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Abstract
Until 2000 it was believed that gonadotropin-releasing hormone (GnRH) was the 
sole regulator of hypophyseal gonadotropes. In 2000, the discovery of a gonado-
tropin inhibitory hormone (GnIH) initiated a revolution in the field of reproductive 
physiology. Identification of GnIH homologues in mammals, the arginine-pheny-
lalanine-amide (RFamide)-related peptides (RFRPs), indicated a similar function. 
Subsequently, further works conducted in various laboratories worldwide have 
shown that these neuropeptides inhibit the hypothalamic-hypophyseal axis. This re-
view discusses the role of RFRPs in mammalian reproductive processes.     

Keywords: RFamide-Related Peptide, Gonadotropin Inhibitory Hormone, Reproduction, 
Mammals 
 

Citation: Salehi MS, Tamadon A, Jafarzadeh Shirazi MR, Namavar MR, Zamiri MJ. The role of arginine-phenylalanine-amide-
related peptides in mammalian reproduction. Int J Fertil Steril. 2015; 9(3): 268-276.

Introduction 
Gonadotropin-releasing hormone (GnRH), the 

main stimulator of gonadotropes and secretion of 
gonadotropins, was first purified from the pig and 
sheep hypothalami in the 1970s (1, 2). For years 
GnRH has been considered the only regulator of the 
hypothalamic-hypophyseal-gonadal axis. Gonadal 
steroids and inhibin regulate gonadotropin secre-
tion via negative/positive feedback mechanisms. 
Although existence of a hypothalamic inhibitor 
of gonadotropin secretion was suspected earlier 
(3), in 2000 researchers discovered a 12 amino 
acid peptide (SIKPSAYLPLRFamide) in the quail 
brain which could directly inhibit GnRH release. It 
was subsequently named the gonadotropin inhibi-
tory hormone (GnIH) (4). During the last 13 years, 
avian homologues of GnIH have been identified in 
several mammalian species and named arginine-
phenylalanine-amide (RFamide)-related peptides 
(RFRP). In this review we describe the chemical 
structure, biosynthesis and functions of RFRPs re-
lated to mammalian reproduction and their possi-

ble roles in other physiologic events.

History, biosynthesis and chemical structure of 
RFamide-related peptides

The RFRPs are a family of peptides with an ar-
ginine-phenylalanine (RF-NH2) sequence at their 
carboxyl terminals. Researchers have discovered 
the first peptide of this family in shell ganglions 
(FMRFamide) (5). The first RFRP in vertebrates 
was discovered in the avian brain (LPLRFamide) 
(6). In 2000 researchers reported that one of the 
RFRPs inhibited the secretion of gonadotropins. 
Since then, GnIH homologues have been identi-
fied (Table 1) in several species of mammals, in-
cluding humans (7), monkeys (8), cattle (9), sheep 
(10, 11), rats, mice (12) and hamsters (13).

Following transcription and translation of the 
RFRP gene, a prepeptide is synthesized which rou-
tinely separates into two mature peptides, RFRP-
1 and RFRP-3 (Table 1). The carboxy terminals 
of RFRPs contain a sequence of leucine-proline-
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XXX-arginine-phenylalanine (LPXRF, X=leucine 
or glutamine) followed by glycine (G) as an amida-
tion signal, and arginine (R) or lysine (K) that act as 
endoproteolytic basic amino acids (14). However, in 
humans, monkeys, and cattle, RFRP-2 is also built 

from a prepeptide which differs from LPXRF. This 
prepeptide contains RS-amide sequences or an RS-
amide in the carboxyl terminal. RFRP-1 and RFRP-3 
bind the same receptor, named GPR147 (also known 
as OT7T022 and NPFF-1) with similar affinity (15).

