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ABSTRACT: Nowadays, the environmental impact of transportation project and, especially air pollution
impacts, are major concerns in evaluating transportation projects. Based on this concern, beside definition of
traditional objective functions like total travel time and total investment cost, different type of environmental
related function is considered as objective function in urban network design. In this paper, the continuous
network design problem (CNDP) is formulated as a multi-objective bi-level optimization problem. The objective
function of the upper level problem is a weighted combination of total travel time, total investment cost and
total vehicular emission in the network. The lower level problem is the traffic assignment problem which
would predict the vehicular flow on each link in the network. A new solution algorithm is proposed for solving
the bi-level optimization problem by the partial linearization of the lower level problem. The solution algorithm
was applied to the city of Sioux Falls, a well known transportation network.
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INTRODUCTION
Design Problem (NDP) is the problem of selecting

optimal capacity enhancement in transportation
networks. NDP is usually classified to three types of
Continuous Network Design Problem (CNDP) as in
Dantzig et al. (1979), Marcotte (1983), Harker and Friesz
(1984), Le Blanc and Boyce (1986), Suwansirikul et al.
(1987), Jahangiri et al. (2011), and Meng et al. (2001),
Discrete Network Design Problem (DNDP)  which was
used in Billheimer and Gray (1973), Los (1979), Boyce
and Janson (1980), Poorzahedy and Turnquist (1982),
Herrmann et al. (1996), Solanki et al. (1998), Le Blanc
(1975) and Gao et al. (2005), Afandizadeh et al. (2006),
and Mix Network Design Problem (MNDP) as in
Afandizadeh et al. (2011). In the CNDP, the decision
variables, capacity enhancement, are continuous
variables; but, in the DNDP, the decision variables are
integers - mostly the problem is to decide whether to
implement a network improvement project or not. The
MNDP is a problem in which the capacity enhancement
decisions are both integer and continuous variables.
For a comprehensive review, the reader may refer to
Magnanti and Wong (1984) and Yang and Bell (1998)

as examples.The NDP is traditionally formulated as a
bi-level optimization problem (Yang and Bell (1998)).
In previous studies, the upper-level problem is to
minimize the total system’s travel time while the lower
level problem minimizes the individual drivers’ travel
time by the equilibrium traffic assignment problem.
The network design problem could be considered as a
Stackelberg game (Murphy et al. (1982)) in which the
upper level problem is the leader problem, whose
objective is to minimize the total system cost. The
lower level problem is the follower problem, which
based on the leaders decision, tries to selfishly
minimize his/her individual travel time based on the
leaders’ decision.

Different objectives have been used as the upper
level problem in the past studies (Yang and Bell (1998)).
The objective functions such as total travel time, total
system cost and social welfare are some of the most
common objective functions in the literature. However,
none of these researches have taken into account the
environmental impact of these network decisions.

Former investigations have shown a wide
spectrum of solution algorithms for solving the NDP.
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Dantzig et al. (1979) used the system optimal flow
instead of user equilibrium flow in order to expedite
the solution of NDP.  Neglecting the congestion effect
on travel time was another method used by Boyce et
al. (1973) and Holmberg and Hellstrand (1998).
Expediting the solution procedure through the
aggregation of the network by link and node
abstraction or extraction was another method that was
proposed in Haghani and Daskin (1983). Yang and Bell
(1998) facilitated the design procedure using an
intrinsic approach which defined a new design problem
lacking the complexity of NDP. Heuristic and meta-
heuristic methods were also used in many previous
studies (Poorzahedy and Turnquist, (1982); Chen and
Sul Alfa (1991); Yin ( 2000); Friesz et al. (1992); Lee and
Yang, (1994); Cantarella et al. (2002) and Poorzahedy
and Abulghasemi ( 2005)).

In this paper, the bi-level optimization problem is
converted into a problem with a linear lower level
problem in which its gradient could be easily calculated
and thus the sub-gradient of the upper level problem
could be determined. Meanwhile, by considering the
effect of network decisions on air pollution, a new
aspect of transportation network design was taken into
account.

This paper is organized as follows: in the second
section, the Multi-objective bi-level Continuous
Network Design Problem (MCNDP) is formulated.
Section three presents the proposed solution algorithm
for the MCNDP.  In Section four, the presented method
is applied to the network in the city of Sioux Falls.
Finally, conclusions and future works are presented in
Section five.

