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ABSTRACT 
 

In this paper we introduce the optimal solution for a simple and yet practical inventory policy 
with the important characteristic which eliminates the uncertainty in demand for suppliers. In 
this new policy which is different from the classical inventory policies, the time interval 
between any two consecutive orders is fixed and the quantity of each order is one. Assuming 
the fixed ordering costs are negligible, lead times are constant, and demand forms a Poisson 
process, we use queuing theory concepts to derive the long-run average total inventory costs, 
consisting of holding and shortage costs in terms of the average inventory. We show that the 
total cost rate has the important property of being entirely free of the lead time. We prove that 
the average total cost rate is a convex function and thus has a unique solution. We, then derive 
the relation for the optimal value of the time interval between any two consecutive orders. 
Finally we present a numerical example to compare the performance of this new policy with the 
classical one-for-one ordering policy. The provided example intends to re-examine the 
optimality of (s, S) policy in continuous review inventory models as well to establish the fact 
that even for the case where demand forms a Poisson process the optimality does not hold.  

 
Keywords: Inventory control, One for one period policy, (s, S) Policy, Queuing system, Poisson 
demand 
 

1. INTRODUCTION 
 
Two fundamental questions that must be answered in controlling the inventory of any item are when 
and how much should be ordered for replenishment. The answers of these questions determine the 
inventory control policy. In the face of uncertainty it is more complicated to determine the inventory 
control policy. The most frequent uncertain factor is the stochastic nature of customer demand. 
 
Most of the classical policies for controlling the inventory are derived from the (s, S) policy and are 
classified as periodic or continuous review policies. The distinction involves the frequency with 
which the inventory level must be observed (reviewed) in order to implement the policy. A 
periodic-policy is one in which the inventory level is observed only at equally spaced points in time 
(The time interval between such two points is called a “period.” If the length of the period is T, then 
(s, S) policy is substituted by the (s, S, T) policy. If the maximum stock level in (s ,S, T) policy 
equals to the reorder point, then another classical policy called periodic review (R, T) is formed, 
where R=S is the maximum inventory level. 
 
A continuous-review policy requires knowledge of the inventory level at all times. If the customer 
demand is one unit, the ordering size (Q) is always equal S-s. Therefore, the (s, S) policy changes 
into the well known continuous review (r, Q) policy, where r=s is the reorder point. If the ordering 
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cost is negligible in the (r, Q) policy, then the policy is called one-for-one, (S-1, S), or base stock 
policy ( Hadley and Whitin, 1963, and Love, 1979). 
  
Hadley and Whitin (1963), Johnson and Montgomery (1974), Love (1979). Zipkin (2000), and 
Nahmias (2005), among others, present the methods to find the optimal or near optimal solution to 
minimize the inventory costs at a single stocking point with stochastic demand, based on the 
continuous review (r,Q), periodic review (R,T),  and  one-for-one polices. 
  
Due to its widespread acceptance, one can find an abundance of work dealing with  (s, S) policy in 
the literature (See, for example, Beckman, 1961; Sherbrooke, 1968; Nahmias, 1976; Sahin, 1979, 
1982, 1990;  Kruse, 1980, 1981 Archibald, 1981; Grave, 1985; Moinzadeh and Lee, 1986; 
Sivlazian, 1974; Zipkin, 1986a, 1986b; Axsäter , 1990, 1993, 2003; Lee and Moinzadeh, 1987a, 
1987b Zheng, 1992 ; Federgruen and Zheng, 1992; Axsäter et al., 1994; Nahmias and Smith, 1994; 
Matta and Sinha, 1995; Forsberg, 1995, 1996, 1997; Axsäter and Zhang, 1999; Ganeshan, 1999; 
Andersson and Melchiors, 2001; Moinzadeh, 2002; Seo et al, 2002; Marklund, 2002; Ghalebsaz et 
al., 2004). 
 
While it is well known that for the case of stochastic demand, there is no inventory control policy in 
which both the order size and the order interval are constant with an optimal solution, in this paper, 
we introduce the optimal solution for a new policy which is different from the classical inventory 
policies used in the literature of inventory and production control systems. This new policy is to 
order 1 unit at each fixed time period T. We call this new policy (1, T) or one for one period 
ordering  policy. In this policy the time interval between two consecutive orders and the value of the 
order size are both constant. 
 
In what follows we discuss the advantages of this policy. Then, assuming that the fixed ordering 
cost is zero or negligible, demand process is a Poisson process, and the replenishment lead time is 
constant, we derive the long-run average total cost, the total holding and shortage costs, per unit 
time in terms of the average inventory for the lost sales case. To obtain the total cost rate we use 
some concepts from queueing theory. We prove that this total cost is a convex function in terms of 
the average inventory and has a unique optimal solution. 
 
