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ABSTRACT 
 

In this research, we consider an application of the Bayesian Inferences in machine replacement 
problem. The application is concerned with the time to replace two machines producing a 
specific product; each machine doing a special operation on the product when there are 
manufacturing defects because of failures. A common practice for this kind of problem is to fit 
a single distribution to the combined defect data, usually a distribution with an increasing 
hazard rate. While this may be convenient, it does not adequately capture the fact that there are 
two different underlying causes of failures. A better approach is to view the defect as arising 
from a mixture population: one due to the first machine failures and the other due to the second 
one. This allows one to estimate the various parameters of interest including the mixture 
proportion and the distribution of time between productions of defective products for each 
machine, separately. To do this, first we briefly introduce the data augmentation method for 
Bayesian inferences in the context of the finite mixture models. Then, we discuss the analysis of 
time-to-failure data and propose an optimal decision-making procedure for machine 
replacement strategy. In order to demonstrate the application of the proposed method we 
provide a numerical example.  
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1. INTRODUCTION AND LITERATURE REVIEW 
 
Preventive maintenance (PM) involves the repair, replacement, and maintenance of equipments in 
order to avoid unexpected failure during use. The objective of any PM program is the minimization 
of the total cost of inspection, repair, and equipment downtime (measured in terms of lost 
production capacity or reduced product quality) (Mann et al. 1995). 

                                                 
* Corresponding Author 

www.SID.ir



Arc
hi

ve
 o

f S
ID

236 Fallah Nezhad, Akhavan Niaki and Eshragh-Jahromi 

 

In order to perform PM two approaches have evolved in the literature. The traditional approach is 
based on the use of statistical and reliability analysis of equipment failure. Under statistical-
reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by 
establishing fixed and statistically optimal PM intervals, at which to replace or overhaul equipment 
or components. The second approach involves the use of sensor-based monitoring of equipment 
condition in order to predict the time of machine failure. Under condition-based (C-B) PM, intervals 
between PM work are no longer fixed, but are performed only “when needed” (Mann et al. 1995). 
 
The primary disadvantage of (S-R)-based PM is that the results of the calculations are based on the 
use of the mean value as the measure of central tendency. If the standard deviations of these means 
are large, then the probability of ascertaining the maintenance interval with accuracy is small. In 
many of these cases, the plant is over-maintained. Other disadvantages include more emergency 
maintenance, more overtime, and less equipment utilization (Mann et al. 1995). 
 
With the development of a condition-based maintenance (CBM) technique, a more dynamic 
preventive maintenance practice could be applied. By integrating prediction tools, CBM can 
determine the required maintenance action prior to any predicted failure based on the conditions 
observed prior to a previous failure. From this aspect, this technique can be called condition-based 
predictive maintenance (CBPM) (Zhou et al. 2006). It has been proven that CBPM is an effective 
way to minimize maintenance costs, improve operational safety, and reduce the frequency and 
severity of in-service system failures (Zhou et al. 2006 and Mobley 1989). 
 
CBM is carried out in response to significant deterioration in a unit’s condition or performance as 
indicated by a change in a monitored parameter. PM allows the machine to be taken off-line at a 
predetermined time, which allows production loss to be minimized by scheduling production 
around the down time (Saranga 2002).  
 
CBM techniques can be classified according to the type of symptoms they are designed to detect. 
According to Moubray (1990) the classifications are: 
 
• Dynamic effects, such as vibration and noise levels; 
• Particles released into the environment; 
• Chemicals released into the environment; 
• Physical effects, such as cracks, fractures, wear and deformation; 
• Temperature rise in the equipment; 
• Electrical effects, such as resistance, conductivity, dielectric strength, etc. 
 
CBM has been widely accepted in practice in the past few years since it enables maintenance 
decisions to be made based on the current state of the equipment, thus avoiding unnecessary 
maintenance (replacement) and hence making timely maintenance actions when there is a strong 
indication of impending failure (Jardine et al. 1997). 
 
