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Introduction

Non-alcoholic fatty liver disease (NAFLD) is
the hepatic manifestation of the insulin-

resistance syndrome (also known as the metabolic
syndrome) and a frequent cause of elevated liver
enzymes worldwide (1, 2). The prevalence of
NAFLD and other manifestations of insulin
resistance are expected to rise further during the
forthcoming decades as a consequence of an
unhealthy and common coincidence of a sedentary
lifestyle and a western diet. The histological
spectrum of NAFLD ranges from benign steatosis
without signs of inflammation to its severe
manifestation, termed non-alcoholic steatohepatitis
(NASH) (3, 4). NASH can potentially progress to
severe fibrosis, cirrhosis and hepatocellular

carcinoma (HCC) (5, 6). NASH thus contributes
significantly to the burden of liver disease in
Western societies and is a recognized cause for liver
transplantation (7).

It is generally accepted that changes occurring
during the development of insulin resistance are
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Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the insulin resistance syndrome and thus a
frequent cause of elevated liver enzymes. The term "insulin-resistance associated hepatic iron overload syndrome (IR-
HIOS)" has been coined to describe the frequent association of hepatic steatosis with increased levels of serum ferritin,
normal or slightly elevated transferrin saturation and mild hepatic iron deposition. There is mounting evidence that
increased iron stores in insulin resistance are associated with an unfavorable course of the disease and an increased
prevalence of associated conditions such as diabetes, hypertension or cardiovascular disease. Iron depletion via
phlebotomy has been demonstrated to improve several aspects of the insulin-resistance syndrome. Multiple
interactions have been observed between molecules of iron and glucose metabolism. On a molecular level, impaired iron
export has been demonstrated to be the principal mechanism of iron accumulation in fatty liver disease. Obesity-related
inflammation, low ferroxidase activity associated with low copper bioavailability and decreased expression of the iron
export molecule ferroportein have so far been identified as contributors to increased iron accumulation in human
NAFLD.
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also the pathophysiological basis of NAFLD. For
insight into this subject reading of these reviews is
recommended (8-10). Besides these environmental
and acquired contributors to the development of
insulin resistance, diabetes or NAFLD, a genetic
predisposition plays a role in the development of
insulin resistance. Genetics have moreover been
demonstrated to contribute significantly to
impaired mitochondrial energy homeostasis and
respiratory chain function which may be a key
regulatory perturbation in insulin resistance and
NAFLD (11, 12). In addition, we have recently
learned that adipose tissue is not only responsible
for energy storage but is also to be considered an
endocrine organ (10).

These endocrine properties become especially
important as adipose tissue mass expands in
response to excess calorie intake. Adipocytes secrete
several hormone-like proteins modulating insulin
sensitivity. The first of these adipocyte derived
soluble factors linked to insulin resistance identified
was tumor necrosis factor- |α | (TNF-α) (13).
Increased serum concentrations of pro-
inflammatory cytokines such as TNF-α have been
described in NAFLD and have been linked to
activation of the crucial TNF-α transcription factor
NF-kB by fatty acids (14). Moreover, TNF-α
activity induces oxidative stress which results in
lipid peroxidation and cellular damage and has thus
been implicated as an important factor in the
progression of NAFLD to fibrosis and cirrhosis over
time (15). Several adipose tissue derived hormones,
such as leptin, adiponectin, visfatin, RBP4 or
resistin have been shown to facilitate changes in
carbohydrate and lipid metabolism, thereby
being involved in the pathogenesis of insulin
resistance (9, 10). Serum concentrations of leptin,
RBP4 and resistin are increased in insulin resistant
states but inadequately low concentrations of
adiponectin is a characteristic of NAFLD. High
circulating levels of leptin appear crucial in
facilitating progression of NAFLD to NASH and
consecutive liver cirrhosis (16). Likewise,
inappropriately low concentrations of adiponectin
and its liver receptors are features of progressive
forms of NAFLD (17). Approximately 10 years have
passed since hyperferritinemia has been recognized
as a frequent and characteristic laboratory
abnormality in patients with NAFLD (18), insulin
resistance (19) and the metabolic syndrome (19, 20).
This review was designed to provide a brief
overview of the relevance and pathomechanisms of
increased iron stores frequently observed in patients
with NAFLD.