Further, we obtain the optimal value of T, the time interval between two consecutive orders, which 
minimizes the long-run average total cost. Finally, by a numerical example we compare the long-
run average total cost of this policy with the total cost rate of the base stock, one-for-one ordering, 
policy for the lost sales case. The provided example intends to re-examine the optimality of (s, S) 
policy in continuous review inventory models in order to establish the fact that even for the case 
where demand forms a Poisson process the optimality does not hold. 
 
The optimality of (s,S) policy has been addressed in the literature of inventory control by a number 
of scholars (Scarf, 1960, Iglehart,1963, and Sahin 1990). The optimality of the (s, S) policy was first 
investigated  by Schultz (1989) (Moinzadeh, 2001). He considered an (S-1, S) inventory system 
with an arbitrarily chosen distribution for the inter-demand times and fixed lead time. In order to 
simplify the analysis, he assumes that orders can also be expedited and received immediately at a 
premium cost. Furthermore, he only considers a special case of   (S-1, S) inventory policies with 
S=1; that is, a maximum of one unit of inventory is allowed at any point in time. Schultz (1989) 
shows that by delaying the placing of orders until after demand occurs, one can achieve a lower 
expected total cost rate in such systems. Although Schultz (1989) examines the concept of order 
delays as a policy parameter, he fails to explicitly model the relationship between the delay and 
stocking policy parameters and only optimizes the delay in this somewhat simplified model (recall 
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that the maximum inventory level, S, is pre-set at unity). It is believed that in many situations the 
assumption that orders can be expedited and received instantaneously does not hold and setting the 
value of S=1 will lead to inferior policies (Moinzadeh, 2001). Thus the joint determination of the 
optimal inventory policy and the delay becomes critical. 
  
Later, Moinzadeh (2001) revisited the optimality of (s, S) policies in continuous review inventory 
models where demand forms a renewal process.  He explains why when orders are placed at 
demand epochs, (s, S) policies are not optimal in general. By introducing a delay in order placement 
as a policy parameter, he proposes a new policy to establish this fact. He investigates the optimality 
of the (s, S) policy for Gaussian distribution for the inter-demand times to show the merits of his 
proposed policy. When the inter-demand times follow a general distribution he develops an efficient 
heuristic to compute the policy parameters. He shows that under his proposed policy when inter-
demand times are exponential the optimal delay time becomes zero. That is, for Poisson demand his 
proposed policy reduces to the (s, S) policy. Based on the results contained in his work one may 
conclude that if the demand follows a Poisson process then the optimality of (s, S) policy holds true. 
  
The example presented in this paper re-examines the optimality of (s, S) policy in hope of achieving 
the goal that the optimality of (s, S) policy in continuous review inventory models does not hold 
even for the case where demand follows a Poisson process.  
 
2. ADVANTAGES OF (1, T) POLICY 
 
When the demand is uncertain, in the classical inventory policies at least one of the two values, the 
order quantity and the time interval between any two consecutive orders, has an uncertain nature. 
For example, consider the continuous review (r, Q) and the periodic review (R, T) policies which 
are two usual policies employed by practitioners when demand is uncertain. When (r, Q) policy is 
used, the order quantity, Q, is fixed but the time interval between any two consecutive orders has an 
uncertain nature. For the case of (R, T) policy, the time interval between any two consecutive 
orders, T, is fixed whereas the value of the order quantity is uncertain. Therefore,  the orders which 
constitute the demands for the supplier will have an uncertain nature. Hence, the uncertainty spreads 
into the supply chain.  
 
For the new one for one period policy, discussed in this paper an order for one unit of item is placed 
in a pre-determined time interval. Hence, both the order size and the order interval are constant. 
Therefore, this policy prevents expanding the demand uncertainty for the supplier. That is, the 
demand for the supplier is deterministic, one unit every T units of time. 
 
The advantages of this policy, which eliminates uncertainty in demand and leads to a uniform and 
deterministic demand for the supplier, are:  
 

1- The safety stock in supplier is eliminated. (cost reduction) 
2- Shortage cost in supplier due to uncertainty in demand is eliminated. 
3- Information exchange cost for supplier due to the elimination of uncertainty of its demand 

is eliminated. 
4- Inventory control and production planning in supplier are simplified.  
5- This policy is very easy to apply. 