The available literature on discrete time maintenance models predominantly treats an equipment 
deterioration process as a Markov chain. Sherwin and Al-Najjar (1999) presented a Markov model 
to determine the inspection intervals for a phased deterioration monitored complex components in a 
system with severe down time costs. An example involved roller bearing in paper mills with three 
phases; no defect, possible defect and final deterioration towards failure. In the last phase, 
continuous monitoring was used. The output of the model was an optimum inspection rate for each 
phase given a switching rule for going over to continuous monitoring. Wang and Hwang (2004) 
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presented a Markov model that could be applied to construct the relationships among maintenance 
cycle, maintenance personnel allocation, human recovery factor, and system’s tolerance time. Zhou 
et al. (2006) presented a dynamic opportunistic condition-based predictive maintenance policy for a 
continuously monitored multi-unit series system that was proposed based on short-term 
optimization with the integration of imperfect effect into maintenance actions. In their research, it 
was assumed that a unit’s hazard rate distribution in the current maintenance cycle could be directly 
derived through CBPM. Whenever one of the units fails or reaches its reliability threshold, the 
whole system has to stop and PM opportunities arise for the system units. Jardine et al. (1997) 
presented an optimal replacement policy based on Markov stochastic process. Gupta and Lawsirirat 
(2006) presented a simulation based optimization method for strategically optimum maintenance of 
monitoring-enabled multi-component systems using continuous-time jump deterioration models. 
Sherwin (1999) with the concept of opportunity maintenance suggests new ways to construct and 
update preventive schedules for a complex system by making better use of system failure down 
time to do preventive work. Sinuany-Stern et al. (1997) concentrated on the 2-action version of this 
preventive schedules problem. They suggested an extremely practicable decision rule in partial 
observability, and proved empirically that this rule more than satisfactory competes with the state-
of-the-art generic algorithm when implemented with its recommended grid usage. Sinuany-Stern 
(1993) considered a production system (machine) which deteriorates over time and the system 
deterioration over time was assumed to be Markovian. Moreover, the time scale assumed discrete 
and the ‘true’ state of the system (excellent, medium and bad) was not directly observable. What is 
observed was the performance of the system measured in terms of ‘number of defectives’ per time 
period. At the end of each period, a decision was to be made: whether to replace the system or not 
and the objective was to minimize the total cost in the long run.  
 
Some authors applied Bayesian inference approach in machine replacement strategy. Mazzuchi and 
Soyer (1996) proposed a Bayesian approach to machine replacement problem in which they tried to 
minimize the total maintenance costs per unit time, ( )TC T , including the cost of doing a planned 
preventive maintenance and the cost of in-service replacement. The objective function of their 
research was defined as: 
 

0

( )
( )

T

f pC m x dx C
TC T

T

+

=
∫

 

 
Where pC was the cost of performing a planned preventive maintenance, fC was the cost of in-
service replacement, and ( )m x was the hazard density function of the time to failure. Merrick et al. 
(2003) presented a Bayesian semi-parametric proportional hazard model to describe the failure 
behavior of machine tools. The semi-parametric setup was introduced using a mixture of Dirichlet 
process prior.  
 
The amount of literature on single item maintenance is enormous. In one hand, when the parameters 
of the failure distribution are unknown but constant, Valdez-Florez and Feldman (1989) performed 
an extensive review. On the other hand, Wilson and Popova (1998) considered situations in which 
the parameters are random variables and Bayesian parametric analysis was performed.  
 
While in most of the published research an infinite time horizon is assumed (see Chen and Popova 
(2000) for Bayesian policies over a finite time horizon), Damien et al. (2007) considered the 
problem of a finite horizon single item maintenance optimization structured as a combination of 
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preventive and corrective maintenance in a nuclear power plant environment. They presented 
Bayesian semi-parametric models to estimate the failure time distribution and costs involved. The 
objective function of the optimization problem was the expected total cost of maintenance over the 
pre-defined finite time horizon. Typically, the mathematical modeling of failure times was based on 
parametric models.  
 