Table 1: Amino acid sequence of the RFamide-related peptide (RFRP) prepeptide in different mammalian species

No. of amino acidsAmino acid sequenceSpecies

49MEIISSKLFILLTLATSSLLTSNIFCADELVMSNLHSKENYD-KYSEPRGHuman

49MEIISSKLFILLTLATSSLLTSNISCADELMMSSLHNKENYD-KYSEPRGMonkey

49MEIISLKRFILLMLATSSLLTSNIFCTDESRMPNLYSKKNYD-KYSEPRGCow

49MEIISLKRFILLMLATSSLLTSNIFCTDESR I PSLYSKKNYD-KYSEPRGSheep

49MEIISSKRFILLTLATSSFLTSNTLCSDELMMPHFHSKEGYG-KYYQLRGRat

49MEIISLKRFILLTVATSSFLTSNTFCTDEFMMPHFHSKEGDG-KYSQLRGMouse

49MEIISSKRFILLTLATSSLLTSN IFCTEELMMPHFHS KE KED-KYSQPTGHamster

97YP--KGERSLNFEELKDWGPKNVIKMSTPAVNKMPHSFANLPLRFGRNVQHuman

97YP--KRERSLNFEELKDWGPKNVIKMSTPAVNKMPHSVTNLPLRFGRTTEMonkey

97DLGWEKERSLTFEEVKDWAPK--IKMNKPVVNKMPPSAANLPLRFGRNMECow

97DLGWEKERSLTFEEVKDWGPK--IKMNTPAVNKMPPSAANLPLRFGRNMESheep

99IPKGVKERSVTFQELKDWGAKKDIKMSPAPANKVPHSAANLPLRFGRNIERat

99IPKGEKERSVTFQELKDWGAKNVIKMSPAPANKVPHSAANLPLRFGRTIDMouse

99ISKGEKERSVSFQEVKDWGAKNVIKMSPAPANKVPHSAANLPLRFGRTLEHamster

RFRP-1

147EERSAGATANLPLRSGRNMEVSLVRRVPNLPQRFGRTTTAKSVCRMLSDLHuman

147EERSTGAIANLPLRSGRNMEVSLVRQVLNLPQRFGRTTTAKSVCRTLSDLMonkey

147EERSTRAMAHLPLRLGKNREDSLSRWVPNLPQRFGRTTTAKSITKTLSNLCow

147EERSTRVMAHLPLRLGKNREDSLSRRVPNLPQRFGRTIAAKSITKTLSNLSheep

140DRRSPRARA-----------------NMEAGTMSHFPSLPQRFGRTT-ARRITKTLAGLRat

139EKRSPAARV------------------NMEAGTRSHFPSLPQRFGRTT-ARS-PKTPADLMouse

140EDRSTRART-------------------NMEARTLSRVPSLPQRFGRTT-ARSIPKTLSHLHamster

RFRP-3

196CQGSMHSPCANDLFYSMTCQH-QEIQNPDQKQSRRLLFKKIDDAELKQEKHuman

196CQGSLHSPCANDLFYSMTCQH-QEIQNPDQKRSRRLVFQKMDDAELKQEKMonkey

196LQQSMHSPSTNGLLYSMACQP-QEIQNPGQKNLRRRGFQKIDDAELKQEKCow

196LQQSMHSPSTNGLLYSMTCRP-QEIQNPGQKNLRRLGFQKIDDAELKQEKSheep

189PQKSLHSLASSELLYAMTRQH-QEIQSPGQEQPRKRVFTET DDAERKQEKRat

188PQKPLHSLGSSELLYVMICQH-QEIQSPGGKRTRRGAFVET DDAERKPEKMouse

189LQRFLHSMATSEVLNAMTCQH-GEIQSPGGKQPRRQAFMETDDEEGKHEKHamster

203IGNLQPVLQGAMKLRat
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Extension of RFamide-related peptide neuronal 
bodies and fibers in the mammalian brain