 
3. COST EVALUATION  
 
Using this policy in which an order constantly is placed for one unit of product in a pre-determined 
time interval, we derive the total inventory cost rate, consisting of holding and shortage costs in 
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terms of the average on hand inventory. The objective is to determine the optimal time interval 
between any two consecutive orders.  
 

Assumptions: 
 

1- Unsatisfied demand will be lost. 
2- The lead time for an order is constant. 
3- The fixed ordering cost is zero or negligible. 
 

Notation: 
  
μ       The demand rate. 
π:      Cost of a lost sale. 
h       Rate of holding cost. 
T        Time interval between any two consecutive orders. 
I         Average inventory on hand for the (1, T) policy. 
H       Average holding cost per unit time. 
Π       Average shortage cost per unit time. 
KT       Average total cost rate, for the (1, T) policy. 
KS      Average total cost rate, for the (S-1, S) policy. 
L        Lead time. 
 

3.1. Methodology 
 
To obtain the average inventory level, one can resort to some concepts of queuing theory. To do 
this, consider the arrival units of product to the system as the arrival process to a queuing system, 
the inter-demand times to the system as the service times of these units, and inventory on hand as 
the number of units in the queuing system. Hence, the inventory problem can be interpreted as a 
D/M/1 (Haji et al, 2006), a single channel queuing system in which the inter-arrival times are 
constant, equal to T, and the service times have exponential distribution with mean 1/μ. Thus, the 
arrival rate of units to the system is λ=1 T  and the service rate is μ. 
 
Let 0P  denote the proportion of time that the number in system is zero, then for a single channel 
queue 
 

0 1P ρ= −  
 
Where ρ is the ratio of the arrival rate λ=1 T  to the service rate μ, i. e., 
 

1
T

λρ
μ μ

= =  (1) 

 
Also, let I denote the long-run average number of units in system, then for the queuing system 
G/M/1: we can write (Ross, 1993): 
 

1
I ρ

β
=

−
 (2) 

 
Where β is the solution of the following equation: 
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(1 )

0

( )te dG tμ ββ
∞

− −= ∫  (3) 

 
It can be shown that if the mean of G is greater than the mean service time 1/μ, then there is a 
unique value of β satisfying Equation (3) which is between 0 and 1. The exact value of β usually 
can be obtained by numerical methods.  
 
The system under consideration is a D/M/1 queuing system in which the inter-arrival time of units 
of product to the queueing system is constant and is equal to T. Thus ( ) 1G T = , and we can write (3) 
as  
 

(1 )(1 )Te e
μ βμ β λβ

− −− −= =  (4)  
 
Or 
 

(1 )

e
β

ρβ

−
−

=  (5) 
 
Since ρ is independent of the lead time, L, so is β  as defined in (4) and (5) which in turn leads to 
independence of I in (2) from lead time. 
 
From (2) we can write  
 

1
Ieβ

−
=  (6) 

 
The average holding cost per unit time is: 
 
H hI=  (7) 
 
Since 0P  is the proportion of time that the system is out of stock-. Thus the proportion of demand 
that is lost is 0Pμ  and the average lost sale cost per unit time is: 
 
Π 0 (1 )Pπμ πμ ρ= = −  (8) 
 
Or from (2) and (6) we can write (8) as: 
 

Π 
1

1 (1 )II eπμ
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (9) 

 
Thus, the total cost rate is: 
 

TK H= +Π (10) 
 
Or from (7) and (9) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

One-for-One Period Policy and its Optimal Solution  205 

 

1

1 (1 )ITK hI I eπμ
−⎡ ⎤

⎢ ⎥= + − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (11) 

 
As mentioned before, since I is independent of the value of the lead time, one can easily conclude 
that the total cost rate for the (1, T) policy is independent of the lead time.   
 
We now prove the following theorem for function KT as specified in (11). 
 
Theorem   KT is a convex function 
 
Proof: The first derivative of K with respect to I is:  
 

1 1

2
11(1 ) ( )T I IdK h e I e

dI I
πμ

− −⎡ ⎤
⎢ ⎥= + − − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Or 
 

1 1
1T I IdK h e e

dI I
πμ πμ

− −⎡ ⎤
⎢ ⎥= − + +⎢ ⎥
⎢ ⎥⎣ ⎦

 (12) 

 
The second derivative of K with respect to I is: 
 

1 1 12

2 2 2 2
1 1 1 1( )T I I Id K e e e

IdI I I I
πμ

− − −⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦

 

Or equivalently 
 

12

2 3
1T Id K e

dI I
πμ

−
=  (13) 

 
It is clear from (13) that the second derivative of K with respect to I is positive for all values of 

0I > . This means that K is a convex function and thus it has a unique solution which proves the 
theorem. 
 
