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ABSTRACT

In this paper we introduce the optimal solution for a simple and‘yet practical inventory policy
with the important characteristic which eliminates the uncertainty in.demand for suppliers. In
this new policy which is different from the classical inventory policies, the time interval
between any two consecutive orders is fixed and the quantity of each order is one. Assuming
the fixed ordering costs are negligible, lead times are /constant, and demand forms a Poisson
process, we use queuing theory concepts to derive the long-run average total inventory costs,
consisting of holding and shortage costs in terms of the average inventory. We show that the
total cost rate has the important property of being entirely free of the lead time. We prove that
the average total cost rate is a convex function and thus has a unique solution. We, then derive
the relation for the optimal value of the time“interval between any two consecutive orders.
Finally we present a numerical example to compare the performance of this new policy with the
classical one-for-one ordering policy. The provided example intends to re-examine the
optimality of (s, S) policy in continuous:review inventory models as well to establish the fact
that even for the case where demand forms'a Poisson process the optimality does not hold.

Keywords: Inventory control, One forone period policy, (s, S) Policy, Queuing system, Poisson
demand

1. INTRODUCTION

Two fundamental questions that must be answered in controlling the inventory of any item are when
and how much should be ordered for replenishment. The answers of these questions determine the
inventory control policy. In‘the face of uncertainty it is more complicated to determine the inventory
control policy. The most frequent uncertain factor is the stochastic nature of customer demand.

Most of the classical policies for controlling the inventory are derived from the (s, S) policy and are
classified as periodic or continuous review policies. The distinction involves the frequency with
which the inventory level must be observed (reviewed) in order to implement the policy. A
periodic-policy is one in which the inventory level is observed only at equally spaced points in time
(The time interval between such two points is called a “period.” If the length of the period is T, then
(s, S) policy is substituted by the (s, S, T) policy. If the maximum stock level in (s ,S, T) policy
equals to the reorder point, then another classical policy called periodic review (R, T) is formed,
where R=S is the maximum inventory level.

A continuous-review policy requires knowledge of the inventory level at all times. If the customer
demand is one unit, the ordering size (Q) is always equal S-s. Therefore, the (s, S) policy changes
into the well known continuous review (r, Q) policy, where r=s is the reorder point. If the ordering

“ Corresponding Author.


ahaji
Text Box
3


One-for-One Period Policy and its Optimal Solution 201

cost is negligible in the (r, Q) policy, then the policy is called one-for-one, (S-1, S), or base stock
policy ( Hadley and Whitin, 1963, and Love, 1979).

Hadley and Whitin (1963), Johnson and Montgomery (1974), Love (1979). Zipkin (2000), and
Nahmias (2005), among others, present the methods to find the optimal or near optimal solution to
minimize the inventory costs at a single stocking point with stochastic demand, based on the
continuous review (r,Q), periodic review (R,T), and one-for-one polices.

Due to its widespread acceptance, one can find an abundance of work dealing with (s, S) policy in
the literature (See, for example, Beckman, 1961; Sherbrooke, 1968; Nahmias, 1976; Sahin, 1979,
1982, 1990; Kruse, 1980, 1981 Archibald, 1981; Grave, 1985; Moinzadeh and Lee, 1986;
Sivlazian, 1974; Zipkin, 1986a, 1986b; Axséter , 1990, 1993, 2003; Lee and Moinzadeh, 1987a,
1987b Zheng, 1992 ; Federgruen and Zheng, 1992; Axsater et al.,1994; Nahmias and Smith, 1994;
Matta and Sinha, 1995; Forsberg, 1995, 1996, 1997; Axsater and Zhang, 1999; Ganeshan, 1999;
Andersson and Melchiors, 2001; Moinzadeh, 2002; Seo et al;,2002; Marklund, 2002; Ghalebsaz et
al., 2004).

While it is well known that for the case of stochastic demand, there is no inventory control policy in
which both the order size and the order interval are.constant with'an optimal solution, in this paper,
we introduce the optimal solution for a new policy. which is different from the classical inventory
policies used in the literature of inventory and production control systems. This new policy is to
order 1 unit at each fixed time period T. We .call this new policy (1, T) or one for one period
ordering policy. In this policy the time interval between two consecutive orders and the value of the
order size are both constant.

In what follows we discuss the advantages of this policy. Then, assuming that the fixed ordering
cost is zero or negligible, demand process isa Poisson process, and the replenishment lead time is
constant, we derive the long-run average total cost, the total holding and shortage costs, per unit
time in terms of the average inventory for the lost sales case. To obtain the total cost rate we use
some concepts from queueing theory. We prove that this total cost is a convex function in terms of
the average inventory and has a unique optimal solution.