Sethi et al. (2000) considered a single machine, multiproduct manufacturing system, operating at 
finitely many quality levels, in which the quality of the machine deteriorates according to a 
continuous-time Markov process. They assumed that the only way to improve the quality is to 
replace the machine by a new one and derived some conditions on the stability of the system under 
a simple class of scheduling-replacement policy named the recurrence of the total work backlog. 
 
Hamada et al. (2004) presented a fully Bayesian approach that simultaneously combined non-
overlapping (in time) basic event and higher-level event failure data in fault tree quantification. 
Such higher-level data often correspond to train, subsystem, or system failure events. The fully 
Bayesian approach also automatically propagates the highest-level data to lower levels in the fault 
tree. 
 
Childress and Durango-Cohen (2005) formulated a stochastic version of the parallel machine 
replacement problem and analyzed the structure of optimal policies under general classes of 
replacement cost functions. 
 
Hritonenko et al. (2007) combined known continuous- and discrete-time models of equipment 
replacement. They showed that the optimal equipment lifetime was shorter when the embodied 
technological change was more intense.  
 
2. PROBLEM STATEMENT 
 
In this research, we employ the concept of condition monitoring in machine replacement problem. 
Similar to Sinuany-Stern (1993) research, we observe the true state of the machines indirectly by 
measuring their performance in terms of ‘number of defective items’ per time period assuming that 
the machines are close to “wear-out” period such that the hazard rate is increasing. Furthermore, 
while in machine replacement strategies, a usual practice is to assume that the state space of the 
decision system is a discrete one, in this paper we relax this assumption and consider continuous 
state spaces with Weibull probability distribution. By this assumption since the complexity of the 
decision-making problem increases, we will consider only one stage. Moreover, in order to define a 
continuous state space, we employ the idea of the finite mixture models. Finite mixture models arise 
in a variety of industrial and scientific applications. In theses applications, we are concerned with 
the time to replace two machines that produce a specific product and each machine doing a specific 
operation when there failures due to manufacturing defects. A common practice to model this 
problem is to fit a single distribution, usually a distribution with an increasing hazard rate, to the 
combined defect data. Increasing hazard rate is due to the assumption of the machines being close to 
wear-out period according to “bathtub model.” In the bathtub model, the failure rate, (.)m , 
decreases with age or usage when the equipment is new – the time during which this applies is 
known as the infant mortality period – and it is usually relatively short. This is followed by a period 
of constant failure rate (the useful life period), and then a “wear-out” period. The latter is 
characterized by a failure rate, which is an increasing function of age or usage (Tsang, 1995). While 
this approach may be convenient, it does not adequately capture the fact that there are two different 
underlying causes of defect. A better approach is to view the defect as arising from a mixture 
population: one due to the first machine failures and the other due to the second machine failures. 
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This allows one to estimate the various parameters of interest including the mixture proportion and 
the machine reliability distribution, separately. 
 
The main difference between this research and the previous ones is the choice of the state variable. 
By analyzing the outcome of the machines (products) and based upon the quality of the products, 
we try to determine the optimal strategy using Bayesian inference. The optimal strategy in previous 
researches was obtained based on the machine failure data. 
 
In section three, we present the assumptions and some of derivations required in the new approach. 
We discuss the ways to analyze time-to-failure data in section four. Notations are defined in section 
five. The application of the Bayesian inference in decision-making method is given in section six. 
In order to demonstrate the application of the proposed method we provide a numerical example in 
section seven. A sensitivity analysis comes in section eight, and finally, the conclusion comes in 
section nine. 
 
3. ASSUMPTION AND DERIVATIONS 
 
The assumptions involved in the proposed methodology are: 
 
1.  The horizon of the decision-making process is one stage. 
 
2.  The time between producing defective products, ( t ), follows a Weibull probability distribution 
with parameters of  and α β as ( ) 1,m t t βα β αβ −= . 

