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Abstract 
Spermatozoa generate reactive oxygen species (ROS) in physiological amounts, which play a 
role in sperm functions during sperm capacitation, acrosome reaction (AR), and oocyte fusion. In 
addition, damaged sperm are likely to be the source of ROS. The most important ROS produced 
by human sperm are hydrogen peroxide, superoxide anion and hydroxyl radicals. Besides, human 
seminal plasma and sperm possess an antioxidant system to scavenge ROS and prevent ROS related 
cellular damage. Under normal circumstances, there is an appropriate balance between oxidants and 
antioxidants. A shift in the levels of ROS towards pro-oxidants in semen can induce  oxidative stress 
(OS) on spermatozoa. 
Male infertility is associated with increased ROS and decreased total antioxidant activity in the 
seminal plasma. ROS induce nuclear DNA strand breaks. Besides, due to a high polyunsaturated 
fatty acid content human sperm plasma membranes are highly sensitive to ROS induced lipid 
peroxidation thus decreasing membrane fluidity. This will result in increased lipid peroxidation 
(LPO), decreased sperm motility, viability, function and ultimately lead to infertility. The protective 
action of antioxidants against the deleterious effect of ROS on cellular lipids, proteins and DNA has 
been supported by several scientific studies. 
The purpose of the present review is to address the possible relationship between ROS and 
antioxidants production in seminal plasma, and the role they may play in influencing the outcome 
of assisted reproductive technology (ART).
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Introduction 
Infinity of infertility
Since the first appearance of humans on earth, 
infertility has been one of the most controver-
sial medical and social issues. Some civilizations 
considered it to be a punishment, while others 
thought of it as an illness. Some blamed it on the 
female; others could not explain it. This charge 
of infertility on the female, had serious conse-
quences on her social image and psychological 
state (1). Additionally, physicians’ lack of knowl-
edge of gonadal and sperm function has been a 
main factor for the female to be considered the 
one responsible for infertility. It was not until the 
last decade that our knowledge of the human re-
productive system allowed us to determine that a 
very important parameter of a couple’s infertility 
has been male infertility and more specifically, 
sperm malfunction (2).

Normal and impaired sperm function
Normal spermatozoa are those that successfully 
undergo a number of steps necessary for oocyte 
fertilization. The first step is maturation of the 
spermatozoa, which is initiated in the male geni-
tal tract and concludes with capacitation, the final 
step of maturation occurring in the female genital 
tract. Fully mature spermatozoa must swim in the 
female reproductive system, reach the oocyte, un-
dergo acrosom reaction (AR), penetrate the zona 
pellucidae and fuse with the oocyte pronucleus to 
form a zygote (3).
When, after successfully following all the above-
mentioned steps, the spermatozoa are unable to 
lead to the natural fertilization of an oocyte, then 
impaired sperm function is considered. Failed at-
tempts to conceive, after a period of two years, de-
fine infertility and the couple must visit an expert 
to seek diagnosis and possible treatment. The male 
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partner undergoes semen analysis and is evaluated 
according to the World Health Organization refer-
ence values. However, there are cases where the 
semen analysis indicates normal sperm, but the 
male is still infertile (4). This proves that there are 
parameters affecting sperm function that cannot 
be determined by routine semen analysis. Semen 
analysis includes assessment of seminal volume, 
spermatozoal motility, density, viability and mor-
phology. Oxidative damage to spermatozoa, in-
duced by excessive production of free radicals or 
impairment of the natural antioxidant mechanisms, 
has been identified as such a parameter (5).

Free radicals: origin and oxidative stress
Origin
By definition, a free radical is any chemical com-
pound with one or more unpaired electrons. The 
free radicals that have been associated with infertil-
ity are oxygen and oxygen-derived oxidants, name-
ly, the superoxide anion (O2

-), hydrogen peroxide 
(H2O2), peroxyl radicals (ROO-) and hydroxyl radi-
cals (OH-) (6, 7). These oxidants are widely known 
as reactive oxygen species (ROS) and, due to un-
paired electron(s) tend to strongly react with other 
chemical compounds (8). More specifically, they 
seek stability by “stealing” electrons from nucleic 
acids, lipids, and proteins; leading to the damage of 
cells and disease phenomena (8, 9).
ROS are produced in the body by mitochondria, 
phagocytes, arachidonate pathways and other 
physiological processes in which they act as vital 
signalling molecules. They are products of natural 
oxygen metabolism and represent approximately 
1 to 2% of metabolized oxygen (10). The balance 
between production and disposal of oxidant mol-
ecules is essential for tissue homeostasis. Increased 
rate of free radical production or decreased rate of 
removal leads to free radical accumulation and cel-
lular damage (11). Additionally, their production 
is induced by external factors, such as cigarette 
smoke, ultraviolet light radiation, and others (7). 
ROS have been associated with the pathology of 
numerous diseases such as neurodegenerative dis-
eases (12), vascular disease (13-15), cancer, dia-
betes, periodontal diseases (16-19) and of course, 
human infertility (20-28).

ROS and oxidative stress (OS)
The free radicals are a part of an organism’s chemi-
cal reactions, and are necessary signalling mole-
cules, as well as having a vital role for the matu-
ration processes of several structures. Most free 
radicals in biology fit within the broader category 
of ROS, which include not only oxygen–centred 
radicals such as the superoxide anion radical (O2

-.), 
hydroxyl radical (OH.) or nitric oxide (NO.), but 

also some potentially dangerous non-radical de-
rivatives of oxygen, such as hydrogen peroxide 
(H2O2), peroxynitrite anion (ONOO-), and hy-
pochlorous acid (HOCL) (28). The most common 
ROS that have a potential implication in repro-
ductive biology include superoxide anion (O2

-.), 
hydrogen peroxide (H2O2), peroxyl (ROO-), and 
hydroxyl (OH-) radicals. 
The free radical nitric oxide (NO-) and peroxyni-
trite anion (ONOO-) also appear to play significant 
roles in reproduction and fertility. Öztezcan et al. 
(29) indicate that ONOO- might cause sperm dys-
function through an increase in lipid peroxidation 
(LPO) and total sulphydryl group depletion. The 
assumption that free radicals can influence male 
fertility has received substantial scientific support 
(30). Many reports have indicated that high levels 
of ROS are detected in the semen samples of 25% 
to 40% of infertile men (31). However, small con-
trolled amounts of ROS are vital for spermatozoa 
to develop normally and be capable of fertilization 
structures (30, 32, 33).
In addition, de Lamirande et al. and Zini et al. re-
ported that H2O2 and O2

- promote sperm capacita-
tion and AR. H2O2 also promotes hyperactivation 
and oocyte fusion (34, 35). Hydrogen peroxide 
(H2O2) and superoxide anion are of great impor-
tance to spermatozoa. They are necessary for con-
trolling the tyrosine phosphorylation events asso-
ciated with sperm capacitation (32, 36). 

ROS production by spermatozoa
ROS are also undoubtedly produced by spermatozoa 
(37-40), mainly through their mitochondrial system 
(41), as well as round cells during the spermatogenic 
process and epithelial cells. In the human ejaculate 
ROS are mainly produced by leukocytes with mar-
ginal amounts produced by spermatozoa (42). The 
production of ROS in ejaculated spermatozoa is ini-
tiated in immature germ cells (39) and continues in 
the epididymis when the surface of the spermatozoa 
is remodelled. When the mitochondrial capsule is 
assembled, chromatin undergoes condensation and 
motility is acquired for the capacitation of sperma-
tozoa (43, 44). However, O2

- production by sperma-
tozoa has been questioned (45) on the basis that no 
free radical signal can be detected by electron para-
magnatic resonance (EPR) spectroscopy. Electron 
leakage from complexes I and II of the mitochon-
drial transport chain has been proposed as a source 
of superoxide in male gametes (46). Numerous 
studies have shown that human sperm exhibit the 
capacity to generate ROS such as superoxide anion, 
hydrogen peroxide, and hydroxyl radicals (47, 48). 
The production of ROS by human sperm is due to 
a membrane - bound nicotinamide adenine dinucle-
otide (NADH) oxidase system (47).
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Spontaneous generation under aerobic conditions
Spermatozoa generate small amount of O2

- and NO. 
which are both tightly related to the cAMP pathway 
in the control of human sperm capacitation and pro-
tein tyrosine phosphorylation (36, 49). Beckman et 
al., suggested that these two radicals could combine 
to form peroxy nitrite (ONOO-) (50). Peroxy nitrite 
is not a free radical because the unpaired electrons 
of NO and O2

- have combined to form a new N-O 
bond in peroxy nitrite, but it is a strong one or two 
electron oxidant and nitrating agent (51). Neverthe-
less, generating controlled low amounts of endog-
enous ROS by spermatozoa play a significant role 
in inducing sperm capacitation, AR, and acquisition 
of sperm-fertilizing ability (30, 52). 

