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ABSTRACT: The application of neural networks to model a laboratory scale inverse fluidized bed
reactor has been studied. A Radial Basis Function neural network has been successfully employed
for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural
network represents the kinetics of biological decomposition of organic matters in the reactor. The
neural network has been trained with experimental data obtained from an inverse fluidized bed
reactor treating the starch industry wastewater. Experiments were carried out at various initial
substrate concentrations of 2250, 4475, 6730 and 8910 mg COD/L and at different hydraulic retention
times (40, 32, 24, 26 and 8h). It is found that neural network based model has been useful in predicting
the system parameters with desired accuracy.
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INTRODUCTION
Artificial Neural Networks (ANN) has been

established as a tool for effortless computation and
its application in environmental engineering field
is very promising and has gained extensive interest
(Hamoda et al., 1999; Hack and Kohne, 1996;
Gontarski et al., 2000; Bongards, 2001; Hamed et
al., 2004; Rene and Saidutta, 2008 ). ANN have
been successfully employed in solving problems
in areas such as fault diagnosis, process
identification, property estimation, data smoothing
and error filtering, product design and development,
optimization, dynamic modeling and control of
chemical processes, for the prediction of vapor-
liquid equilibrium (VLE) data and estimation of
activity coefficients. The purpose of using artificial
neural networks in wastewater treatment system
is to reduce the number of experiments that are
being carried out to characterize the system.
ANN has remarkable ability to derive meaningful
information from complicated or imprecise data.
It can be used to extract patterns and detect trends,
which are too complex to be noticed by other

computational technique (Mehrotra et al., 1997).
Neural networks, inspired by the information
processing strategies of the human brain, are
proving to be useful in a variety of engineering
applications. ANN may be viewed as paralleled
computing tools comprising of highly organized
processing elements called neurons which control
the entire processing system by developing
association between objects in response to their
environment. The researches have proposed
many architectures of the network .Two widely
used network for modeling the non-linear problems
in engineering systems are the Backpropagation
and Radial Basis Function (RBF) networks.

Radial basis networks require lesser neurons
than the standard feed forward back propagation
networks and they can be trained in a fraction of
time (Govindarajan, 2002). In this work, radial
basis network function has been successfully
incorporated for the prediction of degradation of
organic matter present in starch wastewater
treated in an inverse fluidized bed reactor. The
proposed technique of using radial basis function
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requires only limited experimental values to predict
the behavior of the system. A simple well-trained
neural network can be employed to overcome the
modeling problems of reactor without prior
knowledge of the relationships of process variables
under investigation.

Radial basis function networks form one of
the essential categories of neural networks. A RBF
network is a two-layer network whose output units
form a linear combination of the basis functions
computed by the hidden units. A function is radially
symmetric if its output depends on the distance of
the input sample from another stored vector.
Neural networks whose node functions are radially
symmetric functions are referred to as Radial
Basis Function Nets.

The transfer function for a radial basis neuron
is radbas. The radial basis neuron receives as net
input the vector distance between its weight vector
w and the input vector p, multiplied by the bias b.
The basis functions in the hidden layer produce a
localized response to the inputs i.e each hidden
unit has a localized receptive field. The basis
function can be viewed as the activation function
in the hidden layer. The outputs of the hidden unit
lie between 0 and 1. The closer the input to center
of the Gaussian, the larger the response of the
node. The node produces an identical output for
inputs with equal distance from the center of the
Gaussian; it is called a radial basis. The output
unit forms a linear combination of the nonlinear
basis functions and thus the over all network
performs a nonlinear transformation of the input.
The radial basis neural networks have been
designed by the using the function newrb available
in the neural network toolbox supported by
MATLAB 7.0. The function newrb iteratively
creates a radial basis network by including one
neuron at a time. Neurons are added to the
network until the sum squared error is found to be
very small or the maximum numbers of neurons
are reached. At each iteration the input vector,
which will result in lowering the network error
most, is used to create a radial basis neuron.

During the training, each of the connecting
weights of the individual neuron is compared with
input signals. The distance between the connecting
weights determines the output of hidden neurons
and input vector, which is further, multiplied by
bias an additional scalar quantity being added

between neuron and fictitious neuron.   The output
is propagated in a feed forward direction to output
layer neuron, which will give output if the
connection weights are close to input signal. This
output is compared with target vector. If the error
reaches the error goal then training is completed
otherwise the next neuron will be added. The
connecting weights are modified each time by
changing maximum neurons and spread constant.
The value of maximum neuron and spread
constant are kept on changing till the network is
trained properly. Radial basis networks can be
used to approximate functions.Newrb adds
neurons to the hidden layer of a radial basis
network until it meets the specified mean squared
error goal.