The optimal I, I*, is the solution of  
 

1 1
1 0T I IdK h e e

dI I
πμ πμ ∗ ∗− −

∗

⎡ ⎤
⎢ ⎥= − + + =⎢ ⎥
⎢ ⎥⎣ ⎦

 

Or 
1 1

1 ( )I Ie e h
I

πμ πμ∗ ∗− −

∗
+ = −  

 
To find the optimal value of the time interval between two consecutive orders, T*, note that from 
(1), (2), and (6) we can write 
 

1
1 (1 )II e
Tμ

∗−
∗

∗ = −  
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Thus, the optimal T, T*, can be obtained from the following relation 
 

1
1

(1 )I

T

I eμ ∗

∗

−
∗

=

−

 (14) 

 
4. NUMERICAL RESULTS 
 
This section is devoted to comparison between the one-for-one period that is, the (1, T) policy with 
the one-for-one policy in terms of total cost rate.  
 
We study the effect of varying the values of L and π/h on the total cost rates for both policies. The 
adopted values for the parameters are: 
 

h = 1;  μ = 1, 2, 3; 
 

π / h = 0.1, 0.5, 1(1)10; 
 

L = 1(1)10 (5) 20 (10) 60. 
 
The total cost rate for, (S-1,S),  is as follows (Tijms, 1986): 
 

0 0

1 (( ) / !) ( ) ! (( ) / !) ( ) !
S S

j j j j
S

x x

K h S L L S L j L S L jμ μ μ πμ μ μ
= =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑  (15) 

 
 
Where L stands for the lead time. 
 
It is obvious from (15) that KS  depends on the lead time but KT is entirely independent from the lead 
time as mentioned before. 
 
Table 1 presents the outcome of comparing the total cost rates for the (1, T) and (S-1, S) policies. In 
this table we consider the values 0.1, 0.5, 1, 2, 3, and 4 for π / h. Additional values for π / h are used 
in Table 2.  The value of μ in Table 1 and Table 2 is assumed to be 1 while in Tables 3 and 4 μ  is 2.  
 
The upper section of Table 1 presents the optimal values of T (cycle times), T*, the optimal values 
of inventory on hand, I*, and the optimal values of total cost rates, K*

T, for the (1, T) policy for 
different values of π / h. The lower section of this table displays the optimal values of S as well as 
the optimal values of the total cost rates, K*

S , for the (S-1, S) policy for different values of L and 
/ hπ . As the contents of Table 1 indicate the performance of (1, T) and (S-1, S) policies are exactly 

the same for all values of L as long as π / h does not exceed 1 (obviously 0S ≥ ). 
 
When / 2hπ ≥ , application of (S-1, S) policy amounts to a lower total cost rate provided that, in the 
worst case considered, 8.L ≤  Each row of this table also provides the total cost rate differentials, 

,S TK K KΔ = − for various values of L. As can be seen the Max KΔ occurs at the largest values of L 
and the largest values of / hπ , i.e., Max KΔ = 5.0302 – 4.1246 = 0.9056 corresponding to L = 60 
and / hπ = 10. For the values of parameters used in this example, the maximum percent change in 
total cost increase due to application of (S-1, S) policy instead of (1, T) policy is more than 21 
percent. 
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Table 1. Cost comparisons between  (1, T) and (S-1, S) policies for μ = 1 
 

T*  ∞  ∞  ∞ 2.0636 1.7095 1.5565 
I* 0.0000 0.0000 0.0000 0.5958 0.8412 1.0403 

K(T*) 0.1000 0.5000 1.0000 1.6266 2.0863 2.4704 
 

h/π  0.1 0.5 1 2 3 4 
 

L S* *
SK  S* *

SK  S`* *
SK  S* *

SK  S* *
SK  S* *

SK  

0 0.1000 0 0.5000 0,1 1.0000 1 1.5000 2 1.8000 2 2.00001 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= -0.1266 ΔK= -0.2863 ΔK= -0.4704 

0 0.1000 0 0.5000 0,1 1.0000 2 1.6000 2 2.0000 3 2.26322 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= -0.0266 ΔK= -0.0863 ΔK= -0.2072 

0 0.1000 0 0.5000 0,1 1.0000 2 1.6471 3 2.0769 3 2.42313 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0204 ΔK= -0.0093 ΔK= -0.0473 

0 0.1000 0 0.5000 0,1 1.0000 2 1.6923 3 2.1549 4 2.48544 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0657 ΔK= 0.0687 ΔK= 0.0151 