Further, we obtain the optimal value of T, the time interval between two consecutive orders, which
minimizes the long<run average total cost. Finally, by a numerical example we compare the long-
run average total cost of this policy with the total cost rate of the base stock, one-for-one ordering,
policy for thelost sales case. The provided example intends to re-examine the optimality of (s, S)
policy in continuous review inventory models in order to establish the fact that even for the case
where demand forms a Poisson process the optimality does not hold.

The optimality of (s,S) policy has been addressed in the literature of inventory control by a number
of scholars (Scarf, 1960, Iglehart,1963, and Sahin 1990). The optimality of the (s, S) policy was first
investigated by Schultz (1989) (Moinzadeh, 2001). He considered an (S-1, S) inventory system
with an arbitrarily chosen distribution for the inter-demand times and fixed lead time. In order to
simplify the analysis, he assumes that orders can also be expedited and received immediately at a
premium cost. Furthermore, he only considers a special case of (S-1, S) inventory policies with
S=1; that is, a maximum of one unit of inventory is allowed at any point in time. Schultz (1989)
shows that by delaying the placing of orders until after demand occurs, one can achieve a lower
expected total cost rate in such systems. Although Schultz (1989) examines the concept of order
delays as a policy parameter, he fails to explicitly model the relationship between the delay and
stocking policy parameters and only optimizes the delay in this somewhat simplified model (recall
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that the maximum inventory level, S, is pre-set at unity). It is believed that in many situations the
assumption that orders can be expedited and received instantaneously does not hold and setting the
value of S=1 will lead to inferior policies (Moinzadeh, 2001). Thus the joint determination of the
optimal inventory policy and the delay becomes critical.

Later, Moinzadeh (2001) revisited the optimality of (s, S) policies in continuous review inventory
models where demand forms a renewal process. He explains why when orders are placed at
demand epochs, (s, S) policies are not optimal in general. By introducing a delay in order placement
as a policy parameter, he proposes a new policy to establish this fact. He investigates the optimality
of the (s, S) policy for Gaussian distribution for the inter-demand times to show the merits of his
proposed policy. When the inter-demand times follow a general distribution he develops an efficient
heuristic to compute the policy parameters. He shows that under his‘proposed policy when inter-
demand times are exponential the optimal delay time becomes zero. That is, for Poisson demand his
proposed policy reduces to the (s, S) policy. Based on the results contained in his work one may
conclude that if the demand follows a Poisson process then the optimality. of (s, S) policy holds true.

The example presented in this paper re-examines the optimality-of (s, S) policy in hope of achieving
the goal that the optimality of (s, S) policy in continuous review inventory models does not hold
even for the case where demand follows a Poisson process.

2. ADVANTAGES OF (1, T) POLICY

When the demand is uncertain, in the classical inventory policies at least one of the two values, the
order quantity and the time interval between any two consecutive orders, has an uncertain nature.
For example, consider the continuous review (r, Q) and the periodic review (R, T) policies which
are two usual policies employed by practitioners when demand is uncertain. When (r, Q) policy is
used, the order quantity, Q, is fixed but the time interval between any two consecutive orders has an
uncertain nature. For the case of (R;.T) policy, the time interval between any two consecutive
orders, T, is fixed whereas the value of the order quantity is uncertain. Therefore, the orders which
constitute the demands for the supplier will have an uncertain nature. Hence, the uncertainty spreads
into the supply chain.

For the new one for one period policy, discussed in this paper an order for one unit of item is placed
in a pre-determined time interval. Hence, both the order size and the order interval are constant.
Therefore, this policy prevents expanding the demand uncertainty for the supplier. That is, the
demand forthe:supplier is deterministic, one unit every T units of time.

The advantages-of this policy, which eliminates uncertainty in demand and leads to a uniform and
deterministic demand for the supplier, are:

1- The safety stock in supplier is eliminated. (cost reduction)

2- Shortage cost in supplier due to uncertainty in demand is eliminated.

3- Information exchange cost for supplier due to the elimination of uncertainty of its demand
is eliminated.

4- Inventory control and production planning in supplier are simplified.

5- This policy is very easy to apply.

3. COST EVALUATION

Using this policy in which an order constantly is placed for one unit of product in a pre-determined
time interval, we derive the total inventory cost rate, consisting of holding and shortage costs in
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terms of the average on hand inventory. The objective is to determine the optimal time interval
between any two consecutive orders.