RFRP neuronal bodies have been detected in 
the rat dorsomedial hypothalamus and proven 
by a number of research studies using different 
antibodies. These antibodies included an anti-
body produced against the sparrow GnIH pro-
duced in rabbits (16) and an antibody produced 
against the sequence 119-132 of prepeptide 
RFRP (17). We also reported similar findings in 
rats (18) by using an antibody against the quail 
GnIH produced in rabbits (supplied kindly by 
Professor K. Tsutusi). The same neuronal ex-
tensions were also found in the brains of ham-
sters (13, 16) and mice (16). In sheep, neurons 
that expressed RFRP were identified in the dor-
somedial hypothalamic area (DMH), paraven-
tricular nucleus (PVN), the area between these 
nuclei (11) and the preoptic area (POA) (19). 
We showed that agouti-related peptide (AgRP) 
and RFRP coexpressed in 19 to 32% of the ar-
cuate (Arc) neurons during various phases of 
the estrous cycle in the ewe (20). In addition, 
we observed similar neuronal extensions in the 
brains of native Fars goats (21). Positive cells 
were found in the monkey periventricular nu-
clei (8) and human DMH (7).

In rodents, fibers and terminals of RFRP neu-
rons were observed in the middle areas of the 
brain, limbic areas (POA, septal and amygda-
la), rostral hypothalamus and Arc (13, 16). In 
the monkey brain, RFRP fibers were observed 
in most parts of the brain, including the hemi-
spheres or telencephalon, septal nuclei and ac-
cumbens, hypothalamus and particularly POA, 
Pe, PVN and ARC, habenular nuclei, thalamus, 
upper calculi of the midbrain, Raphe nuclei and 
the pons (8).

The inhibitory role of RFamide-related peptides 
In all vertebrate species studied from fish (22) 

to humans, the RFRP/GnIH peptides decreased the 
secretion of gonadotropins, particularly luteinizing 
hormone (LH), via actions on GnRH neurons and/
or gonadotropes. This showed the possibility of a 
protective role in various species (16, 23, 24). Re-
cently published reports indicated that these pep-
tides in certain situations did not affect LH secre-
tion or even have a stimulatory effect, which in the 
following they also be explained.

The effect of RFamide-related peptides on the 
gonadotropin-releasing hormone neuronal 
system 

Any direct effect of RFRP on GnRH neurons ne-
cessitates a direct connection between RFRP neu-
ronal terminals and GnRH neurons. In the POA 
of male rats, research has shown that RFRP fib-
ers formed a close association with approximately 
75% of GnRH neuronal bodies (24). Similar find-
ing was reported in female hamsters (more than 
40%), mice and rats (16). In another study, there 
was communication of RFRP fibers with GnRH 
neurons observed in the anterior hypothalamic 
area, MBH (approximately 30%) and POA of sheep 
(25). In sheep, co-expression of RFRP and GnRH 
during proestrus and estrus (follicular phase) and 
the luteal phase has been reported. During the lu-
teal phase of sheep, more POA neurons expressed 
RFRP compared to the follicular stage, while there 
were no differences in the number of GnRH neu-
rons in the hypothalamus, which indicated a direct 
effect of RFRP neurons in POA on GnRH neurons 
and an indirect effect on LH secretion (23).

In the POA of monkeys, 67.9% of GnRH neu-
rons established connections with RFRP fibers (8), 
with similar connections observed in the human 
brain (7). More than 80% of GnRH neurons of 
POA in the Siberian hamster expressed GPR147 
receptor (13). In adult male and female diestrus 
mice, there was a close relation between RFRP-3 
neuron terminals with 25% of the body of GnRH 
neurons in the medial septum and 27% in the ros-
tral part of the POA, and 33% of GnRH neurons 
which expressed GPR147 mRNA (26). Addition 
of RFRP into GnRH neurons in vitro decreased the 
firing rate of 41% of the neurons. However, elec-
trophysiologic evaluations in that study showed 
that RFRP treatment had a stimulatory effect 
on 12% of the neurons and no effect on 47% of 
neurons (27). In the same study, RFRP treatment 
caused hyperpolarization of more than 50% of 
GnRH neurons (28).