MATERIALS & METHODS
As mentioned previously, the continuous network

design problem could be formulated as an optimization
problem. It is assumed that ),( ANG  is a directed
graph where N is the set of nodes and A is the set of all
links in the graph G. The set A could be partitioned into
two subsets, namely Ab and Ap, the latter of which is
the set of all links in the basic network and the former
is the set of candidate links for capacity expansion.
The demand set of the network G is defined as the set
of triplets (r,s,qrs) so that, r is the origin node and

Nr ∈ , s is the destination node and Ns ∈ , and qrs

is the demand between r and s. Then, by defining C as
the vector of link capacities and f as the vector of path
flows, the network design problem could be formulated
as in Eq. (1):

Subject to:

)(min* CgArgf f Ω∈=

Where C* is the vector of optimal capacities and f*

is the vector of optimal path flow on the network. ∆
and Ω  are the feasible solution sets for capacity and
path flow, respectively. The problem is to find the
optimal capacity expansion and traffic flow subjected
to the user equilibrium traffic assignment constraint
which is, in turn, a function of capacity. As could be
seen, this problem is an NP-Hard bi-level optimization
problem.
More specifically, the problem could be formulated as
in Eq. (2):
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In the above equation:

ca = the capacity of link pAa ∈ ,
cmax = the maximum capacity of each link,
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        = the set of paths connecting the origin destination
pair (r,s),
ZT = the total travel time objective function,
ZC = the total construction cost objective function,
ZE = the environmental impact objective function,
ta = the travel time of link a, and
xa = the flow on link a.

As could be seen, this problem is a nonlinear
multi-objective problem. In this paper, the problem was
converted into a single objective optimization problem
using a utility function, as in Eq. (3):

minmax

min

ZZ
ZZU
−

−
= (3)

Where  are the maximum and minimum
values of a single objective problem with objective Z,
respectively. Thus, the upper level objective function
of problem (2) could be written as equation (4):

Where:

( )ECT WWW ,, = the set of weight factors which indi-

cate the level of importance of each objective.
Thus, problem (2) could be rewritten as (5).
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The only new variables used in the model were:
ea = unit cost of link capacity enhancement,
la = the length of link a,
va = travel speed on link a,

3210 ,,, αααα  = the parameters set of the emission
function for each link, and
X = the vector of link flows.

It is worth mentioning that the proposed objective
function is dimensionless. This property of the
objective function made the comparison between
different components of the objective function
possible. In the proposed problem, any model could
be used for formulating the vehicular emission. The
model used in problem (5) for vehicular emission was
the one used in the VISUM software.

SOLUTION ALGORITHEM
In this paper, the solution algorithm proposed

for the bi-level optimization problem consisted of two
major steps; determining and forming the objective
function and solving the single objective bi-level
problem. In order to solve the bi-level optimization
problem introduced in Eq. (5), a linear approximation
of the lower level was used. The sensitivity information
of the linear lower level problem was used as the sub-
gradient of the upper one or the master problem in this
paper.

As could be seen in Eq. (5), in order to compute
the objective function, the minimum and maximum
values of different components of the objective
function were needed. This information could be
determined as follows:
          • ZTmin: could be computed by fully
implementing all the projects. This is the network with
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the maximum capacity. It should be kept in mind that,
in the case of the occurrence of Brasses paradox, this
might not be necessarily true and the optimization
problem minimizing the total travel time needs to be
solved.
         • ZTmax: could be assumed to be the current total
travel time of the network without any capacity
expansion.
          • ZCmin: The minimum amount of network
construction cost is zero
          • ZCmax: The maximum construction cost of the
network is simply equal to the maximum budget needed
for constructing all the network projects.
          • ZEmin,  ZEmax: should be computed by
optimizing the problem with only environmental
objective function.

To solve problem (5), the problem was converted
to a Linear Bi-Level (LBL) optimization problem in which
the objective functions of both upper and lower level
problems were similar. This property was used in the
sub-gradient method presented in this paper for solving
the equivalent Linearized Network Design Problem
(LNDP).

The objective function of the UE assignment model

can be noted ψ; thus,ψ                                               The

first order Taylor approximation of ψ in the kth iteration

(ψk) was given as in (6):

 Ψk = Ψk-1 + Ψk-1 *(xk-1 - xk)

∑∫
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a
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(6)

Thus, the objective function of the lower level problem
could be written as in (7):

X
minΨk =

X
min [Ψk-1 + Ψk-1 *(xk-1 - xk)] (7)

Subtracting the fix terms from the minimization yields
(8):

X
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By substitution:
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This was similar to the upper level travel time (ZT)

objective function. The term 
a

a

c
t

∂
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calculated by assuming 0=
∂
∂

a

a

c
x

. This assumption is

not a very restricting one as, in the linearized equilibrium

sub-model, changes in the capacities are small in each
iteration and capacity expansion makes the shortest
path between each origin-destination pair even more
attractive. Thus, assuming that flow does not change
with the change in capacity, in each iteration of the
algorithm, only has a negligible effect.
The sensitivity information of the linearized lower level
problem given in (6) could be easily calculated as:

}Aa ∈∀ , the vector of link travel times at iteration k.