Assumptions:

1- Unsatisfied demand will be lost.
2- The lead time for an order is constant.
3- The fixed ordering cost is zero or negligible.

Notation:

The demand rate.

Cost of a lost sale.

Rate of holding cost.

Time interval between any two consecutive orders:
Average inventory on hand for the (1, T) policy.
Average holding cost per unit time.

Average shortage cost per unit time:

Average total cost rate, for.the (1, T) policy.

Ks Average total cost rate, for the (S-1, S) policy.

L Lead time.

AyT-ATAs

3.1. Methodology

To obtain the average inventory level, one can resort to some concepts of queuing theory. To do
this, consider the arrival units of product to the system as the arrival process to a queuing system,
the inter-demand times to the system as the service times of these units, and inventory on hand as
the number of units in the queuing system. Hence, the inventory problem can be interpreted as a
D/M/1 (Haji et al, 2006), a single channel queuing system in which the inter-arrival times are
constant, equal to T, and. the service times have exponential distribution with mean 1/u. Thus, the
arrival rate of units to the system i1s4=1/T and the service rate is u.

Let r, denote the proportion of time that the number in system is zero, then for a single channel
queue

Po=1-p

Where p is the ratio of the arrival rate A=1/T to the service rate 4, i. €.,

A1
PV )
u Tu

Also, let | denote the long-run average number of units in system, then for the queuing system
G/M/1: we can write (Ross, 1993):

I :ﬁ 2

Where f is the solution of the following equation:
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p= Te‘”t(l‘ﬁ)dG(t) ®)
0

It can be shown that if the mean of G is greater than the mean service time 1/u, then there is a
unique value of g satisfying Equation (3) which is between 0 and 1. The exact value of £ usually
can be obtained by numerical methods.

The system under consideration is a D/M/1 queuing system in which the inter-arrival time of units
of product to the queueing system is constant and is equal to T. ThusG(T) =1, and we can write (3)

as

_H_
poe T g 24P 4)
Or
_=h
p=e P (5)

Since p is independent of the lead time, L, so is'f as defined in (4) and (5) which in turn leads to
independence of I in (2) from lead time.

From (2) we can write

1

p=el (6)
The average holding cost per.unit time.is:
H=h (7)

Since Ry is the proportion of time that the system is out of stock-. Thus the proportion of demand
that is lost is »p, and the average lost sale cost per unit time is:

17 =7uPRy =zull—p) (8)

Or from (2) and (6) we can write (8) as:

11 =nu

1- |(1—e_ll)} 9)

Thus, the total cost rate is:
Ky =H+/7 (10)

Or from (7) and (9)
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1
Ky =hl +7z,u{l—l(1—e_|)} (11)

As mentioned before, since | is independent of the value of the lead time, one can easily conclude
that the total cost rate for the (1, T) policy is independent of the lead time.

We now prove the following theorem for function Ky as specified in (11).
Theorem Ky is a convex function

Proof: The first derivative of K with respect to | is:

1 1
En +7t/{—l(l—e|)— | (—IizeT )}

Or

1 1
d;.r=h—7ry+7ry{e_|+lle_l} (12)

The second derivative of K with respect to | is:

Or equivalently
LS B ey (13)

It is clear from (13) that'the second derivative of K with respect to | is positive for all values of
>0 . This means that K is a‘convex function and thus it has a unique solution which proves the

theorem.

The optimal I;'1*,.is the solution of

1 1
dKt T 1 T
dl=h—7[,u+7r/{e | +I—*e I ]=0

Or
L L
e

» 1
e ! +I—*e =(mu-h)/mu

To find the optimal value of the time interval between two consecutive orders, T', note that from
(1), (2), and (6) we can write

1 1
. :
—=1"1-e ")

ur
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Thus, the optimal T, T", can be obtained from the following relation

e L (14)

1
ul*-e 1)

4. NUMERICAL RESULTS

This section is devoted to comparison between the one-for-one period that is, the (1, T) policy with
the one-for-one policy in terms of total cost rate.

We study the effect of varying the values of L and z/h on the total cost.rates for both policies. The
adopted values for the parameters are:

h=1;, u=1,2,3;
z/h=0.1,0.5, 1(1)10;
L =1(1)10 (5) 20 (10) 60.

The total cost rate for, (S-1,S), is as follows (Tijms; 1986):

Ks=h[5—L#[l—((Lu)J/S!) Z(Lu)’/J’!HMﬂ((Lﬂ)J/SD >/t (15)

x=0 x=0

Where L stands for the lead time.