Intraventricular administration of RFRP rapidly 
decreased plasma LH concentration in male rats 
(24), ovariectomized hamsters (16) and Siberian 
hamsters maintained on a long-day photoperiod; 
however, injection of RFRP in hamsters on a short-
day photoperiod stimulated LH release 30 minutes 
after the injection (13). In another research, intra-
ventricular injection of RFRP-3 stimulated expres-
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sion of c-Fos in GnRH neurons and increased both 
LH and testosterone secretion (29). In contrast, 
intraventricular injection of RFRP in ovariecto-
mized rats had no effect on the mean plasma LH 
concentration or frequency of LH pulses (30). In-
traventricular injection of RFRP in ovariectomized 
rats following induction of the GnRH/LH surge by 
estradiol (E2) and progesterone decreased the ac-
tivity of GnRH neurons (evaluated based on c-Fos 
gene expression) by 50 to 60% (31). However, in 
that study, central injection of RFRP in ovariecto-
mized rats treated with E2 implant had no effect on 
LH pulse and amplitude or mean concentration of 
LH. Recently, it was observed that intraventricular 
RFRP-3 injection in ovariectomized ewes had no 
effect on plasma LH concentration (32). Intraven-
tricular administration of RF9, a potent and specif-
ic antagonist of the RFRPs receptor (33), resulted 
in a rapid, dose-dependent increase in gonadotro-
pin secretion in male and female rats (34). Col-
lectively, these finding suggested that RFRP could 
change GnRH secretion via a direct action on the 
GnRH neuronal system [for more information see 
the review by Anderson (35)].

Effect of RFamide-related peptides on hypophysis 
In order to generate a physiologic effect on gon-

adotropin secretion, the hypothalamic RFRP neu-
ronal terminals must either form a close associa-
tion with GnRH neurons in the median eminence 
(ME) and/or RFRP receptors must be located on 
gonadotropes. The RFRP neuronal terminals are 
found in the external layer of the ME in hamsters 
(13, 16, 36), sheep (11), monkeys (8) and humans 
(7). GPR147 expression is reported in the hypoph-
ysis of hamsters (36), rats (37, 38) and humans (7). 
The presence of RFRP in the hypothalamic-hypo-
physeal portal vein of sheep has been reported by 
Smith et al. (39). In rats, while some researchers 
did not observe RFRP fibers in ME (17, 24), others 
reported the presence of RFRP fibers in male (40) 
and female (18) Sprague-Dawley rats.

Fluorogold is a retrograde tracer that does not 
cross the blood-brain barrier but can be absorbed 
from portal arterioles of hypophysis by neurons 
terminals in the external area of ME. Intraperito-
neal injection of this tracer has been used to detect 
central hypophysiotropic cells. The results indi-
cated that more than 90% of GnRH neurons and 
only 3 out of 234 RFRP neurons in the POA of rats 

stained with Fluorogold (17).
Intravenous injection of RFRP decreased LH se-

cretion in several mammals; however, the mode of 
action might differ in various species. Intravenous 
injection of RFRP in ovariectomized ewes de-
creased the amplitude of LH pulses; but had no ef-
fect on pulse frequency (11). Intravenous injection 
of RFRP in castrated bulls decreased the frequency 
of LH pulses, however a single injection had no 
effect (41). Intravenous injection of RFRP in ova-
riectomized rats (30) and ovariectomized hamsters 
decreased mean concentrations of LH (16).

The addition of RFRP to cultures of hypophyseal 
cells of rats (30), cows (41) and sheep decreased 
GnRH-induced LH secretion. Interestingly, the 
addition of GnRH to hypophyseal cells increased 
expression of LHβ mRNA in rams (4 times) and 
ewes (2.5 times), but RFRP inhibited LHβ subunit 
expression (42). On the other hand, it was also re-
ported that treatment with RFRP (31) or RF9 (an 
RFRP receptor antagonist) (34) had no effect on 
GnRH-induced LH secretion in a hypophyseal cell 
culture in rats.

Effect of RFamide-related peptides on gonads 
In addition to expression in the brain, expression 

of RFRPs and their receptors in mammalian go-
nads have been reported. In male hamsters, cells 
that expressed RFRP were observed in the semi-
niferous tubules. Its receptor, GPR147, was ob-
served in spermatocytes and spermatids (43). In 
the monkey, RFRP and its receptor were expressed 
in Leydig cells, spermatogonia and spermatocytes 
(44). RFRP was also found in the granulosa and 
luteal cells of mice ovaries (45).