Retained cytoplasma (RC)
The production of ROS is higher in spermatozoa 
that are either damaged or retain abnormal cyto-
plasmic inclusions (39). 
Radical production has also been detected in im-
mature germ cells (44). According to Iwasaki and 
Gagnon (53), the capacity for ROS production is 
significantly enhanced in abnormal spermatozoa, 
and those sperm cells with retention of residual 
cytoplasm. Huszar and Vigue have found that mor-
phological irregularities of sperm are significantly 
correlated with high creatine kinase (CK) activity 
(54). ROS production by spermatozoa has been 
associated with midpiece abnormalities, retained 
cytoplasm, cytoplasmic droplets and spermatozoa 
immaturity (48, 55-57).
The primary product of the immature spermatozoa 
system generating free radicals appears to be the 
superoxide anion (O2.

-), which secondarily dis-
mutase’s to H2O2 through the catalytic action of su-
peroxide dismutase (SOD) (58,59). Moreover, the 
most prevalent ROS, hydrogen peroxide (H2O2) is 
synthesized from O2 by mammalian spermatozoa 
(60) by a two-stage reduction of superoxide (O2

-*) 
by H+ as the intermediate product (61). The reten-
tion of residual cytoplasm in the sperm midpiece 
after spermination has been associated with exces-
sive production of ROS by spermatozoa (55). The 
ROS levels are expected to rise at a faster pace and 
in greater intensity in sperm samples in the pres-
ence of cytoplasmic residues. Morphometric anal-
ysis of the amount of residual cytoplasm present in 
the sperm midpiece has revealed significant cor-
relations with the production of ROS (55).
The enzyme gloucose-6-phosphate dehydrogenase 
(G6PD), which is superfluously exhibited in sperm 
residual cytoplasm, generates NADN, which in turn 
stimulates ROS formation (33, 43, 47, 54, 55).
Sperm with cytoplasmic droplets show a higher 
cellular content of cytoplasmic enzymes, including 
G6PD. This enzyme is responsible for the flux of 

glucose through the hexose monophosphate shunt 
and the associated generation of NADPH. It is 
theorized that nicotinamide adenine dinucleotide 
phosphate (NADPH) generated via this system 
serves as the major source of electrons responsi-
ble for the production of O2

- by human spermato-
zoa. Therefore, the retention of residual cytoplasm 
creates a situation in which sufficient substrate 
would be available to support excessive NADPH–
dependent ROS generation (33, 62). Spermatozoa 
may generate ROS in two ways: 
1. NADH-oxidase system at the level of sperm 
membrane level (37) and 
2. NADH-dependent oxido-reductase (diphorase) 
at the level of the mitochondria (38).
Besides, the biochemical markers of the cytoplasmic 
space, such as creatine kinase, are positively cor-
related with the induction of peroxidative damage 
(55, 56). Huszar and Vigue (56) have found a posi-
tive relationship between CK activity and the rate of 
LPO, as measured by malondialdehyde (MDA) for-
mation in sperm fractions. Hallak et al. have found 
an inverse relationship between CK levels and sperm 
morphological forms and suggested that CK levels 
can be used as a reliable marker for sperm quality 
and fertilizing potential in subfertile men (63). 
Excessive ROS production by immature, mor-
phologically abnormal spermatozoa with cy-
toplasmic residues such as those confronted in 
teratozoospermic semen specimens may induce 
oxidative damage of mature spermatozoa during 
sperm migration from the seminiferous tubules to 
the epididymis and may be an important cause of 
male infertility (64). Immature spermatozoa are a 
well-characterized source of ROS and a negative 
correlation between ROS production and semen 
quality has been documented (39). The excessive 
generation of ROS by abnormal spermatozoa and 
by contaminating leukocytes (leukospermia) has 
been identified as one of the few defined aetiolo-
gies for male infertility. 
Many reports point out that those biochemical 
markers of the cytoplasmic space, such as creatine 
kinase, are positively correlated with the induction 
of peroxidative damage (55, 56). 
Only one third of ROS produced by spermatozoa 
is released extracellularly (41). In the case of oli-
gozoospermic males whose spermatozoa gener-
ate particularly high levels of ROS, the source of 
cytotoxic oxygen radicals is frequently intracel-
lular (37, 55). However, the main ROS produc-
ing sources are immature spermatozoa, especially 
those with cytoplasmic droplets at the midpiece 
and leukocytes (65).

ROS production by leukocytes
ROS are produced by leukocytes, which are 
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present in the male reproductive system and in 
the ejaculate, as a result of their role in immu-
nological defense against pathogenic germs (26, 
66). Leukocytes are present throughout the male 
reproductive tract and are found in almost every 
human ejaculate (67). The majority of leukocytes 
in semen are granulocytes (50-60%), followed by 
macrophages (20% to 30%) and T lymphocytes 
(2% to 5%) (4). Leukocytes play an important 
role in immune surveillance (68, 69) and phago-
cyte clearance of abnormal sperm (66). However, 
white blood cells (WBC’s) in human semen are 
also capable of ROS generation (70, 71). Genital 
tract inflammation and an increased number of 
leukocytes in the ejaculate have been repeatedly 
associated with male subfertility and infertility 
(41, 72-74). Leukocytes are a particularly impor-
tant source of OS in the ejaculates of patients ex-
hibiting leukocytospermia secondary to infection 
or as consequence of paraplegia (75). Activated 
leukocytes can produce 100-fold higher amounts 
of ROS than nonactivated leukocytes (41). Leu-
kocytes may be activated in response to a variety 
of stimuli, including inflammation and infection 
(76).
Whittington and Ford demonstrated that infil-
trating leukocytes are the predominant source of 
ROS production in unspecified sperm prepara-
tions (77). Sperm damage from ROS that is pro-
duced by leukocytes occurs if seminal leukocyte 
concentrations are abnormally high such as in 
leukocytospermia (78), or by removing seminal 
plasma during sperm preparation for assisted re-
production (72).
Leukocytospermia may induce an alteration in 
sperm structure by means of excessive ROS pro-
duction by activated granulocytes. It has been 
shown that leukocytospermia and excessive ROS 
levels are associated with an increase in chromatin 
alterations and DNA damage in sperm, as defined 
by the sperm chromatin structure assay (79). 
In patient samples that generated detectable ROS, 
the ability of the spermatozoa to retain motil-
ity for 24 hours after preparation on a 40/80% 
Percoll gradient was negatively correlated (r = 
-0.310, p<0.05) with basal ROS production (77). 
Besides, ROS production was also related to the 
outcome of in vitro sperm mucus penetration tests. 
Unstimulated levels of ROS production showed 
a significant (p<0.05) negative correlation with 
the number of progressively motile spermatozoa 
present in the mucus after 15 (r =-0.379) and 60 
minutes (r = -0.362) (77). Wang et al. demonstrat-
ed that mitochondrial function was inhibited in 
the spermatozoa of infertile men and significantly 
correlated with sperm concentration and the level 
of ROS production. 