It is obvious from (15) that Ks-depends on the lead time but Ky is entirely independent from the lead
time as mentioned before.

Table 1 presents the outcome of comparing the total cost rates for the (1, T) and (S-1, S) policies. In
this table we consider the values 0.1, 0.5, 1, 2, 3, and 4 for = / h. Additional values for z / h are used
in Table 2. The value of xin Table 1 and Table 2 is assumed to be 1 while in Tables 3 and 4 x is 2.

The upper section of Table 1 presents the optimal values of T (cycle times), T, the optimal values
of inventory on‘hand, I”, and the optimal values of total cost rates, K';, for the (1, T) policy for
different values of z / h. The lower section of this table displays the optimal values of S as well as
the optimal values of the total cost rates, K's, for the (S-1, S) policy for different values of L and
z/h. As the contents of Table 1 indicate the performance of (1, T) and (S-1, S) policies are exactly
the same for all values of L as long as z / h does not exceed 1 (obviously S >0).

When 7 /h>2, application of (S-1, S) policy amounts to a lower total cost rate provided that, in the
worst case considered, L<8. Each row of this table also provides the total cost rate differentials,
AK =K - K,, for various values of L. As can be seen the Max AK occurs at the largest values of L
and the largest values of z/h, i.e.,, Max AK = 5.0302 — 4.1246 = 0.9056 corresponding to L = 60
and 7 /h= 10. For the values of parameters used in this example, the maximum percent change in
total cost increase due to application of (S-1, S) policy instead of (1, T) policy is more than 21
percent.
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Table 1. Cost comparisons between (1, T) and (S-1, S) policies for z=1
T 0 o0 o 2.0636 1.7095 1.5565
I” 0.0000 0.0000 0.0000 0.5958 0.8412 1.0403
KT |  0.1000 0.5000 1.0000 1.6266 2.0863 2.4704
zlh 0.1 0.5 1 2 3 4
L s Kg |s*| Ks |s*| Kg s* | Kg | s* Ks | S* Ksg
1 0 01000] o 0500001 @ 12.0000| 1| 1.5000] 2 1.1.8000] 2| 2.0000
AK=0.0000 | AK=0.0000 | 4K=0.0000 | 4K=-0.1266'] AK=-0.2863 | AK=-0.4704
) 0/ 01000] o 05000 0,1 | 1.0000] 21 16000 2| 20000] 3| 22632
AK=0.0000 | AK=0.0000 | 4K=0.0000 | AK=-0.0266 | AK="-0.0863 | AK=-0.2072
3 0/ 01000] o o5000 0,1 | 1.0000] 24 16472} 3] 20769 3| 24231
AK=0.0000 | AK=0.0000 | AK=0.0000 | AK=0:0204 | AK=-0.0093 | AK=-0.0473
A 0] 01000] o] 05000 01 | 1.0000| 2 1.6923] 3| 2.1549| 4| 24854
AK=0.0000 | AKk=0.0000 | Ak=0.0000 | 4Kk=0.0657 | ak=0.0687 | 4K=0.0151
c 0/ 01000] o os000 0,1 | 1.0000] 3] 17076 | 4| 2.1867] 5| 2.5638
AK=0.0000 | 4K=0.0000 | 4K=0.0000 | 4K=0.0810 | AK=0.1005 | AK=0.0934
5 0/ 01000] o o5000 0,1 | 1.0000] 3] 1.7213] 4] 22261] 5| 2.6040
AK=0.0000 | AK=0.0000 | 4K=0.0000 | 4K=0.0947 | 4K=0.1398 | AK=0.1336
. 0/ 01000] o os5000 0,1 [ 10000] 3] 1.7379| 5] 22472] 6| 26446
AK=0.0000 | AK=0.0000 | AK=0.0000 | 4K=0.1113 | 4K=0.1609 | AK=0.1742
8 0] 01000] o] o0s000f0,L | 1.0000] 4] 1.7464] 5| 22601] 6| 2.6770
AK=0.0000 | AKk=0.0000.] Ak=0.0000 | 4Kk=0.1197 | ak=0.1828 | AK=0.2066
9 0 01000]| «© 0500001 | 1.0000] 4] 1.7519] 6] 2.2862] 7| 2.7006