RFRP peptides in granulosa cells of preovulato-
ry follicles and corpus luteum along with GPR147 
receptors in granulosa cells, theca cells and the 
corpus luteum have been observed in women. 
RFRP-3 could inhibit the effect of gonadotro-
pins on progesterone production and expression 
of StAR protein (46). Thus, it was postulated that 
RFRP might have autocrine/paracrine roles in ga-
metogenesis and steroidogenesis (44).

Effect of sex steroids on the RFamide-related 
peptide system 

A low concentration of E2 secreted during the 
majority of the ovarian cycle in most mammals ex-
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erts a negative feedback effect on GnRH neurons 
by keeping GnRH/LH secretion at a basal level. 
During the preovulatory period, high levels of es-
trogen secreted from mature follicles results in a 
GnRH/LH surge via a positive feedback effect. 
The GnRH neurons do not express alpha E2 recep-
tors (ERα) which are essential for the positive and 
negative feedback effects of E2 (47). Therefore, it 
seems that other steroid sensitive neurons are in-
termediaries of the estrogen effect on regulation of 
GnRH (and LH) secretion.

Approximately 40% of RFRP neurons in the 
brain of female hamsters (16) and 18% in ova-
riectomized mice expressed ERα (48). Therefore, 
RFRP neurons might intermediate the E2 feedback 
effect. We studied the expression of RFRP mRNA 
and peptides during the estrous cycle of rats. Ex-
pression of RFRP mRNA in proestrus was less 
than in diestrus and the numbers of neurons that 
expressed the RFRP peptides during proestrus and 
early estrus was less than during estrus and dies-
trus. Increased secretion of E2 in the evening of 
proestrus from dominant follicles in addition to the 
positive feedback effect on GnRH/LH surge might 
facilitate GnRH/LH secretion by exerting an in-
hibitory effect on RFRP expression in DMH (18). 
In another study we evaluated the numbers of neu-
rons that expressed RFRP in DMH/PVN during 
the follicular and luteal phases of goats. The num-
bers of positive cells in the follicular phase (perio-
vulatory period) was less than in the luteal phase 
(21). Consistent with this finding, the numbers of 
RFRP neurons decreased during the preovulatory 
period in hamsters (36). It was also reported that 
the number of POA neurons that expressed RFRP 
was greater during the luteal phase compared with 
the follicular phase in sheep (19).

E2 implants (100 µg/ml) for 4 days in ovariecto-
mized mice decreased the number of RFRP cells 
and the expression of RFRP mRNA per cell (48) 
as determined by in situ hybridization. Possibly, 
only high or long term levels of E2 could decrease 
the expression of RFRP in rodents because only 
once subcutaneous injection of E2 in ovariecto-
mized hamsters sufficiently increased the activity 
of RFRP neurons (evaluated by c-Fos expression) 
at 3 and 6 hours after injection (16). In contrast to 
these findings, during the breeding and non-breed-
ing seasons for sheep, there was no difference 
in the numbers of neurons that expressed RFRP 

mRNA and RFRP mRNA levels per cell between 
ovariectomized ewes and ovariectomized ewes 
that received E2 implants (25).

RFRP neurons in the brain of male hamsters 
expressed an androgen receptor (16), however 
castration of male hamsters or treatment with tes-
tosterone implants for 4 weeks had no significant 
effect on the number of cells that expressed RFRP 
(49). Therefore, more studies should be conducted 
to clarify the mechanism of sex steroid action on 
RFRP neurons.