0 0.1000 0 0.5000 0,1 1.0000 3 1.7076 4 2.1867 5 2.56385 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0810 ΔK= 0.1005 ΔK= 0.0934 

0 0.1000 0 0.5000 0,1 1.0000 3 1.7213 4 2.2261 5 2.60406 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0947 ΔK= 0.1398 ΔK= 0.1336 

0 0.1000 0 0.5000 0,1 1.0000 3 1.7379 5 2.2472 6 2.64467 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1113 ΔK= 0.1609 ΔK= 0.1742 

0 0.1000 0 0.5000 0,1 1.0000 4 1.7464 5 2.2691 6 2.67708 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1197 ΔK= 0.1828 ΔK= 0.2066 

0 0.1000 0 0.5000 0,1 1.0000 4 1.7519 6 2.2862 7 2.70069 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1253 ΔK= 0.1999 ΔK= 0.2302 

0 0.1000 0 0.5000 0,1 1.0000 4 1.7600 6 2.2987 7 2.726610 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1333 ΔK= 0.2124 ΔK= 0.2562 

0 0.1000 0 0.5000 0,1 1.0000 6 1.7799 8 2.3466 10 2.796515 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1532 ΔK= 0.2603 ΔK= 0.3261 

0 0.1000 0 0.5000 0,1 1.0000 7 1.7912 11 2.3728 13 2.841220 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1646 ΔK= 0.2865 ΔK= 0.3708 

0 0.1000 0 0.5000 0,1 1.0000 10 1.8028 15 2.3991 18 2.886630 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1761 ΔK= 0.3128 ΔK= 0.4163 

0 0.1000 0 0.5000 0,1 1.0000 13 1.8088 19 2.4140 23 2.911840 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1822 ΔK= 0.3277 ΔK= 0.4415 

0 0.1000 0 0.5000 0,1 1.0000 16 1.8126 23 2.4235 28 2.927950 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1859 ΔK= 0.3372 ΔK= 0.4575 

0 0.1000 0 0.5000 0,1 1.0000 19 1.8151 28 2.4300 33 2.938960 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1885 ΔK= 0.3437 ΔK= 0.4685 
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Table 1. (continued) Cost comparisons between  (1, T) and (S-1, S) policies for μ = 1 
 

T* 1.4682 1.4097 1.3675 1.3354 1.3101 1.2894 
I* 1.2130 1.3679 1.5096 1.6410 1.7641 1.8804 

K(T*) 2.8075 3.1116 3.3908 3.6505 3.8942 4.1246 
 

h/π  5 6 7 8 9 10 
 

L S* *
SK  S* *

SK  S* *
SK  S* *

SK  S* *
SK  S* *

SK  

2 2.2000 2 2.4000 3 2.5000 3 2.5625 3 2.6250 3 2.68751 
ΔK= -0.6075 ΔK= -0.7116 ΔK= -0.8908 ΔK= -1.0880 ΔK= -1.2692 ΔK= -1.4371 

3 2.4737 3 2.6842 4 2.8571 4 2.9524 4 3.0476 4 3.14292 
ΔK= -0.3338 ΔK= -0.4274 ΔK= -0.5337 ΔK= -0.6981 ΔK= -0.8466 ΔK= -0.9817 

4 2.6489 4 2.8550 4 3.0611 5 3.2106 5 3.3207 5 3.43073 
ΔK= -0.1586 ΔK= -0.2566 ΔK= -0.3298 ΔK= -0.4399 ΔK= -0.5736 ΔK= -0.6939 

5 2.7916 5 2.9907 5 3.1897 5 3.3888 6 3.5231 6 3.64034 
ΔK= -0.0159 ΔK= -0.1209 ΔK= -0.2011 ΔK= -0.2617 ΔK= -0.3711 ΔK= -0.4843 

5 2.8487 6 3.1103 6 3.3022 6 3.4940 6 3.6859 7 3.80785 
ΔK= 0.0412 ΔK= -0.0013 ΔK= -0.0887 ΔK= -0.1565 ΔK= -0.2084 ΔK= -0.3168 

6 2.9141 6 3.1791 7 3.4057 7 3.5908 7 3.7758 8 3.95006 
ΔK= 0.1067 ΔK= 0.0675 ΔK= 0.0149 ΔK= -0.0597 ΔK= -0.1184 ΔK= -0.1746 

6 2.9760 7 3.2353 7 3.4842 8 3.6823 8 3.8611 8 4.04007 
ΔK= 0.1685 ΔK= 0.1238 ΔK= 0.0934 ΔK= 0.0318 ΔK= -0.0331 ΔK= -0.0846 