AK=0.0000 | AK=0.0000 | 4K=0.0000 | 4K=0.1253 | 4K=0.1999 | AK=0.2302
0 |o | 0.2000 | 0] 05000 01 | 1.0000] 4] 1.7600| 6] 22087 7| 2.7266
AK=0.0000. | 4K=0.0000 | 4K=0.0000 | 4K=0.1333 | 4K=0.2124 | AK=0.2562
15 0/ 01000] o] 05000 01| 1.0000] 6] 17799 8| 2.3466 | 10| 2.7965
AK=0.0000 | 4K=0.0000 | AK=0.0000 | 4K=0.1532 | 4K=0.2603 | AK=0.3261
20 0] 01000 o] 05000 01 | 1.0000|] 7| 17912 11| 2.3728 | 13| 2.8412
AK=0.0000 | AK=0.0000 | 4k=0.0000 | 4Kk=0.1646 | 4K=0.2865 | AK=0.3708
30 |0 | 02000] o] 05000 0,1 | 1.0000] 10| 1.8028 | 15| 2.3991] 18 | 2.8866
AK=0.0000 | 4K=0.0000 | 4K=0.0000 | aK=0.1761 | 4K=0.3128 | AK=0.4163
20 |0 | 0.2000] o] 055000 0,1 | 1.0000| 13| 1.8088 | 19| 2.4140] 23| 2.9118
AK=0.0000 | AK=0.0000 | 4K=0.0000 | 4Kk=0.1822 | 4K=0.3277 | 4K=0.4415
g |0 | 0.2000] o 05000 0,1 | 1.0000| 16| 1.8126 | 23| 2.4235] 28 | 2.9279
AK=0.0000 | AK=0.0000 | AK=0.0000 | 4K=0.1859 | 4K=0.3372 | AK=0.4575
60 0/ 01000] o] 05000 0,1 | 1.0000] 19] 1.8151 | 28| 2.4300] 33| 2.9389
AK=0.0000 | AK=0.0000 | 4Ak=0.0000 | 4Kk=0.1885 | 4K=0.3437 | AK=0.4685
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Table 1. (continued) Cost comparisons between (1, T) and (S-1, S) policies for z=1
T 1.4682 1.4097 1.3675 1.3354 1.3101 1.2894
I 1.2130 1.3679 1.5096 1.6410 1.7641 1.8804
KTy | 28075 3.1116 3.3908 3.6505 3.8942 4.1246
zlh 5 6 7 8 9 10
L |s*| Kg |s* Ks S* Ks S* Ks S* Ksg S* Ksg
. |2 122000] 2| 24000] 3| 25000 3| 25625} "3} 26250] 3| 26875
AK=-0.6075 | AKk=-0.7116 | AK=-0.8908 | AK=-1.0880 | AK=-1.2692 | AK=-1.4371
) 3| 24737] 3| 26842] 4| 28571] 4| 29524] 4] 30476] 4] 3.1429
AK=-0.3338 | AK=-0.4274 | AK=-05337 | AK=-0.6981 | 4K=-0.8466 | AK=-0.9817
2 4| 26489 4| 28ss50] 4| 30611] 5| 32108). 5| 33207 5| 34307
AK=-0.1586 | AK=-0.2566 | AK=-0.3298 | AK==0.4399 | aK=-05736 | AK=-0.6939
s 5| 27916] 5| 29907 5| 31807] 5| 33888 6| 35231] 6| 3.6403
AK=-0.0159 | AK=-0.1209 | AKk=-0.2011 | AK=-0.2617 | 4K=-0.3711 | AK=-0.4843
5 5| 2.8487] 6| 31103] 6] 33022} 6| 3.4940] 6| 36859] 7| 3.8078
AK=0.0412 | AK=-0.0013 | AK=-0.0887 | Ak=-0.1565 | Ak=-0.2084 | AK=-0.3168
6 6| 2.9141] 6| 31791| 7| 34057} 7| 35908] 7| 37758] 8| 3.9500
AK=0.1067 | AK=0.0675 | AK=0.0149 | 4k=-0.0597 | ak=-0.1184 | AK=-0.1746
; 6| 2.9760] 7| 3.2353] " 7]  34842] 8| 36823] 8| 3s611] 8| 4.0400
AK=0.1685 | AK=0.1238+) Ak=0.0934 | 4K=00318 | AKk=-0.0331 | AK=-0.0846
o 7] 3.0061] 8| 32080] 8] 35336] 8| 37691] 9o 389434] 9| 41165
AK=0.1987 | 4aK=01864 | AK=0.1427 | 4k=0.1186 | 4K=0.0492 | AK=-0.0081
9 8| 3.0482] 8| 33374] o] 35888] o 3.8131] 10| 4.0233] 10| 4.1913
AK=0.2407 | AK=0.2258 | 4K=0.1980 | AK=0.1626 | 4K=0.1291 | 4K=0.0667
10 8| 3.0748] 9| 33713] 9| 36445] 10| 3.8625] 10| 40771 11] 42646
AK=0.2673 | 4K=0.2597 | 4K=0.2537 | AK=0.2120 | 4K=0.1828 | 4K=0.1400
15 11]+8.1758] 12| 35021 13| 3.7909] 13| 4.0541] 14] 42796] 14| 4.4906
AK=0.3683 | "4k=0.3906 | Ak=0.4000 | 4K=0.4036 | 4K=0.3854 | AK=0.3750
20 14| 3.2349] 15| 35799 16| 3.8849] 17| 41e00] 17| 4.4157] 18] 46378
AK=0.4275 | AK=0.4683 | AK=04941 | AK=05095 | 4K=05215 | AK=05132
20 20| 3.3030] 21| 36685] 23] 3.9977] 24| 4.2040] 24] 45649] 25] 48130