The advantages of RBF are, the time taken in
designing a radial basis network is often less when
compared to the training a sigmoid / linear networks
and the number of neurons required for designing
the network is considerably less when compared
to standard back propagation network
(Govindarajan, 2005). The following steps are
repeated until the network’s mean squared error
falls below goal as given in Fig. 1.

•   The network is simulated
•   The input vector with the greatest error is
     found
•    A radbas neuron is added with weights equal
      to that vector
•    The purelin layer weights are redesigned to
      minimize error

Fig. 1. Radial Basis Function Neuron Model

MATERIALS & METHODS
Degradation of starch wastewater in Inverse

Fluidized Bed Bioreactor (IFBBR) was carried out
continuously in different stages by varying initial
substrate concentration (2250 mg COD/L, 4475 mg
COD/L, 6730 mg COD/L and 8910 mg COD/L)
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and hydraulic retention time (40, 32, 24, 16 and 8h).
Various experimental runs were conducted to
provide information of the process behavior and to
train the network (Rajasimman, 2007).

The particles were introduced into the reactor
along with the substrate and inoculum. The air
flow rate was adjusted according to bed height,
for biomass growth. The growth of the biofilm on
the surface of the particles was monitored at
regular intervals. The reactor inoculation and
startup procedure were followed according to
Rajasimman and Karthikeyan, 2007.

Continuous degradation in IFBBR was started
with an initial concentration of 2250 mg COD/L
and a HRT of 40 h. The reactor was monitored
continuously by measuring effluent COD values.
When the reactor reaches steady state, the HRT
was reduced to 32 h and reduction in COD was
monitored. Experiment was continued with various
HRT (24, 16 and 8h). The performance of the
reactor was studied based on COD removal
efficiency. Experiments were repeated for various
initial substrate concentrations at five different
HRT by maintaining an optimum bed height (80
cm) and air flow rate (62.50 cc/s). The pH of the
influent to the reactor was maintained at 6.0. The
analyses were made according to the methods
given in standard methods of analysis by American
Public Health Association, APHA (1992). The
experimental data were fed to the neural network
to model the IFBBR in degrading the starch
wastewater.

RESULTS & DISCUSSION
The structure of radial basis function network used
in this work is given by
net = newrb
[net,tr] = newrb (P,T,Goal,Spread,MN,DF)
Newrb adds neurons to the hidden layer of a radial
basis network until it meets the specified mean
squared error goal.

NEWRB (PR,T,GOAL,SPREAD,MN,DF) takes
these arguments,
P RxQ matrix of Q input vectors.
T SxQ matrix of Q target class vectors.
Goal Mean squared error goal, default = 0.0.
Spread Spread of radial basis functions, default
            = 1.0.
MN Maximum number of neurons, default is Q.

DF Number of neurons to add between
displays, default = 25 and returns a new radial
basis network.

Newrb creates a two layer network. The first
layer has radbas neurons, and calculates its
weighted inputs with dist, and its net input with
netprod. The second layer has purelin neurons,
calculates its weighted input with netprod and its
net inputs with netsum.  Both layers have biases.
Initially the radbas layer has no neurons.  The
following steps are repeated until the network’s
mean squared error falls below goal or the
maximum number of neurons are reached:

(i)   The network is simulated
(ii)   The input vector with the greatest error is
       found
(iii)  A radbas neuron is added with weights equal
       to that vector.
(iv) The purelin layer weights are redesigned to
       minimize error.

Radial Basis Function Parameters used in this
study are

The Radial Basis Function network was
trained to predict the performance of IFBBR. The
criterion used to evaluate the performance of the
reactor is to determine the reduction in organic
matter present in the starch industry wastewater.
The neural network was trained with the influent
substrate concentration, hydraulic retention time
and effluent concentration of the reactor. The data
used for the training at various hydraulic retention
times of 40, 32, 24, 16 and 8 h and at different
initial substrate concentrations of 2250, 4475, 6730
and 8910 mg COD/L. The input and output for
the Neural Network were given in Table 1.