 
3.  An appropriate prior forα , ( )Q α , is assumed to be a Gamma distribution with parameters of 

 and a b given by ( ) ( )
1

a
a bbQ e

a
αα α − −=

Γ
. 

 
4.  For the prior distribution of the shape parameter, β , it is convenient to define a discrete 
distribution by discretization of the beta density on ( ),L Uβ β (Mazzuchi and Soyer, 1996). This 
allows for great flexibility in representing prior uncertainty. The beta density is given by 
 

( ) ( )
( ) ( )

( ) ( )
( )

1 1

1     for  0  
c d

L U
L Uc d

U L

c d
g

c d
β β β β

β β β β
β β

− −

+ −

Γ + − −
= ≤ ≤ ≤
Γ Γ −

 

 
where , , , 0U L c dβ β >  are the specified parameters. Then, we define the prior distribution forβ  as 
 

{ } ( )2

2
Pr l

l
L lP g d

δβ

δβ
β β β β

+

−
= = = ∫  

 

where 
2 1   and =  for 1,2,...,

2
U L

l L
l l k

k
β ββ β δ δ− −

= + =  
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5.  If it represents the time between production of defective products then, using likelihood method, 
at the current time Bt  we obtain the posterior state of variable and lα β , denoted by 1 and α β , as 
(Mazzuchi and Soyer, 1996): 
 

( ) ( )* *
1 2, , , ..., ,  l nf t t t Gamma a bα β =  

 

Where *a a n= +  and *

1 1

l

l

n n

i B i
i i

b b t t t
β

β

= =

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

∑ ∑  

 
And 
 

{ } { } ( )

{ } ( )

*

*

1
*

1
l 1 2 1

*
1

1

Pr , ,...,      

l

i

ann
l jj

n lk ann
i i jj

i

t b
t t t P

P t b

β

β

β
β

β

−

=

−

=
=

=
∏

∑ ∏
 

 
6.  We assume that when the time between productions of defective products is less than a threshold 
like *T , then the machine has failed and should be replaced. This has practical applications in many 
industries like the press shops when the evaluation of the machines is based on the quality of the 
products. 
 
7.  We consider three types of costs in the model: 
 
a.  Replacement cost  
 
b.  Cost of defective products in a stage 
 
c.  Cost of system failure (production break down) 
 
8.  Assuming k(t) to be the distribution function of time between production of defective products, 
then, according to assumption 5, the probability of machine failure using Bayesian inference is: 
 

( ) ( ) ( )
* *

0 0 0
Probability of  machine  failure    , ,

T T
t dt t g d d dtf f βα β α β α

∞

= =∫ ∫ ∫  

 

where ( ) ( ) { }
1

, Pr
k

i i
i

g Qα β α β β
=

=∑ . Substituting for the terms and using integration we have: 

 

( ) ( ) { } { } ( )

{ }
( )

{ }
( )

* *
* ***

* * * *1

0 0
1

*

* *

* * *

*
1 1 1

* *0
1

* * * *
** * *1 1

0

 Pr Pr

1 1 1Pr Pr

i

akT T it a bi i
i i

i

i i

k aT t a b
i i

i

T

k k
a a

i ia a a
i i

b
t dt t e e d dt

a

bf t e e d dt
a

a b a b
bt b T b

β βα αβ β α α

β β

αβ α β α β αβ α α

β β

− − −

=

− − − − −

=

= =

= =
Γ Γ

⎛ ⎞
− ⎜ ⎟= = −⎜ ⎟

⎜ ⎟+ +⎝ ⎠

∑∫ ∫ ∑ ∫

∑ ∑

 (1) 
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9.  Assuming an overall time in decision making stage to be H, according to failure function, the 
expected number of defective products in the stage can be calculated by Bayesian inference as: 
 

The expected number of defective products ( ) ( ) ( )
0 0 0

  = , ,
H H

t dt t g d d dtm m βα β α β α
∞

=∫ ∫ ∫  
 
Hence we have 
 

( ) ( ) { }

{ } ( )