7 3.0061 8 3.2980 8 3.5336 8 3.7691 9 3.9434 9 4.11658 
ΔK= 0.1987 ΔK= 0.1864 ΔK= 0.1427 ΔK= 0.1186 ΔK= 0.0492 ΔK= -0.0081 

8 3.0482 8 3.3374 9 3.5888 9 3.8131 10 4.0233 10 4.19139 
ΔK= 0.2407 ΔK= 0.2258 ΔK= 0.1980 ΔK= 0.1626 ΔK= 0.1291 ΔK= 0.0667 

8 3.0748 9 3.3713 9 3.6445 10 3.8625 10 4.0771 11 4.264610 
ΔK= 0.2673 ΔK= 0.2597 ΔK= 0.2537 ΔK= 0.2120 ΔK= 0.1828 ΔK= 0.1400 

11 3.1758 12 3.5021 13 3.7909 13 4.0541 14 4.2796 14 4.499615 
ΔK= 0.3683 ΔK= 0.3906 ΔK= 0.4000 ΔK= 0.4036 ΔK= 0.3854 ΔK= 0.3750 

14 3.2349 15 3.5799 16 3.8849 17 4.1600 17 4.4157 18 4.637820 
ΔK= 0.4275 ΔK= 0.4683 ΔK= 0.4941 ΔK= 0.5095 ΔK= 0.5215 ΔK= 0.5132 

20 3.3030 21 3.6685 23 3.9977 24 4.2940 24 4.5649 25 4.813030 
ΔK= 0.4955 ΔK= 0.5569 ΔK= 0.6069 ΔK= 0.6435 ΔK= 0.6707 ΔK= 0.6884 

25 3.3400 27 3.7179 29 4.0573 30 4.3667 31 4.6516 32 4.915040 
ΔK= 0.5325 ΔK= 0.6063 ΔK= 0.6665 ΔK= 0.7162 ΔK= 0.7574 ΔK= 0.7904 

31 3.3633 33 3.7496 35 4.0977 37 4.4163 38 4.7093 39 4.982350 
ΔK= 0.5558 ΔK= 0.6380 ΔK= 0.7069 0.7658 ΔK= 0.8151 ΔK= 0.8577 

36 3.3802 39 3.7717 41 4.1267 43 4.4509 45 4.7509 46 5.030260 
ΔK= 0.5728 ΔK= 0.6602 ΔK= 0.7359 ΔK= 0.8004 ΔK= 0.8566 ΔK= 0.9056 
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Table 2. Cost comparisons between  (1, T) and (S-1, S) policies for μ = 2 

 

T* ∞ ∞ 1.0318 0.7782 0.7048 0.6677 
I* 0.0000 0.0000 0.5958 1.0403 1.3679 1.6410 

K(T*) 0.2000 1.0000 1.6266 2.4704 3.1116 3.6505 
 

h/π  0.1 0.5 1 2 3 4 
 

L S* *
SK  S* *

SK  S`* *
SK  S* *

SK  S* *
SK  S* *

SK  

0 0.2000 0,1 1.0000 2 1.6000 3 2.2632 4 2.6842 4 2.95241 
ΔK= 0.0000 ΔK= 0.0000 ΔK= -0.0266 ΔK= -0.2072 ΔK= -0.4274 ΔK= -0.6981 

0 0.2000 0,1 1.0000 2 1.6923 4 2.4854 5 2.9907 5 3.38882 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0657 ΔK= 0.0151 ΔK= -0.1209 ΔK= -0.2617 

0 0.2000 0,1 1.0000 3 1.7213 5 2.6040 6 3.1791 7 3.59083 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.0947 ΔK= 0.1336 ΔK= 0.0675 ΔK= -0.0597 

0 0.2000 0,1 1.0000 4 1.7464 6 2.6770 8 3.2980 8 3.76914 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1197 ΔK= 0.2066 ΔK= 0.1864 ΔK= 0.1186 

0 0.2000 0,1 1.0000 4 1.7600 7 2.7266 9 3.3713 10 3.86255 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1333 ΔK= 0.2562 ΔK= 0.2597 ΔK= 0.2120 

0 0.2000 0,1 1.0000 5 1.7689 8 2.7625 10 3.4347 11 3.95536 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1423 ΔK= 0.2921 ΔK= 0.3231 ΔK= 0.3048 

0 0.2000 0,1 1.0000 5 1.7788 9 2.7898 11 3.4881 13 4.02057 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1522 ΔK= 0.3194 ΔK= 0.3766 ΔK= 0.3700 

0 0.2000 0,1 1.0000 8 1.7824 11 2.8109 13 3.5228 14 4.07418 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1557 ΔK= 0.3406 ΔK= 0.4112 ΔK= 0.4236 