Clinical background and  relevance of
hyperferritinemia

Since the first description of increased iron stores
in NAFLD and/or insulin resistance,
hyperferritinemia in NAFLD has been established
as an important differential diagnosis of increased
biochemical parameters of iron metabolism distinct
from hereditary iron overload syndromes such as
hereditary hemochromatosis or the sideroachrestic
anemias (18). The term insulin-resistance associated
hepatic iron overload or dysmetabolic iron overload
syndrome (IR-HIOS/DIOS) has been coined to
describe the typical finding of hepatic steatosis
along with mild to moderate iron deposition in
liver biopsies and increased serum ferritin with
normal or slightly elevated transferrin saturation
(TfS) in patients with insulin resistance and
features of the (dys-) metabolic syndrome (18, 21). In
contrast to hereditary iron overload syndromes,
such as HFE-associated hemochromatosis, where
massive iron accumulation is predominantly found
in hepatocytes, iron deposition in NAFLD is
generally mild and is found in hepatocytes as well as
in macrophage derived Kupffer cells (22).

The relevance of increased iron stores for
NAFLD disease severity and progression has been
intensely investigated but has not yet been
discussed conclusively. Several investigations found
an association between iron (23-26) and HFE
mutations (27, 28) and more progressed forms or the
incidence of NAFLD; however, this association was
not confirmed in subsequent studies (29-31). Data
concerning the relevance of excess iron in NAFLD
disease progression is mainly hampered by the lack
of an available prospective investigation with serial
liver biopsies in a cohort of patients large enough to
correct for established factors influencing disease
progression such as obesity, female sex, and diabetes
mellitus (29, 32). However, such a study will be
difficult to perform for practical reasons and due to
ethical concerns. Notwithstanding, investigations
examining iron depletion via phlebotomy in human
NAFLD have unequivocally demonstrated
beneficial effects of iron removal with regard to
systemic or hepatic insulin resistance and to
pancreatic insulin sensitivity (33-35). In a parallel
fashion, this association holds true for iron
depletion and other cardiovascular risk factors (36).
These observations offer strong, though only
indirect, evidence of the detrimental effects of
excess iron stores in NAFLD. Moreover, a
significant reduction in serum TNF-α
concentration was found in response to
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phlebotomy treatment in NAFLD patients,
indicating amelioration of low-grade systemic
inflammation in insulin resistant subjects upon iron
removal (37).

Additional compelling support to the notion that
increased iron stores may exert harmful effects on
insulin resistance is derived from large
epidemiologic studies. Patients with increased
ferritin levels were subsequently found to develop a
higher rate of diabetes and gestational diabetes (38-43).
Serum ferritin levels were found to be positively
associated with BMI (44), visceral fat mass (45),
serum glucose levels and insulin sensitivity (46),
blood pressure (47), the metabolic syndrome (20, 48)

and to be related to cholesterol levels (49). Such a
relationship between serum ferritin and metabolic
markers was also found in a pediatric population (50).
These findings are clinically mainly important
due to the high risk of developing
cardiovascular or cerebrovascular diseases in a
population with insulin resistance (51, 52). In
summary, these data reflect a close relationship
between increased body iron stores, or at least
biochemical evidence thereof, and several clinical
manifestations of the insulin resistance syndrome.

Along the same line of evidence, a lower
incidence of diabetes, lower postprandial serum
insulin concentrations and higher pancreatic
insulin sensitivity as reflected by improved beta cell
function (53) was found in subjects who underwent
previous phlebotomy treatment (54). Iron depletion
was also found to improve coronary vascular
dysfunction in type 2 diabetics (55) and in patients
with known coronary artery disease (56). In addition
to convincing clinical evidence of improved insulin
sensitivity in response to iron depletion, iron
chelation by desferoxamin improved insulin
receptor signalling and glucose metabolism both in
cell cultures and rat models (57). Several
investigations suggest, however, that serum ferritin
overestimates the extent of iron overload in
NAFLD. It is conceivable that hyperferritinemia is
caused by both iron overload and adipose tissue
associated low-grade inflammation (58, 59).
Accordingly, TNF-α and Interleukin-6, which are
elevated in obesity and insulin resistance, are known
to be important inductors of ferritin gene
transcription leading to hyperferritinemia in
inflammation even in the absence of iron overload (60).

Furthermore, it is well known that classical iron
overload syndromes such as hemochromatosis or
transfusional iron overload lead to hepatic and
peripheral insulin resistance as body iron
accumulation increases (61, 62). Thus, the spectrum
of the relationship between iron and glucose

metabolism ranges from iron-overload associated
insulin resistance in hemochromatosis or
transfusional iron overload to insulin-resistance
associated iron overload observed along with
various features of the metabolic syndrome.