AK=0.4955 | Ak=05569 | Ak=0.6069 | AK=0.6435 | 4K=06707 | 4Kk=o0.6884
10 25| 3.3400] 27| 3.7179] 29| 4.0573] 30| 43667] 31| 46516] 32| 49150
AK=0.5325 | AK=0.6063 | Ak=0.6665 | 4k=0.7162 | 4K=0.7574 | AK=0.7904
g 3L | 3.3633] 33| 3.7496] 35| 4.0077| 37| 4.4163] 38| 4.7093] 39| 4.9823
AK=0.5558 | AK=0.6380 | 4K=0.7069 0.7658 AK=0.8151 | 4K=0.8577
60 36| 3.3802] 30| 37717| 41] 4.a1267] 43| 44s509] 45|  4.7500] 46| 5.0302
AK=05728 | Ak=06602 | Ak=0.7359 | 4K=0.8004 | 4K=0.8566 | AK=0.9056
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Table 2. Cost comparisons between (1, T) and (S-1, S) policies for p =2
T % % 1.0318 0.7782 0.7048 0.6677
1" 0.0000 0.0000 0.5958 1.0403 1.3679 1.6410
K(T) 0.2000 1.0000 1.6266 2.4704 3.1116 3.6505
zlh 0.1 0.5 1 2 3 4
L Is*| Kg |s* Ks |s* | K; S* | Kg S* Ksg S* Ksg
L 0 02000001 10000] 2 16000] 3| 22632 4| 26842] 4| 29524
AK=0.0000 | AK=0.0000 | AK=-0.0266 | AK=-0.2072 | aK=-0.4274 | AK=-0.6981
) 0| 0.2000f01 | 1.0000] 2| 16923] 4| 24854] 5/ 29907 5| 3.3888
AK=0.0000 | Ak=0.0000 | 4K=0.0657 | 4K=0.0151 | AK=-0.1209 | AK=-0.2617
3 o/ o0.2000f01  1.0000] 3] 17213] ‘5| 26040] 6| 31791] 7| 3.5908
AK=0.0000 | AK=0.0000 | 4Kk=0.0947 | 4K=0.1336 | 4K=0.0675 | AK=-0.0597
4 o/ 02000]01 | 10000] 4 17464} 6 26770] 8| 3.2080] 8 37691
AK=0.0000 | AK=0.0000 | AK=0.1197" J 4K=10.2066 | AK=0.1864 | AK=0.1186
c 0o/ 02000]01 | 10000] 4 17600} 7 27266] 9| 3.3713] 10/ 3.8625
AK=0.0000 | AK=0.0000 | AK=0.1333 | AK=0.2562 | AK=0.2597 | AK=0.2120
6 0/ 02000]01 | 10000] 5017689 8] 27625] 10| 3.4347] 11| 3.9553
AK=0.0000 | Ak=0.0000 | AK=0.1423 | 4K=0.2921 | AK=0.3231 | AK=0.3048
, 0| 0.2000f0,1 | 1.0000] 5| 17788] o 27898| 11| 3.4881]| 13| 4.0205
AK=0.0000 | 4K=0.00000) AK=0.1522 | AK=0.3194 | 4K=0.3766 | 4AK=0.3700
8 o/ 02000]01 | 10000] 8 17824] 11 28109] 13| 3.55228] 14| 40741
AK=0.0000 | 4K=0.0000 | AK=0.1557 | AK=0.3406 | AK=0.4112 | AK=0.4236
9 o/ 02000]01 | 10000] 7| 17876] 12| 2.8274] 14| 35525] 15] 4.1270
AK=0.0000 | 4K=0.0000 | AK=0.1609 | AK=0.3570 | AK=0.4410 | AK=0.4765
10 0| 0.2000f0,1 | ‘1.0000] 7| 1.7912] 13| 28412] 15| 35799| 17| 4.1600
AK=0.0000 | AK=0.0000 | 4Kk=0.1646 | AK=0.3708 | AK=0.4683 | AK=0.5095
15 0}..0.2000f.0,1 | 1.0000] 10| 1.8028] 18| 2.8866| 21| 3.6685| 24| 4.2940
AK= 0.00004) AK=0.0000 | 4k=0.1761 | AK=0.4163 | AK=05569 | AK=0.6435
20 0/ 0.2000]0,1 | 10000] 13 18088] 23 29118] 27| 3.7179] 30| 4.3667
0.0000 AK=0.0000 | 4K=0.1822 | AK=0.4415 | AK=0.6063 | AK=0.7162
30 0/ 02000]01 | 10000] 19/ 18151 33 29389] 39| 3.7717| 43| 4.4509
AK=0.0000 | 4K=0.0000 | AK=0.1885 | AK=0.4685 | AK=0.6602 | AK=0.8004
40 0/ 02000]01 | 10000] 25 18183] 43 29533] 51| 3.8007] 56/ 4.4968
AK=0.0000 | AKk=0.0000 | 4K=0.1917 | 4K=0.4829 | AK=0.6891 | AK=0.8463
5 0| 0.2000f0,1 | 1.0000] 31| 1.8203] 53| 29621] 63| 3.8189] 69| 4.5258
AK=0.0000 | 4K=0.0000 | AK=0.1937 | AK=0.4918 | 4K=0.7073 | 4K=0.8753
60 0o/ 02000]01 | 10000 37 18217 63 29682] 75| 3.8314] 82| 4.5459
AK=0.0000 | AK=0.0000 | AK=0.1950 | AK=0.4978 | AK=0.7198 | AK=0.8954
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Table 2. (continued) Cost comparisons between (1, T) and (S-1, S) policies for =2