The effect of a photoperiod on the RFamide-
related peptide system 

Reproductive activity in several mammalian 
species shows salient seasonal alterations due to 
basal alterations in secretion of reproductive hor-
mones. In compliance with the action of RFRP 
mammalian reproduction, it is logical that RFRP 
expression in seasonal breeders will be harmo-
nized with changes in the photoperiod. Contrary to 
the expectation in Syrian and/or Siberian hamsters 
(long-day breeders), there were fewer neurons that 
expressed RFRP mRNA and RFRP peptide during 
the short-term photoperiods (8 hours light) com-
pared with the long-term (16 hours light) photo-
periods (13, 49, 50). These findings were not relat-
ed to the specific time of day since gene expression 
was the same during 24 hours (49).

Aggregation of RFRP fibers in POA and rostral hy-
pothalamus (aggregation area of GnRH neurons) and 
the percent of GnRH neurons that established con-
nections with RFRP fibers were less during the short-
term compared to the long-term photoperiod (13, 50). 
On the other hand, pinealectomy prevented a decrease 
in RFRP expression during short days (13, 49). A 60-
day melatonin injection administered to hamsters 
maintained under long-term photoperiods remarkably 
decreased RFRP mRNA expression and produced the 
same response as in the short-term photoperiod (49). 
Administration of melatonin for 13 weeks to pine-
alectomized hamsters kept under a short-term photo-
period decreased RFRP gene expression (13). There-
fore, melatonin appeared to decrease the activity of 
RFRP neurons during short-term photoperiods.

Coordination of these findings with the inhibi-
tory role of RFRP was difficult because when the 
lowest level of expression was seen, the reproduc-
tive system was inactive. In Siberian hamsters, 
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the relative expression of RFRP mRNA during 
average days (13.5 hours light) was more than 
40 times the long days (16 hours light) (51). 
Therefore, it was possible that a considerable 
increase in RFRP expression during the early 
period of reproductive system regression (aver-
age days) would be necessary to inhibit the re-
productive axis. However, this level of expres-
sion in hamsters whose reproductive axis did not 
completely regress was not necessary. Because 
intraventricular injections of RFRP in hamsters 
maintained under short-term photoperiod condi-
tions had a stimulatory effect (13) it was possi-
ble that the decrease in RFRP expression during 
short-term photoperiods was important for inhi-
bition of reproduction.

Unlike hamsters, sheep and goats are short-
day breeders. The number of RFRP that ex-
pressed neurons during the non-breeding season 
in sheep (long-term photoperiod) was approxi-
mately 40% more than during the breeding sea-
son, but there was no difference in the number 
of RFRP mRNA per cell (25). However, in an-
other study, RFRP mRNA expression was high-
est during the long days (10). Communication 
of RFRP fibers with GnRH neurons in POA and 
rostral hypothalamus was highest during the 
non-breeding season (25). In addition to the sea-
sonal change of RFRP expression in DMH/PVN 
nuclei, RFRP mRNA expression in epithelial or 
ependymal cells around the ventricle was seen 
only in long days (10).

Recently we evaluated RFRP expression in 
DMH/PVN nuclei in goats during the breeding 
season (follicular and luteal phases) and anes-
trus. In both nuclei, the number of cells that 
expressed RFRP was higher in during anestrus 
compared to the follicular phase. However, there 
was no difference between the anestrus and lu-
teal phases. We also determined the number of 
positive neurons in the rostral, middle and cau-
dal parts of the DMH/PVN. In the rostral areas, 
more RFRP neurons were observed during anes-
trus than during the follicular phase; however, 
there was no effect of the reproductive stage 
recorded in middle and caudal parts of these nu-
clei (21). These results in sheep and goats were 
in accordance with the inhibitory role of RFRP 
on the reproductive axis.
The probable action of RFamide-related peptides 

on other physiologic events 
The diffuse distribution of RFRP neuronal pro-

cesses in the brain is suggestive of additional roles 
for this neuropeptide in physiology. The RFRP 
neuronal terminals in sheep brain are extended to 
neurons of orexin, melanin, proopiomelanocortin 
and neuropeptide Y; therefore, RFRP neurons may 
have a role in the regulation of appetite and en-
ergy balance, and possibly function as a link be-
tween nutrition and reproduction (52). Long term 
malnutrition (2 weeks) has been shown to increase 
RFRP-3 mRNA expression in DMH of the hypo-
thalamus in ovariectomized female rats (53).