ROS and male fertility: physiologica association 
of ROS
Association with subfertility
Only in the case of excessive ROS production or 
malfunction of the native antioxidant production 
mechanisms, do the free oxidants cause problems 
by putting several tissues under OS (80-83). ROS 
have been widely associated with both the etio-
pathogenesis in female infertility (6, 21, 84), as 
well as with male subfertility and impaired sperm 
function, but their exact role is still not clear.
It has been more than a decade that the possibil-
ity of ROS negatively affecting male infertility has 
been examined by scientists (30, 82) and there has 
been an increasing generation of scientific data 
supporting that view (85). More than 60 years 
ago MacLeod and Ross et al. described the loss 
of sperm motility, when the latter is exposed to 
oxygen at 38°C (86) and 36 years later the first as-
sociation of OS and impaired sperm function came 
from the University of Cambridge (87). Since then, 
numerous scientific publications with very inter-
esting data have come to light, presenting the role 
of ROS in sperm physiology and morphology (55, 
88), and subsequently, the reproductive outcome.
The plasma membrane of spermatozoa contains 
high amounts of polyunsaturated fatty acids 
(PUFA), making them highly susceptible to dam-
age by OS (89-91). Furthermore, the concentration 
of scavenging enzymes, like SOD or glutathione 
peroxidase (92), in spermatozoa cytoplasm is very 
low, making the effect of OS more severe (52, 90, 
93, 94). Scientific data has been presented to sup-
port that ROS negatively affect sperm function 
by contributing to the occurrence of LPO (47, 91, 
95).
Increased production of ROS or impaired action 
of antioxidant mechanisms can lead to surplus of 
ROS and hence, OS. However, semen analysis of 
infertile men showed that increased levels of ROS 
are a result of over-production of ROS, rather than 
decreased enrichment of the seminal plasma with 
antioxidants (96). ROS produced by leukocytes in 
seminal plasma, sperm itself and other sources and 
the effect of ROS on male fertility depending on 
its concentration in seminal plasma despite of their 
sources of production whether it is pathological or 
non-pathological source.
The increased production of ROS from imma-
ture spermatozoa has been demonstrated in recent 
studies, indicating a negative correlation between 
the percentage of normal spermatozoa and levels 
of ROS production in semen. These results were 
obtained after calculating ROS production in an 
ejaculated sperm gradient of immature and mature 
spermatozoa (based on WHO parameters (4)), pre-
senting high and low ROS production respectively, 
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and immature germ cells, which also presented with 
a low production of ROS (39, 97). This excessive 
production of ROS from immature sperm could 
cause DNA damage in mature sperm within the 
male reproductive tract and, hence, account partly 
for male infertility. It is well documented that there 
is a negative correlation between defective sperm 
chromatin structure (DNA-break) and fertility, in in 
vitro fertilization (IVF) cycles (98). However, this 
condition does not seem mandatory for successful 
fertilization; as demonstrated by intracytoplasmic 
sperm injection (ICSI), where normal fertilization 
and pregnancy rates can be achieved with cells that 
have not completed spermiogenesis, such as epidi-
dymal and testicular spermatozoa (99).
The applied assisted reproduction techniques 
(ART), as their title indicates, aim at achieving fer-
tilization that is not able to occur naturally. How-
ever, research studies have shown that repeated 
cycles of centrifugation in the process of sperm 
preparation can induce the production of ROS by 
spermatozoa. This means that improving the motil-
ity of sperm through the routine preparation does 
not necessary mean that occasional DNA damage 
does not occur at the same time, endangering the 
outcome of fertilization (100-103). 
Hammadeh et al., showed that ROS and total anti-
oxidants (TAS) concentration in seminal plasma 
did not differ significantly between the patients un-
dergoing IVF or ICSI therapy, however, negative 
correlation was found between ROS concentration 
in seminal plasma and sperm vitality, membrane 
integrity, sperm density, chromatin condensation, 
and DNA single stand breaks in both IVF and ICSI 
groups (104). 

Sperm motility and hyperactivation
ROS hydrogen peroxide, in particular, plays a 
positive physiological role in sperm hyperacti-
vation and capacitation. Low concentration of a 
NO releasing compound, has been shown to be 
beneficial to the maintenance of post-thaw hu-
man sperm motility and viability (105). 
Besides, ROS production has been related to 
the outcome of in vitro sperm mucus penetra-
tion tests. ROS showed a significant (p<0.05) 
negative correlation with the number of pro-
gressively motile spermatozoa present in the 
mucus after 15 (r =-0.379) and 60 (r =-0.362) 
minutes (77).
Moreover, a highly significant correlation was 
found between oxidation of sperm DNA and re-
duced motility [106]. Oxidative stress affects 
the mean semen parameters (count, motility, 
morphology) and therfore, asthenozoospermia 
is probably the best indicator for oxidative 
stress in a routine semen analysis.

Sperm capacitation
The molecular basis of sperm capacitation is still 
unclear. Calcium uptake, an increase in cAMP 
concentration, a rise in intracellular pH, an efflux 
of cholesterol from sperm plasma membrane (107-
108) and tyrosine phosphorylation of specific pro-
teins have been shown to occur during this process 
(109-110).
Capacitation of spermatozoa may thus occur by 
different ROS, but it takes place specifically by 
H2O2 following an increase in cAMP, activation of 
protein kinase A, and downstream tyrosine kinase 
activation (36).
It has also been demonstrated by many authors 
(52, 111, 112) that ROS, such as superoxide an-
ion (O2.

-,) hydrogen peroxidase (H2O2), and nitric 
oxide NO. can induce sperm capacitation in vitro. 
Production of nitric oxide (NO.) by spermatozoa 
has also been reported (51) and may serve as an 
additional oxidant source. NO has also been sug-
gested to be involved in the capacitation of sper-
matozoa but only in the presence of H2O2 (113). 

AR
ROS other than H2O2, such as nitric oxide and su-
peroxide anion O2.

-, have been shown to promote 
sperm capacitation and AR (35, 95).
Stimulation of endogenous NADPH-dependent 
ROS generation in human sperm appears to regu-
late AR via tyrosine phosphorylation (114).

Sperm egg binding
Aitken et al. demonstrated that low levels of ROS 
enhance the ability of human spermatozoa to bind 
to the zona pellucida, an effect that was reversed 
by the addition of vitamin E. (47).
Treatment of human spermatozoa with low con-
centrations of NO- releasing compounds like so-
dium nitroprosside (SNP; 10O-7 -10O-8 M) in the 
capacitating medium increased the number of 
spermatozoa bound to the hemizona (115).

Sperm egg fusion
The production of low concentrations of hydro-
gen peroxidase (H2O2 and O2

-) by spermatozoa 
may have a functional role in the signalling events 
controlling capacitation and sperm-oocytes fusion 
(34, 36, 109, 116). 
However, poor sperm–oocytes fusion, in vitro fer-
tilization experiment (48, 109) and standard IVF 
(117-120) are related to high ROS production. 
Aitken suggests that high failure rate of sperm-
oocyte fusion bioassay can be related to increased 
generation of lipoperoxidase. In a subset of infer-
tile patients sperm were refractory to the second 
messenger signal generated by Ca ionophore, 
excessively generated ROS and also exhibited a 
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high failure rate in sperm-oocytes fusion bioassays 
(70). 

ROS level and fertilization
The redox status of human spermatozoa is likely 
to affect phosphorylation and adenosine triphos-
phate (ATP) generation with a profound influence 
on its fertilizing potential. However, one of the 
main features of sperm that might profoundly af-
fect fertilization and subsequent development is 
chromatin structure (121). ROS generation during 
OS associated with the appearance of damage to 
the DNA, especially in infertile patients, leads to 
a high incidence of DNA strand breaks (80, 122). 
High levels of seminal ROS also impaired the 
sperm fertilizing capacity by DNA damage and 
apoptosis (21, 80). 
Under normal circumstances, spermatozoa with 
damaged DNA would not participate in the fertili-
zation process because of collateral peroxidative 
damage to the sperm plasma membrane (123). 

ROS level and cleavage (embryo) quality
The production of ROS may also be involved in bo-
vine embryo development (124). Zorn et al. found 
that high seminal plasma ROS levels are associated 
with impaired sperm fertilizing ability and lower 
pregnancy rates after IVF. In ICSI, a negative as-
sociation of ROS with embryo development to the 
blastocyst stage has been observed (125).

ROS level and pregnancy
After IVF, fertilization and pregnancy rates were 
negatively associated with ROS levels. In ICSI, a 
negative association of ROS with embryo develop-
ment to the blastocyst stage has been observed, and 
significant fewer ICSI derived embryos reached 
the morula-blastocyst stage on day four (125). In 
the IVF group (n=26), eleven pregnancies were 
achieved (42.3%) with a 47.8% implantation rate 
per embryo transferred. In ICSI patients (n=22), 
four pregnancies were achieved (18.2%) with a 
40.7% implantation rate per embryo transferred as 
previously described (126).

ROS and sperm DNA damage: pathology of ROS
Several studies have shown that OS caused by 
ROS production induces damage to the sperm’s 
DNA, even though sperm DNA appears to be more 
resistant than other cell types such as somatic cells 
(127). Specifically, sperm DNA is protected by its 
advanced packaging on the one hand (128) and 
seminal plasma antioxidants on the other (129). 
OS-induced DNA fragmentation, which is widely 
observed in the spermatozoa of infertile men (130, 
131), may not directly affect the fertilizing ability 
of spermatozoa but it directly affects their contri-

bution to normal embryonic development (132) 
and the mutational load of the embryo (32) (Fig 
1). Evidence also supports that OS causes signifi-
cant damage not only to the nuclear, but also to the 
mitochondrial DNA of human spermatozoa (133).