{ }

0

*
* *

1

0 0
1

*H 1 1
*0 0

1

*H 1
*0

1

*

*
1

 Pr

Pr

Pr

H
i

i

i

i

kH

i i i
i

k a
a b

i i
i

k

i
i

k

i
i

t dtm t k d dt

bt e d dt
a

at dt
b

a H
b

β

β α

β

β

αβ α β β α

β αβ α α

β

β

∞ −

=

∞ − − −

=

−

=

=

=

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟Γ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∑∫ ∫

∑ ∫ ∫

∑∫

∑

 

 
10. After machine replacement, the time between productions of defective products for new 
machine follows a negative exponential with constant failure rateλ , whereλ  follows Gamma 
(1, 'λ ). 
 
4. ANALYSIS OF TIME-TO-FAILURE DATA 
 
Instead of fitting a single distribution to the time to repair or replace of two machines that produce a 
specific product, it is much more informative to separately estimate the parameters of the mixture 
model. In other words, we ideally model the time as a mixture of data from the two distributions as 
in equation (2). 
 

1 2( , ) ( ) (1 ) ( )f t p pf t p f t= + −  (2) 
 
Where 1( )f t  and 2 ( )f t  are the probability distributions of the first and the second machine failures, 
respectively, and the proportion p measures the extent of the first machine failure. The mixing 
proportion p and the parameters of 1( )f t  and 2 ( )f t have important physical interpretations in the 
decision-making process. However, before applying this model, first we employ the Bayesian 
inference to the mixture model using data augmentation technique (Sinuany-Stern 1993). To do 
this, let 1iz =  if the defective product belongs to the first machine, and 2iz =  if the second one has 
produced it. To choose the prior probability distribution of the mixing proportion, ( )f p , in the 
absence of specific prior knowledge, it is common to use non-informative priors. Referring to 
Jeffrey’s non-informative prior (Tsang 1995), for the mixing proportion p, we take a Beta  prior 

distribution with parameters 1
2

a b= = . 

 
It is possible to express the unknown parameter p, in terms of a metric ( )f p , so that the 
corresponding likelihood is data translated. This means that the likelihood curve for ( )f p is 
completely determined a priori except for its location, which depends on the data yet to be 
observed. Then to say that we know little a priori relative to what the data is going to tell us, may be 
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expressed by saying that we are almost equally willing to accept one value of ( )f p  as another. This 
state of indifference may be expressed by taking ( )f p  to locally uniform, and the resulting priori 
distribution is called non-informative for ( )f p with respect to the data. 
 

According to Jeffreys' Rule, assuming ( ) ( )2

2

log
x p

p x p
p E

p
φ

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
, the informative for p should be 

chosen so that locally ( ) ( )0.5f p pφ= . Specifically for the Beta distribution case, the information 

measure is ( ) ( ) 11 1p p pφ −−≈ − . Hence ( ) ( ) 0.50.5 1f p p p −−≈ − . In other words, we conclude that 
( )f p  as a non-informative prior distribution is Beta (0.5, 0.5) (See Box and Tiao 1992). 

 
With the aforementioned preliminaries, we are now ready to specify the data augmentation 
algorithm for the problem at hand. Let 1 2( , ,..., )nt t t t=  be the exact failure times, 1 2( , ,..., )nz z z z=  
be the latent variables corresponding to the defect modes, and R  to be the number of times iz ’s 

equal to one. Then, we can obtain the distribution of ,p t z as: 
 

( , ) ( )
( , )

( , ) ( )

( ) (1 )(1 )
( ) ( )

( ) (1 )(1 )
( ) ( )

( ) (1 )
( ) ( )

a b
R n R

a b
R n R

a R b n R

f t z p f p
f p t z

f t z p f p dp

a b p pp p
a b

a b p pp p dp
a b

a R b n R p p
a R b n R

−

−

+ + −

=

Γ + −
−

Γ Γ=
Γ + −

−
Γ Γ

Γ + + + − −
=

Γ + Γ + −

∫

∫
 

 
which is a Beta distribution with parameters of R a+ and n R b− +  (Tanner and Wong 1987; Nair 
et al. 2001).  
 