Molecular  mechanisms  contributing  to
perturbations  of  iron  homeostasis  in  insulin
resistance

Derived from the above mentioned clinical
observations, it is clear that iron and glucose
metabolisms are mutually influencing each other.
This review will first briefly give an overview of
physiological regulation of iron metabolism and
then outline what is known about molecular
mechanisms underlying iron perturbations in
insulin resistant states (Fig. 1). Our knowledge of
physiological regulation of human iron metabolism
has expanded over the past years due to the
identification of several new key molecules. While
cells acquire iron via different pathways which
include the uptake of transferrin bound iron by
transferrin-receptors (TfR-1 and TfR-2) and the
uptake of ferrous iron via a transmembrane protein
named divalent metal transporter-1 (DMT-1) (63),
so far only one iron exporter has been characterized,
comprising the transmembrane protein ferroportein
(FP-1) (64). Following its transfer through the
duodenal baso-lateral membrane, iron undergoes
oxidation by the membrane bound copper
containing ferroxidase hephaestin before being
incorporated into transferrin for further transport in
the circulation (65). Iron is then mainly required for
heme biosynthesis in erythropoiesis and other heme
containing enzymes, whereas excess iron is mainly
stored in the liver, which is the central organ in the
regulation of body iron homeostasis (66).

Hepcidin is a master iron regulatory peptide,
which is secreted mainly by hepatocytes in
response to iron perturbations, inflammation and
hypoxia (67, 68). Hepcidin exerts its regulatory
functions on iron homeostasis via binding to FP-1
thereby leading to FP-1 phosphorylation,
internalisation, degradation and thus to blockage of
cellular iron export (69). Important up-stream
regulators of hepcidin expression include
hemojuvelin (HJV), a bone-morphogenetic protein
co-receptor (70), HFE, a non-classical MHC class-1
molecule (71) and TfR-2, a liver specific iron uptake
molecule (72). Mutations of these genes are
associated with inappropriately low hepcidin
formation and hereditary iron overload syndromes.
Importantly, although the liver is the major hepcidin
producing organ in quantitative terms, macrophages
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and adipose tissue can also excrete hepcidin (73, 74).
TMPRSS6 comprises a recently identified serin-
protease which is required for adequate hepatic
hepcidin down-regulation in response to loss of iron
or anemia, thus mutations of TMPRSS6 cause iron
deficiency due to inappropriately high levels of
hepcidin (75, 76).

As clinical evidence of iron perturbations induced
by mechanisms associated with insulin resistance
increases, several investigations have aimed to
elucidate underlying mechanisms. Hence, the
master iron regulatory peptide hepcidin was
demonstrated to be synthesized in excess adipose
tissue in morbidly obese individuals (74),
corresponding to previously observed increased
urinary hepcidin concentrations in insulin resistant
subjects (77, 78). It is, however, not clear to what

extent adipose tissue derived hepcidin is
pathophysiologically important; as in
quantitative terms, the main source of
hepcidin is the liver. Obese adipose tissue
is heavily infiltrated with bone-marrow
derived macrophages and displays
histological features of inflammation. One
can assume that inflamed adipose tissue
macrophages are the main source of
hepcidin rather than adipocytes (79, 80).
We and others have recently
demonstrated that increased hepcidin
synthesis occurs in the liver of NAFLD
patients with iron deposition and
hepcidin mRNA levels directly correlate
with the extent of NAFLD iron
overload (37, 81). As iron accumulation is
a key stimulus of hepcidin production,
increased systemic hepcidin levels appear
to be a consequence rather than the cause
of hepatic iron accumulation. In
particular, persistently high hepcidin levels
would induce iron deficiency as opposed
to iron accumulation which is observed in
biopsies of patients with NAFLD. In a
similar fashion, it has recently been
demonstrated that pancreatic beta-cells
express hepcidin which thus may be
involved in iron and glucose metabolism
at the same time (82).

As insulin is a key anabolic regulator of
human body homeostasis associated with
increased uptake and storage of nutrients,
it is noteworthy that insulin has been able
to increase both the TfR1 cell surface
expression and ferritin synthesis in cell
culture experiments indicating the
potential of insulin to increase iron uptake

and storage (83, 84). Several links were found
between adipocytokines and parameters of iron
metabolism. A positive association has been found
between increased iron stores and circulating RBP4
(retinol-binding protein 4), as both decrease in
response to iron depletion (85). A similar
relationship has been observed between serum
visfatin concentrations and biochemical parameters
of iron metabolism (86). However, these observations
may simply reflect the co-incidence of increased iron
stores and other markers of insulin resistance and
does not yet molecularly link these adipocytokines
to the homeostasis of iron metabolism. In contrast,
the adipocytokine leptin which is increased in
obesity and insulin resistance, has been found to
upregulate hepcidin transcription via JAK2/STAT3
dependent signalling pathways (87). Thus, leptin