 Age/Toxicants/Genetic disposition

DNA mutation in the germ line 

Aberrant DNA repair
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Fertilization possible with IVF of naturally

DNA damage in the 
germ line

Cancer Infertility

Dominant
genetic

mutations

Low stress 
Fertilization possible with IVF of naturally

Fig 1: Schematic representation of the possible relation-
ship between OS in the male germ line and abnormalities 
in the development of the embryo and the health and well-
being of the offspring (134).

Along their way from the testis to the oocyte, sper-
matozoa encounter many factors and conditions 
that can target their DNA and potentially damage 
it. Defective packaging of chromatin in the nucle-
us, apoptosis and ROS are the causes that attract 
the most scientific interest (135, 136). Sperm DNA 
damage may also account for the loss of the ability 
to conceive naturally (137, 138) and for a number 
of cases of unexplained pregnancy loss (139). As 
far as ARTs are concerned, their association with 
DNA damage has been widely discussed and ex-
amined in a variety of studies, and extensively re-
viewed by Agarwal and Allamaneni (140). 

OS-induced apoptosis
The programmed death of eukaryotic cells, which 
occurs without inducing an inflammatory response, 
is called apoptosis (141). Apoptosis during sper-
matogenesis has been assessed, discussed and sup-
ported in several studies (142-144) and has been 
associated with male infertility (142, 145, 146). 
However, research on apoptosis in ejaculated sper-
matozoa seems to still be in its developing stages, 
only discussed by a few studies (131, 147, 148), 
the latest primary article being that of Wang et al. 
(149). More specifically, the latter group reported 
a positive correlation between the presence of ap-
optotic markers, due to OS-induced apoptosis, and 
spermatozoa DNA damage. OS-induced apoptosis 
in ejaculated spermatozoa has also been reviewed 
recently by Agarwal and Said (150).

Role of NADPH and NADPH oxidase activity
ROS are the intermediate steps of oxygen reduc-
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tion, namely, O2
-, H2O2 and OH are the products of 

reduction by one, two or three electrons, respec-
tively. Also, HO2, the acid of superoxide anion, is 
another free radical with a major contribution in the 
destructive LPO process occurring in spermatozoa 
(89). Exogenous molecules, such as aromatic de-
rivatives and iron complexes with low molecular 
weight, can activate molecular oxygen by catalyz-
ing electron transfer to it. This can also be done 
by activating β-nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, which theoretically 
exists in human spermatozoa and is believed to 
transfer electrons from NADPH to ground state 
oxygen, leading to the formation of the superox-
ide anion radical. The latter is then dismutated to 
hydrogen peroxide (H2O2), which is controlled by 
the antioxidant glutathione peroxidase. In case the 
function of the antioxidant is impaired for any rea-
son, the spermatozoa experience hyperoxidation 
(OS status) (Fig 2) (24). Several other studies have 
supported the presence of NADPH oxidase-like 
activity, at the sperm plasma membrane, in human 
spermatozoa and the role of NADPH in O2

- pro-
duction and the subsequent consequences of in-
duced OS on spermatozoa (33, 44, 46, 151, 152). 
The second ROS-generating system that has been 
proposed is a sperm diaphorase system, located in 
the middle piece and integrated into the mitochon-
drial respiratory system of the spermatozoa (33).

Leukocytospermia and male infertility
Apart from their role as members of the immune-
defensive mechanism, leukocytes are also vital for 
the clearance of defective sperm via phagocytosis 
(66). Leukocytospermia is a condition which, ac-
cording to WHO guidelines (4), is determined by 
the existence of a concentration greater than 1 x 
106/ml of peroxidase-positive leukocytes in semen 
and it is encountered in an average of 15% of infer-
tile men (73, 79, 94). Nevertheless, whether or not 
it is a pathological condition leading to abnormal 
morphology and impaired sperm function is con-
troversial among scientists. 
Specifically, there are studies that have found a 
negative correlation and other studies that have 

found a positive correlation of poor sperm quality/
function, with increased WBC concentration (leu-
kocytospermia) (74). More specifically, Curi et 
al. concluded that there is no positive correlation 
between leukocytospermia and impaired sperm 
motility (asthenozoospermia) (4, 153). In another 
study, Tomlinson et al. could not find any asso-
ciation of leukocyte concentration, neither with 
impaired sperm quality, nor with conception rates 
(154). Also, no correlation was found between leu-
kocyte counts, sperm density and motility, sperm 
antibodies and growth of micro-organisms by el-
Demiry et al. (67).
On the other hand, Yanushpolsky et al. present-
ed a positive association of increased seminal 
granulocyte concentrations with abnormal se-
men parameters of statistical and clinical sig-
nificance (155). In addition, Arata de Bella-
barba et al. showed that increased WBC were 
a usual phenomenon in the semen of infertile 
men and associated with semen of poor quality 
parameters (156). Moreover, Lemkecher et al. 
supported the positive correlation, but also as-
sociated leukocytospermia with increased DNA 
fragmentation (157). Aitken et al. also presented 
a positive correlation between leukocytosper-
mia and impaired sperm function, when leuko-
cytes were introduced into the sperm mixture 
after preparation. The same correlation, when 
assessed during IVF, was found to be negative 
(48). In contrast, Vicino et al. showed that in-
creases in leukocyte concentration in semen can 
affect the results of both IVF and ICSI proce-
dures (158).
Apart from sperm quality, the effect of leukocyt-
ospermia on sperm morphology is also a highly 
controversial issue between researchers. Hence 
similarly, several studies have presented a posi-
tive correlation between increased leukocyte 
concentration in semen and abnormal sperm 
morphology. Specifically, Berger et al. showed 
a positive correlation between morphologically 
normal sperm and sperm penetration ability, in 
contrast to morphologically abnormal sperm due 
to increased leukocyte concentration (159). 
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Fig 2: Schematic representation of NADPH oxidase activity (24)
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Eggert-Kruse et al. presented a positive corre-
lation between high rates of leukocytes of the 
round cells with increased morphological abnor-
mality (160) and Yanushpolsky et al. presented 
statistically significant differences in sperm 
morphology and leukocyte concentration of 
double threshold according to the WHO criteria 
(155). Moreover, Thomas et al. and Menkveld 
and Kruger presented a positive correlation 
between WBCs in general and polymorphonu-
clear granulocytes (PMN) respectively, with 
morphological defects (161, 162). Finally, two 
years ago, a primary article by Aziz et al. pre-
sented a highly significant negative correlation 
between leukocytospermia and impaired sperm 
structural integrity (163).
On the contrary, two more studies presented 
a statistically insignificant association be-
tween increased concentrations of leukocytes 
and morphologically abnormal sperm (164, 
165). To enhance the controversy concern-
ing the role of leukocytes in abnormal sperm 
morphology, Kiessling et al. and Tomlinson et 
al. presented a positive correlation between 
increased leukocyte numbers and morphologi-
cally normal sperm, due to leukocytes’ physi-
ological function of abnormal-sperm phagocy-
tosis (66, 68).
Lackner et al. (166) suggested that anti-in-
flammatory medication of male patients with 
bacterial leukocytospermia improved sperm 

count and reduced leukocyte concentrations. 
Furthermore, Oliva and Multigner (167), af-
ter using antihistamine-like drug treatment, 
reported a significant decrease in leukocytes 
in semen and a significant increase in sperm 
motility and morphology. 
Furthermore, Gambera et al. (168) evaluat-
ed the effects of treatment with rofecoxib, a 
cyclooxygenase-2 inhibitor, on sperm quality 
and pregnancy rate after intrauterine insemi-
nation (IUI) or monitored intercourse. They 
have shown a significant reduction in leuko-
cyte concentrations, and an improvement of 
sperm motility and morphology, particularly 
the presence and shape of the acrosomal com-
plex and tail structure. 
Evaluation of the effect of cigarette smoking 
on antioxidant levels and the presence of leu-
kocytospermia in infertile men showed that 
lower levels of SOD and catalase were seen 
in infertile patients compared with fertile do-
nors. SOD was significantly correlated with 
sperm concentration and negatively correlated 
with leukocytospermia. In addition, leukocyt-
ospermia was inversely correlated with sperm 
motility. SOD levels were negatively related 
to cigarette smoking. They concluded that 
cigarette smoking may impair sperm motility 
and decrease the antioxidant activity (negative 
correlation with SOD) in the seminal plasma 
(169).