5. NOTATIONS 
 
We will use the following notations and definitions in the rest of the paper: 
 

C  cost of producing one unsatisfactory product 
iC  cost of replacing machine i 
ifC  cost of in-service replacement for machine i 

p  measures the extent of the of the first machine to produce defective products 
irfP  Probability of in-service replacement for machine i after replacement 
ifP  Probability of in-service replacement for machine i before replacement 

'
1

iλ
 Standard expected mean of failure rate for machine i after replacement (new machine failure rate) 

H overall time in period 
( )pr  distribution function of p 
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The probability of an in-service replacement for machine one in the case of replacement, assuming 
( )

'
1'

1
ttf e λλ −=  is: 

 

( ) ( ) ( )
( ) ( )

( )

( )

* *

* '

* '

*

0 0 0

'
10 0

'
10 0

*
'

2 ' *0 '

k t  dt = f t  dt

=  dt

 =

1 

T T

T t

T t

T

h d

e e d

e d dt

Tdt
Tt

λλλ

λ λ

λ λ λ

λ λ λ

λλ λ

λ
λλ

∞

∞ −−

∞ − +

= =
++

∫ ∫ ∫

∫ ∫

∫ ∫

∫

 

 
In other words, 
 

( )
*

0

*

1 ' *
1

  
T

rf t dt
TP f

Tλ
==

+∫  

 
The probability of an in-service replacement for machine one in the case of not replacing machine 
one, assuming increasing failure rate, will be calculated using equation (1) as: 
 

{ }
*

*

1 * *
1

Pr 1
i

ak

f i
i

bP
T bββ

=

⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
∑  

 
6. THE DECISION MAKING APPROACH 
 
In order to apply Bayesian inference, assume n defective products has been produced. According to 
what we state in section 4, for pre-replacement situation we have: 
 
1. ,p t z  is distributed as ( , )B e ta R a n R b+ − +  
 

2. 
1 ,t zα  is distributed as Gamma denoted by 

: 1 : 1

,
l

l

i i

n n

i B i
i z i z

a R b t t t
β

β

= =

⎛ ⎞⎛ ⎞⎜ ⎟Γ + + + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑  

 
3. discrete distribution of 1 ,t zβ is 

 

{ } { } ( )

{ } ( )

*

*

1
*

, 1

1 1
*

, 1
1

Pr ,

l

j

i

j

ann
l jj z

l lk ann
i i jj z

i

t b
t z P

P t b

β

β

β
β β

β

−

=

−

=
=

= =
∏

∑ ∏
 (3) 

 
The distributions of 2 ,t zα  and 

2 ,t zβ  are obtained in a similar manner. 
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For machines’ post-replacement situation, to determine p, the extent of a machine to produce 
defective products, for machine one and two we let the stochastic numbers 1e  and 2e  to denote the 
numbers of defective products that the new machine one and two produces in the decision-making 
stage, respectively. According to Bayesian inference, if we decide to replace any machines, we have 
the following results: 
 
4. after machine one replacmentp is distributed as 1( , )Beta a e n R b+ − +  
 
5. after machine two replacmentp  is distributed as 2( , )Beta R a b e+ +  
 
6. after replacing both machinesp  is distributed as 1 2( , )Beta a e b e+ +  
 
Then by applying the expected cost for each alternative, we get: 
 

( )
( )

( )
( )

1 1rf 1 2f 2

2 1f 1 2rf 2

1f 1 2f 2

1 2 1rf 1 2rf 2

P P cost of defective products ,

P P cost of defective products ,

P P cost of defective products ,

P P cost of defective products

f f

f f

f f

f f

C c c E

C c c E
V M in

c c E

C C c c E

⎧ ⎫+ + +
⎪ ⎪

+ + +⎪ ⎪
= ⎨ ⎬

+ +⎪
⎪ + + + +⎩ ⎭

⎪
⎪

 (4) 

 
The first and the second term in the minimization program given in (4) indicate the expected cost 
when we replace the first and the second machine, respectively. The third term refers to the 
expected cost when none of the machines are replaced, and the fourth term is the expected cost 
when both machines are replaced. 
 