Subject to:

In the above equation:
k
ayx = the auxiliary link flow on link a at iteration k,

YX = the set of auxiliary link flows, and
rs
pg  = is the auxiliary path flow on path p between

the origin-destination set r and s.
Step 2- Direction finding: Compute the derivative
based on Eq. (9) and find the optimal solution of
problem (13).
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An important issue about Eq. (10) is that k
TZ  is not

smooth; thus, the derivative given by the sensitivity
analysis is only one of its sub-gradients, especially
when   is degenerate. Based on the methodology
described in this section, the steps of the solution
algorithm could be given as follows:
Step 0- Initiation: set the convergence parameter 

and Set k=1; define the set  of candidate links.
Step 1- All or nothing assignment: perform an all or
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In the above equation:
k
ayc  = is the auxiliary capacity of link a, and

YC = the set of auxiliary link capacities.
Step 3- Line search for the equilibrium assignment:
perform the ordinary line search to the exact UE
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Subject to:

Step 5- Check for convergence: if convergence reaches,
stop; otherwise, update the travel time and go to Step
1.

RESULTS & DISCUSSIONS
The test network in this study was the Sioux Falls,

North Dakota, network, given in Fig. 1 which was first
used by LeBlanc. It consisted of 24 nodes and 76 links.
10 links were selected for capacity enhancement,
namely, links 16, 17, 19, 20, 25, 26, 29, 39, 48 and 74 in
Fig. 1. The maximum capacity enhancement on each
link was assumed to be 25 units.

Different combinations of the weight factor were
used in order to study the effect of different policies
and strategies on the outcome of the proposed model.
The travel time function used in this paper was the
BPR function as given in Eq. (15):

Step 4- Line search for the upper level NDP: in order
to find the optimal step size of the upper level problem,
the following one-dimensional line search problem
should be computed by solving problem (14).
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assignment as in the frank-wolf algorithm by solving
problem (12).
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As mentioned previously, the emission function
used in this study was the function used in the VISUM
software. It is worth mentioning that the proposed
methodology was not sensitive to the function used
for evaluating emission. The parameters used in this
example network were as follows:
α0 = 16.425
α1 = -0.38357
α2 = 0.0028706
α3 = -0.0000045425

The first step towards the solution of the problem
was to compute the minimum and maximum for each single
objective problem. The results are given in Table 2.

Fig. 1. The Sioux Falls network

Afandizadeh, Sh. et al.

Table 2. Maximum and minimum of each single
level problem

O bjec tive M in imu m 
valu e 

Maximu m 
value 

Dif feren ce 

Z T 78.546 113.626 0.308732 
Z C 0 4325 1 
Z E 8945.511 9634.161 0.07148 
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(15)

For each link a in the network:

ta = link travel time,
xa = link flow,
ca = capacity on link a,
t0a = free flow travel time on link a, and

µθ ,  = parameters for calibration (usually set equal to
0.15 and 4 respectively).
In this problem, ea was set to 0.001 and the unit cost of
expansions is given in Table 1.

Table 1. Unit cost of expansion on links
Cost Link No. 
650 16 and 19  1  
1000  17 and 20  2  
625 25 and 26  3  
1200  29 and 48  4  
850 39 and 74  5  
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Table 3. The different weight factors used in this study
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Fig. 3. The value of each part of objective function in each weight condition
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Fig. 2. The value of each part of objective function with respect to budget

Link Case 1 Case 2 Case  3 Case 4 
6.8 24.91 17.071 24.067 22.241 
7.8 13.11 7.291 10.459 9.824 
8.6 24.91 17.071 24.067 22.241 
8.7 13.11 7.291 10.459 9.824 

9.10 18.838 9.274 16.286 14.089 
10.9 18.838 9.274 16.286 14.089 
10.16 25 18.723 24.972 24.848 
13.24 24.91 16.518 24.767 22.829 
16.10 25 18.723 24.972 24.848 
24.13 24.91 16.518 24.767 22.829 

 

Weights Case 1 Case 2 Case 3 Case 4 
WT 0.25 0.25 0.5 0.33 
WC 0.25 0.5 0.25 0.33 
WE 0.5 0.25 0.25 0.33 

  Table 4. The capacity expansion of each candidate link in the network
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Fig. 4. The convergence of different part of objective function in each weightingCombination
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CONCLUSION
Capacity enhancement is one of the major issues in

urban areas and Network Design Problem (NDP) deal
with this important subject in transportation planning.
The Continuous Network Design Problem (CNDP) has
been traditionally formulated as a bi-level optimization
problem. In this paper, the CNDP was modeled as a
multi-objective linear bi-level optimization problem, and
the problem was solved by a partial linearization
scheme in order to easily calculate the sensitivity
information of the lower level problem. The multi-

objective master problem was converted to a single
objective problem using weighted utility measures.
These dimensionless utilities were tested for different
weight combinations in order to show the effect of
different policies and decisions on different objective
values. It was shown that the proposed methodology
was efficient for implementing realistic size networks.
Inclusion of the vehicular emission to the objective
function could be mentioned as another innovation of
this paper. The implementation of the proposed method
or a meta-heuristic method to a real size large network
could be considered for future research.
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