, W., Seiford, L.M. and Tone, K. (1999), Data Envelopment Analysis – A ComprehensiveText with Models, Applications, References, *Kluwer Academic Publishers*, Boston, MA.

تحقیقات منابع آب ایران، سال ششم، شماره ۲، تابستان ۱۳۸۹ Volume 6, No. 2, Summer 2010 (IR-WRR) 21 ا ب د