0 0.2000 0,1 1.0000 7 1.7876 12 2.8274 14 3.5525 15 4.12709 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1609 ΔK= 0.3570 ΔK= 0.4410 ΔK= 0.4765 

0 0.2000 0,1 1.0000 7 1.7912 13 2.8412 15 3.5799 17 4.160010 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1646 ΔK= 0.3708 ΔK= 0.4683 ΔK= 0.5095 

0 0.2000 0,1 1.0000 10 1.8028 18 2.8866 21 3.6685 24 4.294015 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1761 ΔK= 0.4163 ΔK= 0.5569 ΔK= 0.6435 

0 0.2000 0,1 1.0000 13 1.8088 23 2.9118 27 3.7179 30 4.366720 
0.0000 ΔK= 0.0000 ΔK= 0.1822 ΔK= 0.4415 ΔK= 0.6063 ΔK= 0.7162 

0 0.2000 0,1 1.0000 19 1.8151 33 2.9389 39 3.7717 43 4.450930 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1885 ΔK= 0.4685 ΔK= 0.6602 ΔK= 0.8004 

0 0.2000 0,1 1.0000 25 1.8183 43 2.9533 51 3.8007 56 4.496840 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1917 ΔK= 0.4829 ΔK= 0.6891 ΔK= 0.8463 

0 0.2000 0,1 1.0000 31 1.8203 53 2.9621 63 3.8189 69 4.525850 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1937 ΔK= 0.4918 ΔK= 0.7073 ΔK= 0.8753 

0 0.2000 0,1 1.0000 37 1.8217 63 2.9682 75 3.8314 82 4.545960 
ΔK= 0.0000 ΔK= 0.0000 ΔK= 0.1950 ΔK= 0.4978 ΔK= 0.7198 ΔK= 0.8954 
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Table 2. (continued) Cost comparisons between  (1, T) and (S-1, S) policies for μ = 2 

 

T* 0.6447 0.6287 0.6169 0.6076 0.6002 0.5941 
I* 1.8804 2.0961 2.2941 2.4782 2.6508 2.8140 

K(T*) 4.1246 4.5529 4.9464 5.3126 5.6565 5.9816 

 
h/π  5 6 7 8 9 10 

 

L S* *
SK  S* *

SK  S* *
SK  S* *

SK  S* *
SK  S* *

SK  

4 3.1429 4 3.3333 4 3.5238 5 3.6606 5 3.7339 5 3.80731 
ΔK= -0.9817 ΔK= -1.2195 ΔK= -1.4226 ΔK= -1.6521 ΔK= -1.9225 ΔK= -2.1743 

6 3.6403 6 3.8746 6 4.1089 7 4.2550 7 4.3805 7 4.50602 
ΔK= -0.4843 ΔK= -0.6783 ΔK= -0.8375 ΔK= -1.0577 ΔK= -1.2760 ΔK= -1.4756 

8 3.9500 8 4.1938 8 4.4375 9 4.6532 9 4.8035 9 4.95383 
ΔK= -0.1746 ΔK= -0.3591 ΔK= -0.5089 ΔK= -0.6594 ΔK= -0.8530 ΔK= -1.0278 

9 4.1165 10 4.4332 10 4.6765 10 4.9199 11 5.1135 11 5.27614 
ΔK= -0.0081 ΔK= -0.1196 ΔK= -0.2699 ΔK= -0.3928 ΔK= -0.5430 ΔK= -0.7055 

11 4.2646 11 4.5911 12 4.8737 12 5.1132 12 5.3527 13 5.53025 
ΔK= 0.1400 ΔK= 0.0383 ΔK= -0.0727 ΔK= -0.1994 ΔK= -0.3038 ΔK= -0.4514 

12 4.3685 13 4.7176 13 5.0274 14 5.2819 14 5.5163 15 5.74336 
ΔK= 0.2439 ΔK= 0.1648 ΔK= 0.0810 ΔK= -0.0308 ΔK= -0.1402 ΔK= -0.2383 

14 4.4593 14 4.8309 15 5.1381 15 5.4336 16 5.6642 16 5.89327 
ΔK= 0.3347 ΔK= 0.2780 ΔK= 0.1916 ΔK= 0.1210 ΔK= 0.0078 ΔK= -0.0884 

15 4.5269 16 4.9086 17 5.2488 17 5.5321 18 5.8017 18 6.02538 
ΔK= 0.4023 ΔK= 0.3558 ΔK= 0.3024 ΔK= 0.2194 ΔK= 0.1452 ΔK= 0.0437 