An important feature of this approach is that we use the historical data of defective products to 
update the distribution function of failure rates and with considering appropriate assumptions, we 
determine the optimal policy at the start of the current stage.  
 
Applying equation (4) and conditional expectation, we have the following result: 
 

( ) ( ) ( ) ( ) ( )
1

1 20 0 0
cost of defective products 1E C p m t dt p m t dt r p d

∞ ∞⎛ ⎞= + −⎜ ⎟
⎝ ⎠∫ ∫ ∫  (5) 

 
In order to calculate the expected costs of defective products in equation (4) we define the following 
events: 
 
FMR: The event of the First Machine Replacement 
SMR: The event of the Second Machine Replacement 
NMR: The event of No Machine Replacement 
BMR: The event of Both Machine Replacements 
 
Then, the costs associated with different decisions are: 
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* *
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Cost of : 1f f
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T Tλ λ λ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + + −
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Since machine one replacmentp  is distributed as 1( , )Beta a e n R b+ − + , we have: 
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We note that in deriving the last equation we assumed a Poisson distribution for the number of 
defective products in stage (with mean of 1 Hλ ). 
By similar reasoning, we have: 
 

( ) ( )
( ) ( )

'
2

1'1 2

i

i
i

H a R
E p SMR

H R a b i

λ

λ

∞

+
=

+
=

+ + + +
∑  

 
Based on the expectation of beta distribution we have: 
 

( ) a RE p NMR
n a b

+
=

+ +
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which can be approximated by 
 

( )
' '

1 2
' '
2 1

' '
1 2

H

E p BMR H H
λ λ

λ λ
λ λ

= =
++

 

 
7. A NUMERICAL EXAMPLE 
 
Consider a manufacturing process in which there are two serial machines producing a specific 
product. For increasing hazard rate assumption, we have generated values of β  from standard beta 
distribution with parameter c=2 and d=1 and values of α have been generated from an exponential 
distribution with mean 1. Generated data are shown in Table 1. 
 
Assuming * ' '

1 2 1 2 1 21000,  1300,  0.6,  50,  50, 2000, =2500, =100, =5 f fC C T C C H Cλ λ= = = = = = , we have:  
 
Cost of  : 2667.61
Cost of  : 2098.15
Cost of  : 2357.43
Cost of  : 2242.53

FMR
SMR
BMR
NMR

 

 
Table 1: Time between productions of defective products 

 
Machine Two Machine One 

0.63308 0.527716 
0.822558 0.025934 
0.140781 0.402137 
0.21674 0.072486 
0.023657 2.215276 
0.6156 11.37043 

0.280686 1.93114 
0.091386 4.389833 
0.741723 1.209809 
0.34208 0.016308 

 
Hence, the decision regarding the replacement of machine two is the best. 
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8. A SENSITIVITY ANALYSIS 
 
To analyze the effect of different values of the model parameters, in this section we present a 
sensitivity study of the numerical example given in section 7. This study is based on different 
values of the in-service replacement costs and the defective product cost.  
 
If the in-service replacement cost is unknown, then based on different combinations of C1f and C2f 
we can estimate the cost associated with each decision and determine the best strategy. Table 2 
shows the results of this study.  
 
The results of Table 2 show that the decision FMR is never the best. For large values of both C1f and 
C2f replacing both machines is the best decision. Small values of C1f and C2f leads NMR to be the 
best and moderate values of C1f and C2f results in replacing machine two. 
 