T 0.6447 0.6287 0.6169 0.6076 0.6002 0.5941
I 1.8804 2.0961 2.2941 2.4782 2.6508 2.8140
K(T*) 4.1246 4.5529 4.9464 5.3126 5.6565 5.9816
zlh 5 6 7 8 9 10
L |s*| Ksg |s* Ks S* Ksg S* Ks S* Ksg S* Ks
. |4 131420 4] 33333] 4| 35238 5| 36606] 5| 37339) 5| 38073
AK=-0.9817 | AK=-1.2195 | AK=-1.4226 | AK=-1.6521 | AK=:1.9205 | AK=-2.1743
) 6| 36403] 6| 38746] 6| 41089] 7| _42850] 7] 43805] 7| 45060
AK=-0.4843| AK=-0.6783 | AK=-0.8375 | Ak=-1.0577 | AK=-1.2760 | AK=-1.4756
3 8| 39500] 8| 41038 8| 44375] 9|.46532] 9| 48035] 9| 49538
AK=-0.1746 | AK=-0.3591 | AK=-0.5089.| AK=-0.6594 | AK=-0.8530 | AK=-1.0278
A 9| 41165] 10| 4.4332] 10| 46765] 10| 4.9199] 11| 51135 11| 5.2761
AK=-0.0081] AK=-0.1196 | AK=-0.2699} AK=-0.3928 | AK=-05430 | AK=-0.7055
. 11| 42646] 11| 45011] 12| 48737] 12] s5.1132] 12| 5.3527] 13| 55302
AK=0.1400 | 4K=0.0383 | AK=-0.0727} 4K=-0.1994 | AK=-0.3038 | AK=-0.4514
6 12] 4.3685] 13| 47176] 13| 5.0274] 14| 52819 14| 55163] 15| 5.7433
AK=0.2439 | 4k=0.1648 | 4K=00810 | AK=-0.0308 | AK=-0.1402 | 4Kk=-0.2383
: 14| 44593 14| 48309] 15| 5.1381] 15| 54336 16| 5.6642] 16| 5.8932
AK=0.3347 | 4k=0.2780 | AK=0.1916 | 4K=0.1210 | 4K=0.0078 | AK=-0.0884
o 15 45269] 16| _4w9086) 17| 5.2488] 17| 55321] 18] 5.8017] 18] 6.0253
AK=0.4023 | 4K=0.3558 ] AK=0.3024 | AK=02194 | 4AK=0.1452 | AK=0.0437
o 17| 45921] 17| 49915] 18] 5.3271| 19| 56317] 19| 5.9041] 20| 6.1501
AK=0.4675 | AK=0.4387 | 4k=0.3806 | Ak=0.3190 | AK=0.2476 | AK=0.1685
10 18] 4.6378] 19| 5.0451] 20| 54023 20| 57201] 21| 5.9946] 21| 6.2574
0.5132 AK=0.4922 | AK=0.4559 | Ak=04075 | 4aKk=0.3381 | 4K=0.2758
15 25| 48130] 26| s5.2660] 27| 5.6624] 28] 6.0128] 29| 6.3288] 30| 6.6230
AK=0.6884 | AK=07131 | 4k=0.7159 | 4Ak=0.7002 | AK=0.6724 | AK=0.6414
20 32| 49150] 34| 53914] 35| 5.8124] 36| 6.1914] 37| 65352] 38] 6.8514
AK=0.7904 | AK=0.8385 | 4k=0.8660 | Ak=0.8788 | 4K=0.8787 | AK=0.8698
20 46| 5.0302] 48] 55391] 50| 5.9928] 51| 6.4064] 53] 6.7813] 54| 7.1280
AK=0.9056 | AK=0.9863 | AK=1.0463 | Ak=1.0037 | AK=11248 | AKk=1.1464
10 60| 5.0043] 63| 5.6221] 65| 6.0955] 67| 6.5270] 68| 6.9232] 70| 7.2909
AK=0.9697 | AK=1.0692 | AK=1.1490 | Ak=12143 | AK=1.2667 | AK=1.3093
50 74| 51354] 77| s56752] 80| 6.1623] 82| 6.6066] 84| 7.0166] 85| 7.3976
AK=1.0108 | AK=11224 | AK=1.2159 | AK=1.2939 | AK=1.3601 | AK=1.4160
60 87| 5.1641] 91| 5.7130] 94| 6.2005] 97| 6.6631] 99| 7.0820| 101| 7.4735
AK=1.0395 | AK=11601 | AK=1.2630 | Ak=1.3504 | AK=1.4264 | AK=1.4919
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For the case u = 2, Table 2 provides a similar set of results for the same range of values for L and
~/h for which the maximum percent change in total cost increase due to application of (S-1, S)
policy instead of (1, T) policy is better than 24 percent.