Table 1: Some natural antioxidants (Adapted from 186).
Non-enzymatic antioxidant molecules

Subcellular locationAntioxidant Molecule  

Plastid; apoplast; cytosol; vacuoleAscorbate (vitamin C)

Plastidβ-Carotene

Plastid; mitochondrion; cytosolGlutathione, reduced (GSH)

Nucleus; plastid; mitochondrion; cytosolPolyamines (e.g., putrescine, spermine)

Cell and plastid membranesα-Tocopherol (vitamin E)

ChloroplastZeaxanthin

Antioxidant enzymes

Subcellular locationEC numberEnzyme

Plastid stroma and membranes1.11.1.11Ascorbate peroxidase

Cytosol; cell wall-bound1.11.1.7Proxidases (non-specific)

Glyoxysome; peroxisome; cytosol; mitochondria1.11.1.6Catalase

Cytosol (Cu/ZnSOD); plastid (Cu/ZnSOD; FeSOD); 
mitochondrion (MnSOD); peroxisome

1.15.1.1Superoxide dismutase (SOD)

Cytosol; plastid1.8.5.1Dehydroascorbate reductase

Mitochondrion; cytosol; plastid1.6.4.2Glutathione reductase

Plastid stroma1.6.5.4Monodehydroascorbate reductase

Cytosol; microsomal2.5.1.18Glutathione S-transferases 
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Antioxidants and male infertility
Types, role and origin
ROS are necessary for physiological functioning 
of spermatozoa, but they need to be controlled and 
their concentrations maintained at a level that is 
not deleterious to the cells. 
This function is carried out by antioxidants (170) 
(Table 1) present in seminal plasma (26, 171-175). 
The most common antioxidants, that protect sper-
matozoa from excess concentrations of ROS and 
OS-induced damage and altogether represent the 
total antioxidant capacity (TAC) of seminal plas-
ma are SOD (58, 176), catalase (CAT) (177), the 
glutathione (GSH) peroxidase system selenium 
and selenoproteins such as the phospholipids hy-
droperoxide glutathione peroxidase (PHGPx) and 
the glutathione reductase system (178, 179), vita-
mins A, C (180) and E (181), glutathione (182), 
spermin, thiols, urate (183, 184), albumin, taurine 
and hypotaurine (171), L-carnitine and zinc. Addi-
tionally, the possible protective antioxidant role of 
vitamins K and D have been reported in literature 
(185). These antioxidants work together as a wide 
protective network and many of them become rad-
icals themselves while scavenging oxidants. The 
rest of the antioxidants in the network ensure that 
they are regenerated back to their original struc-
tures. For example, vitamin C and glutathione 
regenerate vitamin E. However, this antioxidant 
protection is not always strong enough to protect 
from OS. When the volume and distribution of 
the spermatozoa’s cytoplasm is abnormal, antioxi-
dant enzymes are unable to be hosted properly and 
therefore their defensive chain-breaking function 
is impaired (42, 87, 90). 
A number of reports have discussed the possible 
origin of antioxidants in semen, but our knowledge 
is still limited. Some studies supported the testicu-
lar origin of semen antioxidants, while others have 
presented evidence that the source of antioxidant 
activity is post-testicular. More specifically, in 
1994, Bauche et al. presented evidence that SOD 
is of testicular origin, protecting it from deleterious 
ROS concentrations (187). In 1998, research by 
Yeung et al. confirmed that the source of antioxi-
dants is post-testicular, most probably the prostate 
and seminal vesicles (188). Four years later, Zini et 
al. improved that report, showing that antioxidants 
are post-testicular products and their probable role 
is the protection of ejaculated spermatozoa from 
OS such as that which occurs in the female repro-
ductive tract (175). However, during spermatogen-
esis and epididymal storage, sperm must rely on 
epididymal/testicular antioxidants and their own 
intrinsic antioxidant capacity for protection. Tes-
ticular biopsies from men with varicocele-have 
shown an increase in oxidative DNA damage with-

in spermatogonia and spermatocytes (189). 

Association with subfertility: a remedy?
ROS increase or antioxidant deficit have been as-
sociated with a number of pathological conditions 
by several scientific studies. The protective ac-
tion of antioxidants against the deleterious effect 
of ROS on cellular lipids, proteins and DNA has 
been supported by several scientific studies (173). 
In this review, we separated the publications into 
three groups; namely, studies discussing natural 
(enzymatic), synthetic (non-enzymatic) and both, 
respectively.
Antioxidants, in general, are free radical scaven-
gers that suppress the formation of ROS and/or 
oppose their action. There are many antioxidants 
in seminal fluid which can be divided into two 
groups: enzymatic like such as SOD, catalase (96), 
and glutathione peroxidise, (178) and nonenzy-
matic antioxidants such as ascorbate, urate, alpha-
tocopherol, pyruvate, glutathione, taurine, and 
hypotaurine (93). Antioxidants that are present in 
the seminal fluid compensate for the deficiency 
of cytoplasmic enzyme in the spermatozoa (190). 
Spermatozoa themselves posses high concentra-
tions of thiol groups, as well as smaller amounts 
of ascorbic acid, alpha-tocopherol, uric acid and 
GSH (179, 191, 192).
ROS production and TAC can be used as a marker 
of OS in seminal fluid and has been correlated 
with male infertility. Infertile men with male fac-
tor or idiopathic diagnoses had significantly lower 
ROS-TAC scores than controls (85). Said et al. 
suggested that abnormal sperm morphology com-
bined with elevated ROS production may serve as 
a useful indicator of potential damage to sperm 
DNA (193). 
Lisak et al. examined the effect of oxidation of 
protein and lipids by a thermochemiluminescence 
(TCL) analyzer and showed that thermochemilu-
minescence indices in seminal plasma closely cor-
relate with sperm characteristics among patients 
with sperm disturbances (194). 
Morphologically abnormal and immature sperma-
tozoa that retain cytoplasmic residues in the mid-
piece can be separated by a double-density gra-
dient procedure (39, 97, 195). Recently, a study 
conducted by Mendiola et al. (196) to compare 
dietary habits in normospermic and oligoasthenot-
eratospermic patients found that frequent intake of 
lipophilic foods like meat products or milk may 
negatively affect semen quality in humans, where-
as some fruits or vegetables may maintain or im-
prove semen quality. In another study of the same 
group, to compare the effect of specific nutrient 
intake, they found that a low intake of antioxidant 
nutrients was associated with a poor semen quality 
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in men that attended an infertility clinic (197). 

Enzymatic antioxidants
Human sperm contains the enzyme system com-
prising glutathione peroxidase (GPX), glutathione 
reductase (GRD); and their substrates, glutathione 
(GSH) and glutathione disulfide (GSSG) (59, 178, 
179). This system functions as a defence against 
LPO in human sperm by reducing formed lipid hy-
droperoxides, which are very reactive and damag-
ing to the plasma membrane; and to hydroxylipids, 
which are essentially inert (198). 
SOD, catalase, and glutathione peroxidase are anti-
oxidants that convert superoxide (O2) and peroxide 
(H2O2) radicals to form O2 and H2O.

Superoxide dismutase (SOD)
One family of antioxidants used by organisms as a 
defence mechanism against oxidative damage, is lo-
cated in the family of SOD (Fig 3) (199-201). One 
of the members of this family, namely, extracellular 
superoxide dismutase (EC-SOD), is a vital part of 
the defense against ROS-mediated tissue damage, 
and is located in the extracellular matrix of tissues, 
hence, the name EC-SOD (202, 203). SOD acts to 
scavenge the superoxide anion, which is produced 
by a one-electron reduction of an oxygen molecule 
and initiates a radical chain reaction.

K ~ 109

K ~ 1010

EC-SOD
O2

- + O2
-

ONOO-O2
- + NO•

•OH + NO2

O2 + H2O2

2H+

H+

↓
↓

↓
 

Fig 3: The enzymatic dismutation of superoxide anion by 
SOD, such as EC-SOD. In addition, the reaction of superox-
ide with nitric oxide to produce peroxynitrite anion is depict-
ed along with the products of peroxynitrite decay (Adapted 
from 204).

In addition, the reaction of superoxide with nitric 
oxide to produce peroxynitrite anion is depicted 
along with the products of peroxynitrite decay 
(adapted from 204).
In 2000, Potts et al. reported that seminal plas-
ma, whose role is to protect spermatozoa from 
DNA damage and LPO, contains antioxidants 
(205). Three years later, Lamond et al. presented 
evidence that adding SOD to IVF media would 
protect sperm chromatin from breakdown (206). 