17 4.5921 17 4.9915 18 5.3271 19 5.6317 19 5.9041 20 6.15019 
ΔK= 0.4675 ΔK= 0.4387 ΔK= 0.3806 ΔK= 0.3190 ΔK= 0.2476 ΔK= 0.1685 

18 4.6378 19 5.0451 20 5.4023 20 5.7201 21 5.9946 21 6.257410 
0.5132 ΔK= 0.4922 ΔK= 0.4559 ΔK= 0.4075 ΔK= 0.3381 ΔK= 0.2758 

25 4.8130 26 5.2660 27 5.6624 28 6.0128 29 6.3288 30 6.623015 
ΔK= 0.6884 ΔK= 0.7131 ΔK= 0.7159 ΔK= 0.7002 ΔK= 0.6724 ΔK= 0.6414 

32 4.9150 34 5.3914 35 5.8124 36 6.1914 37 6.5352 38 6.851420 
ΔK= 0.7904 ΔK= 0.8385 ΔK= 0.8660 ΔK= 0.8788 ΔK= 0.8787 ΔK= 0.8698 

46 5.0302 48 5.5391 50 5.9928 51 6.4064 53 6.7813 54 7.128030 
ΔK= 0.9056 ΔK= 0.9863 ΔK= 1.0463 ΔK= 1.0937 ΔK= 1.1248 ΔK= 1.1464 

60 5.0943 63 5.6221 65 6.0955 67 6.5270 68 6.9232 70 7.290940 
ΔK= 0.9697 ΔK= 1.0692 ΔK= 1.1490 ΔK= 1.2143 ΔK= 1.2667 ΔK= 1.3093 

74 5.1354 77 5.6752 80 6.1623 82 6.6066 84 7.0166 85 7.397650 
ΔK= 1.0108 ΔK= 1.1224 ΔK= 1.2159 ΔK= 1.2939 ΔK= 1.3601 ΔK= 1.4160 

87 5.1641 91 5.7130 94 6.2095 97 6.6631 99 7.0829 101 7.473560 
ΔK= 1.0395 ΔK= 1.1601 ΔK= 1.2630 ΔK= 1.3504 ΔK= 1.4264 ΔK= 1.4919 
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For the case μ = 2, Table 2 provides a similar set of results for the same range of values for L and 
/ hπ  for which the maximum percent change in total cost increase due to application of (S-1, S) 

policy instead of (1, T) policy is better than 24 percent. 
 
Figure 1 depicts the behavior of KΔ in terms of the percent change as a function of L, / hπ , and 
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Figure 1. The value of ΔK for μ =1 as a function of L and / hπ  
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Figures 2 and 3 display the variations in percent change in KΔ for μ = 2 and 3 with the same values 
of L, and / hπ .  
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Figure 2. The value of ΔK for μ = 2 as a function of L and / hπ  
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As can be seen, the increase in percent change in KΔ becomes more pronounced as μ  increases 
from 1 to 3. 
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Figure 3. The value of ΔK for μ = 3 as a function of L and / hπ  
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5. CONCLUSION 
 
While it is well known that for the case of stochastic demand, there is no inventory control policy in 
which both the order size and the order interval are constant with an optimal solution, in this paper, 
we introduced the optimal solution for a new policy which is different from the classical inventory 
policies. An important characteristic of this policy is that it eliminates the uncertainty in demand for 
suppliers. This new policy is to order 1 unit at each fixed time period T. We called this new policy 
one for one period ordering or (1, T) policy. In this policy the time interval between two consecutive 
orders and the value of the order size are both constant. 
 
We assumed that the fixed ordering cost is zero or negligible, demand process is a Poisson process, 
and the replenishment lead time is constant. Then we derived the long-run average total cost, 
consisting of holding and shortage costs, per unit time for the lost sales case in terms of the average 
inventory level. To obtain this total cost rate we used some concepts from queueing theory and 
proved that it is a convex function in terms of the average inventory on hand. The one-for-one 
period, or (1, T) policy enjoys several advantages one of which is the very significant property that 
establishes the fact that its total cost rate is free of the lead time length.    
 
Further, we obtained the optimal value of T, the time interval between two consecutive orders, 
which minimizes the total expected cost. Finally, by a numerical example we compared the total 
cost rate of this policy with the total cost rate of the one-for-one ordering or (S-1 , S) policy for the 
lost sales case. This example also served to re-examine the optimality of (s, S) policy in continuous 
review inventory models and established the fact that even for the case where demand forms a 
Poisson process the optimality of (s, S) policy does not hold. 
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