Furthermore, in the monkey brain, RFRP fibers 
had a close relation with neurons of dopamine, 
beta-endorphin and GnRH-II. Since dopamine 
neurons express GPR147, it was suggested that 
RFRP might stimulate prolactin secretion by in-
hibition of dopamine neurons (8). Consistent with 
this idea, we showed that the numbers neurons that 
expressed RFRP in suckling rats (in which plasma 
prolactin is at its highest level) was higher than in 
non-suckling rats (54). Increased RFRP-3 mRNA 
expressions in DMH of the hypothalamus while 
increasing milk production in rats might be the in-
hibitory factor for GnRH secretion (55).

Based on the findings that prolactin (56, 57) 
and oxytocin (58) secretion increased during 
the refractory period after ejaculation in men, 
we proposed a hypothesis that increased RFRP 
expression after ejaculation might be the cause 
of the post-ejaculation refractory period in men 
(59). Intracerebroventricular injection of RFRP 
in rats also increased the activity of oxytocin 
neurons in the hypothalamus and oxytocin con-
centrations in plasma. It was shown that the su-
praoptic and PVN nuclei of the hypothalamus 
expressed GPR147 mRNA (60). Therefore, 
RFRP peptides might also participate in the 
regulation of oxytocin secretion.

Coexpression of RFRP and AgRP in the Arc 
neurons of the ewe has been reported which indi-
cated a probable role of these two peptides in con-
trol of the ewe reproductive cycle. This study also 
showed that ovarian steroids affected expression 
of these peptides in the Arc of the hypothalamus 
and might be a link between energy homeostasis 
and reproduction (23).
RFamide-related peptides and treatment of 
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reproductive disorders 
As mentioned before, RFRP peptides have an op-

posite effect against GnRH in numerous situations 
and inhibit secretion of gonadotropins. However in 
some cases they may have an effect on LH release 
and a stimulatory effect (please see the previous 
sections). GnRH analogs (agonists and antago-
nists) have been applied in the treatment of a wide 
spectrum of reproductive disorders, including pre-
cocious puberty, endometriosis, uterine fibroids, 
prostatic hyperplasia, prostatic and breast cancers. 
By 2000, more than 2 billion dollars in sales of 
these compounds was recorded (61). Therefore, 
considering the potential effect of RFRP in inhibi-
tion of gonadotropins, the use of these peptides in 
the future for the treatment of reproductive disor-
ders would be expected (62).

The inhibitory effect of stress on reproductive 
performance has been demonstrated. Stress leads 
to activation of the hypothalamus-pituitary-adre-
nal axis which inhibits GnRH secretion. It seems 
that the effects of stress on the hypothalamus-
pituitary-gonad axis is mediated by adrenal ster-
oid hormones (glucocorticoids). Since neurons of 
GnRH do not express glucocorticoid receptors, it 
is possible that these steroid hormones affect neu-
rons upstream of GnRH neurons and change the 
release of GnRH. Reports have shown that RFRP 
neurons mediate the effects of stress on reduction 
of GnRH/LH secretion and stop of the reproduc-
tive axis (38, 63). Therefore, it is possible that us-
ing RFRP antagonists or antibodies against RFRP 
safeguard reproductive performance in stressful 
situations. Also, as noted above, increase in RFRP 
expression may be involved in the post-ejaculatory 
refractory period (59) Hence disabling the RFRP 
system may shorten this period.

Conclusion
Based on the findings in mammals, RFRPs are 

homologues of GnIH in birds and can inhibit LH 
secretion and the reproductive axis; however, their 
mode of action is not yet clearly established. For 
example it is not known whether they inhibit the 
GnRH system and/or have a direct effect on hy-
pophyseal gonadotropes in preventing gonadotro-
pin secretion. Amongst studied species, the most 
contradictory data have been reported in the rat. 
Based on extensive connection between the RFRP 
neurons and other neurons, more studies will be 

required to identify the exact role of these peptides 
in reproduction and other physiologic functions.
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