Earlier, in 1992, Nonogaki et al. had shown that 
adding SOD to culture medium protected sperm 
viability and the embryo development in vivo and 
in vitro (207).
The SOD antilipoperoxidative defence system in 
human sperm relies almost entirely on the activi-
ty of a single enzyme, the Cu/ZN isoform (208).
SOD protects against spontaneous O2 toxicity 
and lipid peroxidase (209). SOD and catalase 
also remove (O2

-) generated by NADH-oxidase 
in neutrophils and can play an important role in 
protecting spermatozoa during genitourinary in-
flammation (210).
The steady-state concentration of superoxide is 
under the control of extracellular SOD, the inhi-
bition of which (by copper chelating) leads to the 
rapid disappearance of thiols (211). A pivotal role 
of SOD in protection of testicular cells against 
heat stress–induced apoptosis has been demon-
strated in vivo and in vitro (212, 213).
Murawski et al.(214) showed a positive correla-
tion between SOD activity in seminal plasma and 
semen quality parameters, sperm concentration 
and overall motility. SOD activity in oligoasthe-
nozoospermic patients was significantly lower 
compared to the activity found in normospermic 
men. They came to the conclusion that decreased 
seminal plasma scavenger antioxidant capacity, 
particularly in the form of low SOD activity, can 
be responsible for male infertility.

Catalase
Catalase is a well known antioxidant enzyme 
whose localization is limited to peroxisome. Cata-
lase activity has also been determined in human 
spermatozoa and the seminal plasma of fertile and 
infertile males (177). However, a difference in the 
seminal catalase activity of asthenozoospermic 
and oligo-asthenozoospermic patients with hyper-
viscosity has been shown (215).
Tavilani et al. (216) found an inverse correlation 
between activities of CAT and SOD in seminal 
plasma with an MDA content of spermatozoa 
from normozoospermic samples. However, such 
correlations observed between activities of CAT 
and GPX of seminal plasma with MDA content of 
spermatozoa of asthenozoospermic patients. Fur-
thermore, they found positive correlations between 
total activities of CAT, SOD and GPX with total 
content of MDA in seminal plasma from normo-
zoospermic samples. In asthenozoospermic sam-
ples, there were no such significant correlations. 
They suspected that under pathological conditions 
(e.g. asthenozoospermia) the activity of seminal 
antioxidant enzymes can not protect spermatozoa 
and may cause an increase of lipid peroxidation 
from spermatozoa.
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Protein and SH group (SH-group)
A sulfhydryl group (SH-group) plays an impor-
tant role in sperm metabolism and antioxidative 
defence. Nakamura et al. demonstrated that semi-
nal plasma SOD, catalyse, glutathione peroxi-
dase and sulfhydryl group levels are significantly 
lower in infertile patients than those in controls, 
suggesting their relationship to male infertility 
(217). 

Glutathione
Reduced glutathione is also part of the antioxidant 
system in the seminal fluid. Glutathione is a tripep-
tidyl molecule and present in either the reduced 
gluathione (GSH) or oxidized form gluathione 
(GSSG) by forming a disulfide bond between two 
molecules. 
Lenzi et al. found that glutathione injection (600 
mg/day, i.m.) for two months significantly im-
proved the morphology and motility patterns of 
spermatozoa. Even the in vitro use of glutathione 
treatment increased the forward motility and mi-
gration from the pellet of spermatozoa obtained 
from leukospermia samples (218). Parinaud et al. 
showed in vitro enhancement of sperm motility 
using a migration salt solution containing glucose 
and glutathione as an antioxidant (219). 
A highly significant decrease of mean levels of 
antioxidants in seminal plasma (glutathione, 
ascorbic acid and total antioxidant status) were 
found in oligozoospermic and azoospermic cases 
compared to normozoospermic controls. Where-
as, malondialdehyde level was significantly el-
evated in oligozoospermic and azoospermic men 
(220-222).

L,N-acetyl-cysteine
Glutathione (γ-glutamyl-cystenyl-glycine) is a nat-
ural, highly effective reducing agent. L, N-acetyl-
cysteine is a potential regulator of germ-cell death 
and is a well established inhibitor of physiological 
cell death in several systems. N-acetyl-L-cysteine, 
a reducing substance, has been shown to improve 
sperm motility in vitro together with a decrease of 
ROS levels in infertile patients with a high semi-
nal level of ROS. L, N-acetyl-cysteine (0.1, 1 and 
5 mg/ml) has a dose dependent effect in reducing 
ROS levels; the reduction was greater in patients 
with high levels of ROS than in those with low 
levels (223). L, N-acetyl-cysteine and/or a mixture 
of essential fatty acids and natural vitamins A and 
E reduced levels of 8-hydroxy-2`-deoxyguanosine 
(8-OH-dG), are considered as a markers of OS-
induced sperm DNA damage (140).
N, L acetyl-L-cysteine, when given in concentra-
tions of 125, 100, 50 and 25 mmol/L, suppressed 
germ cell death in a dose-dependent manner, how-

ever, more research is needed to validate its effi-
cacy in vivo (224).

Glutathione peroxidase
Glutathione peroxidase and catalase activities are 
of prostatic and multi-glandular origin, respec-
tively (188). 
Glutathione peroxidase, a selenium-containing 
antioxidant enzyme with glutathione as the elec-
tron donor, removes peroxyl radical from vari-
ous peroxides including H2O2 to improve sperm 
motility. Minor alterations in sperm membranes 
in selected cases of dyspermia can be reversed by 
glutathione (GSH) therapy (225). 
The presence of glutathione may prevent the accu-
mulation of peroxynitrite (ONOO-) to toxic levels 
and may convert ONOO- to secondary products 
with protective properties (226).
Low levels of NADH and glutathione, as a result 
of the increased activity of glutathione peroxidase 
to remove metabolites of membrane LPO will fur-
ther affect cellular Ca+2 homeostasis (178). 
The selenium-containing enzyme glutathione per-
oxidase destroys peroxides before they can dam-
age the cell membrane and interacts synergisti-
cally with vitamin E (227). 
Glutathione peroxidase has been measured in 
seminal plasma and correlated with male infertil-
ity (228). Yeung et al. studied the GPX, GSH re-
ductase, and SOD activities of normozoospermic 
patients and patients undergoing in vitro fertiliza-
tion treatment and suggested that the origin of the 
GPX, GSH, reductase, SOD is neither testicular 
nor epididymal (188).

Glutathione reductase
Glutathione peroxidase is one of the principal anti-
oxidant defence enzymes in human spermatozoa, 
but it requires oxidized glutathione to be reduced 
by glutathione reductase using NADPH gener-
ated in the pentose phosphate pathway. Glutath-
ione reductase regenerates reduced GSH from its 
oxidized form (GSSG). GSH has a likely role in 
sperm nucleus decondensation. Also, intracellu-
lar GSH concentrations found to be lower when 
sperm morphology is severely impaired in both 
fertile and infertile males (229). 
Williams and Ford (230), showed that the pen-
tose phosphate pathway in human spermatozoa 
can respond dynamically to oxidative stress and 
that inhibiting glutathione reductase impairs 
the ability of sperm to resist lipid peroxidation. 
They concluded that the glutathione peroxi-
dase-glutathione reductase-pentose phosphate 
pathway system is functional and provides an 
effective antioxidant defence in normal human 
spermatozoa.
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Alpha-glutamyl transpeptidase
Alpha-glutamyl transpeptidase is present in the 
midpiece and acrosomal region of spermatozoa and 
it may further regulate the GSH content of oocytes 
at the time of sperm penetration (225). 

Non-enzymatic antioxidants 
Besides the enzymatic antioxidant system, there 
are numerous non-enzymatic low molecular mass 
antioxidants which are believed to be even more 
important scavengers than high molecular mass 
compounds (96).

Nitric oxide
NO is synthesized from L-arginine by a family of 
enzymes known as the NOS. NO is a molecule of 
great biological significance and has long been 
considered to play an important role in sperm 
physiology (231). 
NO can act as a free radical scavenger inactivat-
ing (59, 232) and even inhibiting production of 
superoxide anion (O2.

-) (233) which cause LPO, a 
process which leads to the functional impairment 
of spermatozoa (234). NO is produced directly by 
spermatozoa and constitutive NOS is present in 
two isoforms similar to those present in both en-
dothelial (ecNOS) and in brain (bNOS) cells. Be-
sides, spermatozoa from normozoospermic sam-
ples appear to have greater amounts of NOS and 
higher amounts of NO production than those from 
asthenozoospermic samples (235). 