The neural network predicted data were
compared with the experimental findings at the
intermediate hours viz 36, 60, 84, 108, 132, 156,
180, 204, 228 hours of operation and at different
initial substrate concentrations of 2250, 4475 and
6730 mg COD/L.For the initial substrate
concentration 8910 mg COD/L, the data were

P 2
Q 1
Goal 0
Spread 1000
MN 2
DF 10
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predicted for 36, 60, 84, 108, 132, 156, 180, 204
and 228 h. The performance of the network was
evaluated on the basis of an overall absolute error
and root mean square error (RMSE) specified by
the difference in the desired and actual outputs. A
comparison of experimental values and the ANN
predicted results were depicted in Figs. 2 to 5.
From these Figures it has been observed that
artificial neural network modeling of system-based
parameters is found to match exactly with the
experimental data at various operating conditions
of the reactor. The use of neural network for the
prediction of the performance of IFBBR has been
found to be valid and robust, eliminating the need
for the complex mathematical and computations
involved in the modeling of the IFBBR
performance.The absolute standard deviation and
percentage root mean square error, used in this
study for the evaluation of neural network model,
is defined as:

Table 1. ANN input and output parameters

Absolute Standard Deviation (ABSD)

Time intervals at which COD values measured, 
hr 

Substrate 
Concentration, 
 mg COD/L 

Hydraulic Retention 
Time, h  

ANN Input ANN Output 

2250 40, 32, 24, 16, 8 
36, 60, 84, 108, 132, 
156, 180, 204, 228 

24, 48, 72, 96, 120, 144, 
168, 192, 216 

4475 40, 32, 24, 16, 8 
36, 60, 84, 108, 132, 
156, 180, 204, 228 

24, 48, 72, 96, 120, 144, 
168, 192, 216 

6730 40, 32, 24, 16, 8 36, 60, 84, 108, 132, 
156, 180, 204, 228 

24, 48, 72, 96, 120, 144, 
168, 192, 216 

8910 40, 32, 24, 16, 8 
24, 48, 96, 144, 192, 

216, 240, 264 
36, 60, 84, 108, 132, 
156, 180, 204, 228 
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Fig. 2. Experimental and ANN Predicted COD Vs Time – Initial Substrate Concentration of 2250 mg COD/L
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The Absolute Standard Deviation and percentage
RMSE were found for each run and were
tabulated in Table 2. From the Table it has been
found that the deviations were well within the
permissible limit. These findings are well in
agreements as those in the findings of Steyer et
al., (1995). Thus artificial neural network modeling
of IFBBR is highly justified for the treatment of
starch industry wastewater.
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Fig. 3. Experimental and ANN Predicted COD Vs Time – Initial Substrate Concentration of 4475 mg COD/L
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Fig. 4. Experimental and ANN Predicted COD Vs Time – Initial Substrate Concentration of 6730 mg COD/L
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Fig. 5. Experimental and ANN Predicted COD Vs Time – Initial Substrate Concentration of 8910 mg COD/L
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CONCLUSION
In this study, the inverse fluidized bed

bioreactor treating starch industry wastewater was
modeled using artificial neural network. The Radial
based artificial neural network has been trained
with experimental data obtained from an inverse
fluidized bed reactor treating the starch industry
wastewater. The ANN predicted values are
compared with the experimental values and it is
very close to the experimental values. The low
RMSE values (<10% for most cases) indicate the
performance of ANN in predicting the system. The
main conclusion of this work is that the use of
neural networks can be used to establish a better
operating condition, which has been defined by
some variables such as hydraulic retention time.
Neural networks represent a possible aid to
operations in order to predict upsets and proactively
act to minimize output fluctuations.
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Substrate  
Concentrat ion, 
mg COD/L 

 
HRT 40 h HRT 32 h  HRT 24 h HRT 16 h HRT 8 h 

2250 ABSD 
%RMSE 

25.56 
5.32% 

10.33 
3.20% 

34.11 
11.54% 

48.33 
14.41% 

58.78 
7.98% 

4475 ABSD 
%RMSE 

53.11 
17.6% 

68.5 
12.0% 

55.44 
12.52% 

50.55 
10.12% 

151.44 
7.5% 

6730 ABSD 
%RMSE 

79.6 
10.6% 

86.5 
7.1% 

95.6 
5.81% 

123.2 
6.1% 

168.6 
5.65% 

8910 ABSD 
%RMSE 

213 
9.4% 

101.44 
6.92% 

157.13 
5.42% 

192 
5.27% 

219 
4.81% 
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