The results of the sensitivity analysis based on different defective product costs are shown in Table 
3. From the results of Table 3, we see that small values of C leads to replacing machine two and for 
the large values of C, replacing both machines is the best decision. The other two decisions are not  
 

Table2: The estimated cost of each decision for different combinations of C1f and C2f 
 

FMR SMR BMR NMR C2f C1f 

1855.283 1756.604 2331.344 1114.773 1000 1000 
1964.38 1823.966 2335.613 1286.962 1200 1200 
2073.476 1891.327 2339.881 1459.151 1400 1400 
2182.573 1958.688 2344.15 1631.341 1600 1600 
2291.67 2026.05 2348.419 1803.53 1800 1800 
2400.766 2093.411 2352.688 1975.719 2000 2000 
2509.863 2160.773 2356.957 2147.908 2200 2200 
2618.959 2228.134 2361.225 2320.098 2400 2400 
2728.056 2295.495 2365.494 2492.287 2600 2600 
2837.153 2362.857 2369.763 2664.476 2800 2800 
2946.249 2430.218 2374.032 2836.665 3000 3000 
3055.346 2497.58 2378.3 3008.855 3200 3200 
3164.442 2564.941 2382.569 3181.044 3400 3400 
3273.539 2632.302 2386.838 3353.233 3600 3600 
3382.636 2699.664 2391.107 3525.422 3800 3800 
3491.732 2767.025 2395.375 3697.612 4000 4000 
3600.829 2834.387 2399.644 3869.801 4200 4200 
3709.926 2901.748 2403.439 4041.99 4400 4400 
3819.022 2969.109 2408.182 4214.179 4600 4600 
3928.119 3036.471 2412.451 4386.369 4800 4800 
4037.215 3103.832 2416.719 4558.558 5000 5000 
4146.312 3171.193 2420.988 4730.747 5200 5200 
4255.409 3238.555 2425.257 4902.936 5400 5400 
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the best in none of the cases. The pictorial representation of the results of Table 3 is also given in 
Figure 1. 
 
9. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH  
 
In this paper, first we briefly introduced the data augmentation method for Bayesian inferences in 
the context of the finite mixture models. Then, we discussed the analysis of time-to-failure data and 
the application of the methods of decision-making for the machine replacement strategy. In order to 
demonstrate the application of the proposed method we provided a numerical example.  
 
The proposed approach may be applied to any decision-making problems in which we need to 
update the probability distribution function of its states by Bayesian inference approach.  
 
For further researches in the subject of this research, we recommend the following: 
 
1. In general, we can consider the case in which there are n machines instead of two. 
 
2. We can consider other distribution functions for the time between producing of defective 
products. 
 
3. Failure rates, costs, and the probabilities in the mixture model all may be considered as fuzzy 
parameters. 
 

Table3: The estimated cost of each decision for different values of C 
 

C FMR SMR BMR NMR 
1 2418.892 2001.958 2349 2038.72
2 2480.784 2025.915 2351 2089.44
3 2542.676 2049.873 2353 2140.16
4 2604.568 2073.83 2355 2190.88
5 2666.46 2097.788 2357 2241.6 
6 2728.352 2121.746 2359 2292.32
7 2790.244 2145.703 2361 2343.04
8 2852.136 2169.661 2363 2393.76
9 2914.028 2193.618 2365 2444.48
10 2975.92 2217.576 2367 2495.2 
11 3037.812 2241.534 2369 2545.92
12 3099.704 2265.491 2371 2596.64
13 3161.596 2289.449 2373 2647.36
14 3223.488 2313.406 2375 2698.08
15 3285.38 2337.364 2377 2748.8 
16 3347.272 2361.322 2379 2799.52
17 3409.164 2385.279 2381 2850.24
18 3471.056 2409.237 2383 2900.96
19 3532.948 2433.194 2385 2951.68
20 3594.84 2457.152 2387 3002.4 
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Figure 1: The cost diagrams of different decisions 
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