Albumin
Human serum albumin (HSA) present in culture 
media protects antioxidants. HSA has a cysteine 
residue in position 34 which is not involved in a 
disulfide bond and may exist in a different oxida-
tive state: as a fully reduced sulfhydryl group, as a 
mixed disulfide with cysteine, glutathione or ho-
mocysteine, for example, or in a higher oxidative 
state like sulfonic acid. Serum albumin is discussed 
as a marker for systemic OS (236). 
Albumin is reported to exhibit an excellent ability 
to sustain sperm motility (152).

Zinc
Zinc is an element whose importance in the bio-
logical systems is undisputed. Its importance can 
be understood by considering that when it is de-
ficient, severe pathological consequences occur, 
such as acrodermatitis enteropathica, a rare auto-
somal-recessive inheritable disease (237). As far as 
reproduction is concerned, this element has been 
shown to be highly important for conception, suc-
cessful implantation and pregnancy outcome (238, 
239). Zinc is present in high concentrations in the 
seminal fluid and there is evidence that it may act 

in vivo as a scavenger of excessive O2
- production 

by defective spermatozoa and/or leukocytes in se-
men after ejaculation (240).
There is evidence that zinc plays a vital role in the 
physiology of spermatozoa and spermatogenesis. 
Specifically, Bedwal and Bahuguna reported that 
this element decreases testicular weight and causes 
shrinkage of seminiferous tubules (241). Its poten-
tial role in sperm production, viability and preven-
tion of spermatozoa degradation and sperm mem-
brane stabilization has also been supported (242). 
After ejaculation, the present abnormal spermato-
zoa are sources of oxidants, namely, superoxide 
anions, which bind with zinc and reduce its con-
centration in seminal plasma. Thus, zinc is con-
sidered to be a vital antioxidant, guarding normal 
spermatozoa against superoxide anion-induced 
OS (41, 225). Chia et al. supported the research(?) 
that zinc concentration in seminal plasma is sig-
nificantly correlated with sperm density, motility 
and viability (243).
The biological function of zinc and the characteris-
tic features of zinc deficiency have been reviewed 
(244, 245). 
Zinc is vital for spermatogenesis and for the de-
velopment of primary and secondary sexual char-
acteristics (246). Experimental zinc deficiency in 
humans leads reversibly to reduced sperm count 
combined with reduced serum testosterone (247). 
There is a link between zinc deficiency and oli-
gospermia (248). 
The total zinc content of mammalian semen is 
high, 800-3000 μm/g of dry weight, and it has 
been demonstrated that zinc deficiency induces at-
rophy of the seminiferous tubules and causes fail-
ure of spermatogenesis in rats (249). It has been 
suggested that the zinc ion exchange takes place 
between the epididymal epithelium and sperm 
cells as they pass along the epididymal duct and 
it might be significant for the maturation process 
of rat sperm cells during their passage through the 
epididymis (250, 251). 
Ali et al. (252) showed a significant difference in 
serum and seminal zinc levels in normospermic, 
oligospermic (p<0.05) and azoospermic (p<0.005) 
subjects. Levels of zinc in seminal plasma is cor-
related positively with sperm count and correlated 
negatively with sperm motility in both normos-
permic and oligospermic group, whereas levels of 
seminal plasma zinc showed negative correlations 
with semen volume, pH and leucocytes concentra-
tion in all three groups (normospermic, oligosper-
mic and azoospermic). 
They concluded that zinc may contribute to fertil-
ity through its significant effects on various semen 
parameters and may help in the investigation and 
treatment of infertile males. 
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Others studies demonstrated that both folate and 
zinc have antioxidant properties that counteract 
ROS. Folate, zinc, ROS and thiols affect apoptosis, 
which is important for sperm release, regulation of 
follicle atresia, degeneration of the corpus luteum 
and endometrial shedding (253).
However, no consistent associations were found 
between antioxidant or zinc intakes and sperm 
aneuploidy (254).

Vitamins C/E
The most important antioxidants in seminal fluid 
seem to be vitamins C and E (180, 181). The con-
centration of vitamin C in seminal plasma is ten 
times greater than in blood plasma (364 vs. 40 
μmol/L) (191). During the nonenzymatic recycling 
pathway for vitamin E regeneration that occurs in 
membranes, vitamin C reduces chromanoxyl radi-
cals to recycle vitamin E and eventually being itself 
consumed by the process (255). Vitamin C intake 
may reduce DNA strand breaks (256) in human 
lymphocytes. Dietary supplementation of vitamin 
C protects human sperm from endogenous oxida-
tive DNA damage (257). Hughes et al. found that 
in vitro treatment of sperm with antioxidants (300 
and 600 μM ascorbic acid; 3 and 60 μM alpha-to-
copherol, and 400 μM urate) reduce the magnitude 
of DNA damage as measured by the comet assay 
(258, 259).
Vitamin E is a term that encompasses a group of 
potent, lipid-soluble, chain-breaking antioxidants. 
Structural analyses have revealed that molecules 
with vitamin E antioxidant activity include four 
tocopherols (αβγδ) and four tocotrienols (αβγδ) 
(260). Vitamin E is known to readily reduce alkyl 
peroxy radicals of unsaturated lipids (261). It is 
a major chain-breaking antioxidant in the sperm 
membranes and it appears to have a dose-depend-
ent protective effect (262).
Vitamin E is proven to be effective in preventing 
LPO and other radical-driven oxidative events 
(263). Vitamin E functions as a chain-breaking 
antioxidant that prevents the propagation of the free 
radical reaction (264, 265). Vitamin E prevents the 
loss of spermatogenesis in males and failure to re-
tain the zygote in female rats (266). Many investi-
gators have found a reduction in the concentration 
of oxidized DNA (8-hydroxy-2 deoxyguanosine) 
in sperm after antioxidant supplementation (130, 
267). 
Vitamin E inhibits LPO in membranes by scaveng-
ing peroxyl (RO.) and alkoxyl (ROO.) radicals. 
However, the ability of alpha-tocopherol to main-
tain a steady-state rate of peroxyl radical reduction 
in the plasma membrane depends on the recycling 
of α-tocopherol by external reducing agents such 
as ascorbate or thiols (227). 

Semen vitamin E levels were not increased after 
three months of daily treatment with 400 mg vita-
min E plus 500 mg vitamin C, although there was 
a marked increase in serum concentration. Ascor-
bic acid (vitamin C) is an important water-soluble 
antioxidant that reduces sulfhydryls, scavenger’s 
free radicals, and protects against endogenous oxi-
dative DNA damage (257).
Small doses of vitamin C (200 mg), have been 
shown to increase the seminal level of ascorbate 
in smokers from 5.6 to 13.1 mg/dl, which is simi-
lar to the level achieved (16.1 mg/dl) after 1000 
mg of vitamin C (268). In infertile patients with a 
high level of oxidative DNA damage in sperma-
tozoa, even the combination of vitamin C and E 
with glutathione induced only a slight increase in 
sperm concentration (130). Concurrent adminis-
tration of vitamin C (350 mg/d) and E (250 mg) in 
vivo were not able to prevent sperm DNA damage 
occurring after ejaculation (258). Vitamin C may 
become a pro-oxidant when free transition metals 
are present (92, 269).
Oral supplementation with vitamin C has been 
shown to improve sperm counts, motility, and 
morphology in infertile patients (270). 
Seminal ascorbic acid level was significantly lower 
in patients with leuckospermia than patients with 
normal semen parameters. Interestingly, a signifi-
cantly greater percentage of men with abnormal 
DNA fragmentation index (DFI) were observed in 
the patients with low levels of seminal ascorbic 
acid compared to those with normal or high levels 
of ascorbic acid (59% vs. 33%, p < 0.05). There-
fore, they came to the conclusion that insufficient 
seminal ascorbic acid was frequently associated 
with sperm DNA damage (222). 
Vitamins C and E both have antioxidant properties 
and have been shown to be implicated in meta-
bolic pathways of free radical scavenging and 
OS protection (271, 272). Vitamin E specifically 
interacts with Se-containing glutathione peroxi-
dase to prevent the oxidative breakdown of tissue 
membranes (273) and has been shown to improve 
sperm motility when supplemented orally (274), 
as well as the in vitro function of spermatozoa 
(275). In 1996, Geva et al. showed that treatment 
with vitamin E can protect from LPO and the con-
sequent changes to the sperm (276). A number of 
clinical studies have concluded that supplementa-
tion of vitamins C and E in specific combinations, 
results in protecting OS-induced sperm DNA dam-
age. More specifically, vitamins cause a decrease 
in 8-OH-dG levels, which is thought to be a mark-
er of sperm DNA damage induced by OS (140). 
Moreover, evidence supports that adding vitamins 
C and E in the medium during sperm preparation 
reduces hydrogen peroxide and, hence, protects 
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against OS (19). Supplementation of ascorbic acid 
(vitamin C) during an earlier study resulted in sig-
nificantly improved sperm quality (268). 
Nouri et al. (277) studied the relationship between 
levels of LPO (malonadialdyhide, MDA) and vita-
mins E and C concentrations in the sperm and sem-
inal plasma of asthenoteratozoospermic (AOT) and 
normozoospermic men and their effect on semen 
parameters. They found that the level of vitamins 
E and C in seminal plasma of normozoospermic 
were significantly higher in asthenoteratozoosper-
mic males, whereas MAD levels were significantly 
higher in AOT in comparison to normozoospermic 
males.