Iron Perturbations in Human NAFLD

FFiigguurree  11.. Current knowledge of molecular links between obesity
or insulin resistance and iron homeostasis. Figure 1A depicts
regulation of iron homeostasis under physiological circumstances.
Iron is taken up in duodenal enterocytes via DMT-1 and FP-1
before being incorporated into transferrin. Iron requiring tissues
such as the erythron (not shown) or the liver take up iron main-
ly via endocytosis of Tf-loaded transferrin receptors. Iron home-
ostasis is tightly regulated via hepcidin, which inhibits excess iron
absorption from the duodenum as well as iron recycling from
macrophages. Figure 1B summarizes changes known to occur in
human NAFLD. Iron is primarily retained in hepatocytes and
Kupffer cells due to low expression of the only known iron
export molecule ferroportein (FP-1). This down-regulation may
occur as a consequence of systemic and hepatic inflammation
(TNF-|α|), as well as increased adipose tissue expression of hep-
cidin or leptin. Iron mobilisation from liver cells is additionally
impaired due to low copper bioavailability in NAFLD which leads
to low ceruloplasmin ferroxidase activity and a further decrease
in FP-1 expression. Iron accumulation in liver cells induces hep-
cidin expression which in turn down-regulates duodenal iron
absorption to counterbalance hepatic iron deposition.
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induced hepcidin synthesis may directly contribute
to iron perturbations in obesity, diabetes or
NAFLD.

Recently, we aimed to analyse potential pathways
underlying iron accumulation in human NAFLD by
studying the expression of key iron regulatory
molecules in human liver and duodenal biopsies (37).
Several lines of evidence suggest that iron deposition
in human NAFLD is primarily a perturbation of
iron export. This has already been suggested from a
clinical study examining the response of iron
overloaded NAFLD patients (34). First, we found a
striking down-regulation of the only iron export
molecule FP-1 in human NAFLD compared to
unaffected liver tissue, suggesting a decreased rate of
iron mobilisation from liver cells. Additionally, we
found that iron overloaded NAFLD subjects
respond to phlebotomy treatment with a fast
decrease in TfS and are prone to develop anemia in
response to phlebotomy, which also corresponds to
slow mobilisation of iron from storage sites such as
the liver. Interestingly, low FP-1 expression was
found in NAFLD patients independent of iron
deposition which indicates that contributing factors
are required besides low FP-1 expression for iron
deposition in NAFLD to develop. NAFLD patients
with iron accumulation present with significantly
increased hepatic hepcidin mRNA levels, whereas
NAFLD patients without signs of excess body iron
have normal hepatic hepcidin mRNA expression.
Increased hepcidin production correlates directly
with hepatic iron concentration indicating an intact
physiological response to full iron stores in the liver.
TfR1-mediated iron uptake does not seem to be
involved in NAFLD iron accumulation. NAFLD
patients with low hepatic iron present with higher
TfR1 levels compared to patients with NAFLD and
iron overload or patients with HFE-associated
hemochromatosis. This pattern suggests
physiologically reduced expression of TfR1 in
response to iron accumulation in order to limit
Tf/TfR1-mediated iron uptake in liver cells where
iron stores are full.

As copper is an important modulator of iron
homeostasis, we examined if copper status was
linked to iron perturbations in NAFLD. Copper is
the key molecule in hephaestin ferroxidase activity
in the duodenal enterocytes where it facilitates
loading of iron to apotransferrin. In a similar
manner, copper is required for ceruloplasmin
ferroxidase activity to mobilize iron from storage
sites such as the liver or the reticuloendothelial
system. In NAFLD, iron and copper stores are
inversely related (88). Significantly lower liver and
serum copper concentrations were found in

NAFLD patients with iron accumulation. Low
serum or liver copper concentrations were found to
be associated with low serum activity of the
ferroxidase ceruloplasmin. In addition, lower
hepatic expression of FP-1 was detected in rats on a
copper deficient diet. These observations
demonstrate that besides low FP-1 expression
associated with low-grade systemic inflammation;
inadequate copper bioavailability further impairs
iron export from liver cells. Low copper
bioavailability impairs iron transport across the cell
membrane via decreased ceruloplasmin-dependent
oxidation of Fe2+ to Fe3+ and consecutive loading of
Fe3+ to apo-transferrin. Moreover, adequate copper
supply has been demonstrated to induce FP-1
expression (89) and copper-dependent membrane-
bound ceruloplasmin expression is necessary for FP-
1 protein expression and cell surface stability (90).

Conclusions

In summary, hyperferritinemia is a clinically
relevant finding in NAFLD and other insulin
resistant conditions, since excess iron appears to be
associated with adverse outcomes, increased insulin
resistance and thereby accelerated disease
progression. Moreover, removal of excess iron via
phlebotomy is a safe and beneficial additive
treatment which can easily be offered to these
patients and is linked to favorable effects on
parameters of insulin resistance and inflammation.
Iron deposition occurs mainly due to impaired iron
export from liver cells in response to low expression
of the iron export molecule FP-1 and decreased
ferroxidase activity associated with NAFLD copper
deficiency.
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