Figure 1 depicts the behavior of AK in terms of the percent change as a function of L, ~/h, and
u=1

AK

Figure 1. The value of 4K for x=1 as a function of L and z/h
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Figures 2 and 3 display the variations in percent change in AK for = 2 and 3 with the same values
of L,and/h.

15000
10000
7 77
7>
05000 27K
0,000 7%
T

-0.5000-

AK

-1.0000-

-1.5000

-2.0000-

-2.5000-

Figure 2. The value of AK for =2 as a function of L and z/h
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As can be seen, the increase in percent change in AK becomes more pronounced as x increases
from 1 to 3.

Figure 3. The value of AK for =3 as a function of L and = /h
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5. CONCLUSION

While it is well known that for the case of stochastic demand, there is no inventory control policy in
which both the order size and the order interval are constant with an optimal solution, in this paper,
we introduced the optimal solution for a new policy which is different from the classical inventory
policies. An important characteristic of this policy is that it eliminates the uncertainty in demand for
suppliers. This new policy is to order 1 unit at each fixed time period T. We called this new policy
one for one period ordering or (1, T) policy. In this policy the time interval between two consecutive
orders and the value of the order size are both constant.

We assumed that the fixed ordering cost is zero or negligible, demand process is a Poisson process,
and the replenishment lead time is constant. Then we derived the~long-run average total cost,
consisting of holding and shortage costs, per unit time for the lost sales case in terms of the average
inventory level. To obtain this total cost rate we used some concepts from queueing theory and
proved that it is a convex function in terms of the average<inventory.on hand. The one-for-one
period, or (1, T) policy enjoys several advantages one of which is.the very significant property that
establishes the fact that its total cost rate is free of the lead time length.

Further, we obtained the optimal value of T, the.time interval between two consecutive orders,
which minimizes the total expected cost. Finally, by a numerical example we compared the total
cost rate of this policy with the total cost rate of the one-for-one ordering or (S-1, S) policy for the
lost sales case. This example also served to re-examine the optimality of (s, S) policy in continuous
review inventory models and established the fact that even for the case where demand forms a
Poisson process the optimality of (s, S) policy does not hold.
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