Urate
Ascorbate, urate and protein sulfhydryls are the 
major antioxidants present in seminal plasma, 
while GSH is practically undetectable (188). 
The proposed protective function of uric acid 
against free radicals in human blood (278) has not 
been sufficiently investigated in seminal plasma. 
Very little data could be found in the literature on 
its presence in seminal plasma (279) and on its 
antioxidative defence properties (280). Gavella et 
al. found changes in total seminal plasma antioxi-
dative capacity chiefly due to ascorbate and urate 
(183). Orally supplemented ascorbic acid is rapidly 
distributed in all body tissue with the highest con-
centration in seminal vesicles (281).

Selenium
Selenium, in the form of selenocysteine, functions 
as the catalytic centre in the active sites of at least 
nine human enzymes, including four glutathione 
peroxidase antioxidant enzymes (282-284). It is 
well known that selenium is involved in the male 
reproductive process. In mature rats the testicular 
content of selenium increases greatly at the begin-
ning of spermatogenesis (285). Selenium is also re-
quired for normal testicular development and sper-
matogenesis in rats (286). Rats with low selenium 
levels produced sperm with impaired motility and 
characteristic mid-piece damage (287, 288) indi-
cating that selenium is necessary for normal sperm 
development. 
The specific role of selenium in spermatogenesis 
appears to be related to the phospholipid hydroper-
oxide glutathione peroxidase, which is expressed 
depending on the developmental state of sperma-
tids and seems to be converted into a structural 
component in the mid-piece of mature spermato-
zoa (289). Selenium deficiency is associated with 
impaired sperm motility, structural alteration of 
the mid-piece, and loss of the flagellum (290). In 
mature spermatozoa, selenium is largely restricted 
to the mitochondrial capsule, a keratin-like matrix 

that embeds the helix of mitochondria in the sperm 
mid-piece (291).
Phospholipids hydroperoxide glutathione peroxi-
dase is expressed at higher levels in rat testes than 
in any other tissue (292). Deficiencies of selenium 
or glutathione can lead to instability of the mid–
piece of spermatozoa, resulting in defective motil-
ity (293, 294).
Phospholipid hydroperoxide glutathione peroxi-
dase (PHGPx) is a unique intracellular enzyme. 
Its uniqueness lies in the fact that it has the abil-
ity to reduce intracellular membrane phospholipid 
hydroperoxides, hence, its name (295). The high-
est activity of PHGPx has so far been measured in 
the testis, with a significant difference from that 
of other tissues, such as the brain and liver (296, 
297). Due to the fact that sperm cells have high 
numbers of polyunsaturated fatty acids, they de-
pend on PHGPx (together with other scavenging 
systems) to protect them from OS and LPO (298) 
which is the reason its concentration in spermato-
zoa is relatively high (295).
In 2005, Greco et al. presented an interesting study, 
supporting the antioxidant role of vitamins C and 
E. More specifically, they detected a reduction in 
ejaculated spermatozoa DNA fragmentation after 
treatment with a combination of the two vitamins. 
The interesting aspect of this study was that it was 
the first study to present the direct effect of anti-
oxidant treatment on sperm DNA integrity in vivo 
(299). Glutathione peroxidase has been shown to 
maintain sperm motility through scavenging of 
peroxyl radicals (ROO-) (300) and also protect 
sperm from LPO (301). Additionally, GSH has 
been shown to be a vital antioxidant mechanism 
maintaining normal sperm motility (62, 174) and 
the ability of sperm to undergo AR (62, 174). In 
an earlier study, Lenzi et al. presented that glu-
tathione therapy for two months had a statistically 
significant positive effect on sperm motility and 
morphology (302).

Treatments with antioxidants
According to a study carried out on patients with 
high levels of DNA damage or LPO and with a his-
tory of recurrent pregnancy loss, it was shown that 
increasing the intake of antioxidant could result 
in an improvement in pregnancy outcomes(303). 
After 90 days of treatment with the immune-mod-
ulating and anti-oxidants (beta-glucan, papaya, 
lactoferrin, and vitamins C and E) in patients with 
asthenoteratozoospermia associated with leuko-
cytosis, Piomboni et al. (304) found a significant 
reduction in seminal fluid leukocyte concentra-
tions (2.2 ± 0.9 vs. 0.9 ± 0.2) and consequently 
an increase in the percentage of morphologically 
normal sperm (17.0 ± 5.2% vs. 29.8 ± 6.5%), to-

Hammadeh et al.

IJFS, Vol 3, No 3, Nov-Dec 2009       100

www.SID.ir



Arc
hi

ve
 o

f S
ID

tal progressive motility (19.0 ± 7.8 vs. 34.8 ± 6.8), 
and chromatin integrity. In a prospective study per-
formed on men with persistent oligospermia (5–20 
million/ml) a statistically significant (p= 0.009) 
increase in sperm count after antioxidant therapy 
was recorded (305). In addition, univariate logistic 
regression analysis showed that men treated with 
antioxidant therapy presented with the probability 
of having a normal sperm count that was 20-fold 
(OR = 20.1; CI 95% = 1.05–43.2; p = 0.014) higher 
than a untreated men. The authors (305) are of the 
opinion that antioxidant therapy based on a com-
bination of N-acetylcysteine (NAC) and micronu-
trient (vitamins- minerals) supplementation can be 
helpful in improving the sperm count at least in a 
subset of oligospermic males.
Moreover, studying the effect of zinc therapy in asthe-
nozoospermic men showed that zinc therapy alone, in 
combination with vitamin E or with vitamin E and C 
was associated with an increase of sperm parameters 
and decrease of OS, sperm apoptosis and sperm DNA 
fragmentation index (DFI) (306).
Sperm cryopreservation extender supplemented 
with melatonin, pyruvate and taurine as antioxi-
dants can improve semen motility after a freeze 
thawing procedure (307).

Conclusion
ROS have been associated with the pathology of 
numerous diseases. Small controlled amounts of 
ROS are vital for spermatozoa to develop into 
normal spermatozoa capable of fertilization struc-
tures. Hydrogen peroxide, H2O2, and O2

- promote 
sperm capacitation and AR In addition, hydrogen 
peroxide (H2O2) promotes hyperactivation and 
oocyte fusion. Besides, hydrogen peroxide and su-
peroxide anion are of great importance to sperma-
tozoa, and are necessary for controlling the tyro-
sine phosphorylation events associated with sperm 
capacitation.. Additionally, ROS are produced by 
leukocytes present in the male reproductive system 
and in the ejaculate, as a result of their role in the 
immunological defense against pathogenic germs. 
Only in case of excessive production of ROS or 
malfunction of the native antioxidant-production 
mechanisms, do the free oxidants cause problems 
by putting tissues under OS. 
The function of controlling excessive ROS produc-
tion is carried out by antioxidants that are present 
in the seminal plasma. A number of reports have 
discussed the possible origin of antioxidants in 
semen but our knowledge on that is still limited. 
Some of the studies supported the testicular origin 
of semen antioxidants, while others have presented 
evidence that the source of antioxidant activity is 
post-testicular. 

A review of the literature shows that the evidence 
about the scavenging role of antioxidants and 
sperm protection is controversial. Some research-
ers have presented evidence of a defensive role of 
antioxidants, others have found that both deficient 
and excessive concentrations of antioxidants are 
deleterious for the sperm and others have shown 
the effect of antioxidants on some sperm param-
eters but not all of them. The existing scientific 
data concerning the scavenging ability of organic 
and inorganic antioxidants is very interesting but 
their actual origin and their mechanism of action 
in the male reproductive system and on ejaculated 
spermatozoa warrant further studies. 
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