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ABSTRACT 

 
In this paper, we develop a new mathematical model for a cyclic multiple-part type three-
machine robotic cell problem. In this robotic cell a robot is used for material handling. The 
objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) 
with assumption of known robot movement. The developed model is based on Petri nets and 
provides a new method to calculate cycle times by considering waiting times. It is proved that 
scheduling problem of a robotic cell is unary NP-complete. Achieving an optimal solution for 
this type of complex, large-sized problem in reasonable computational time by using traditional 
approaches and optimization tools is extremely difficult. In this paper we implement an 
algorithm based on the particle swarm optimisation (PSO) method for solving the problem. To 
validate the developed model and solution algorithm, various test problems are examined some 
of which are of small-size and some other of large-size. The computational results show that the 
proposed algorithm achieves optimum solutions for small sized problems, while for large-sized 
problems this algorithm can find suitable solutions in acceptable time. 

 

Keywords: Cyclic blocking flow-shop, Particle swarm optimisation, Robotic cell, Scheduling 

 

1. INTRODUCTION 
 
Nowadays the level of automation in manufacturing industries has increased dramatically. Some 
examples of such progress in automation can be seen in cellular manufacturing and robotic cells. A 
growing body of evidence suggests that, in a wide variety of industrial settings, material handling 
within a cell can be accomplished very efficiently by employing robots (Asfahl, 1992). Among the 
interrelated issues to be considered in using robotic cells are their designs, the scheduling of robot 
moves, and the sequencing of parts to be produced. 
 
Robotic cell problems in which robots are used as means of material handling have received 
considerable attention. Sethi et al. (1992) proved that in buffer-less single-gripper two-machine 
robotic cells producing single part-type and having identical robot travel times between adjacent 
machines and identical load/unload times, a 1-unit cycle provides the minimum per unit cycle time 
in the class of all solutions, cyclic or otherwise. For the three-machine case, Crama and van de 
Klundert, (1999), and Brauner and Finke (1999) have shown that the best 1-unit cycle is the optimal 
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solution for the class of all cyclic solutions. Hall et al. (1997, 1998) considered the computational 
complexity of the multiple-type parts three-machine robotic cell problem under various robot 
movement policies. This problem is studied for no-wait robotic cells too. For example Agnetis 
(2000) found an optimal part schedule for no-wait robotic cells with three and two machines. 
Agnetis and Pacciarelli (2000) have studied part-scheduling problem for no-wait robotic cells, and 
found the complexity of the problem. Crama et al. (2000) studied flow-shop scheduling problems, 
including the models and their complexity. Dawande et al. (2005) reviewed recent developments in 
robotic cells and, provided a classification scheme for robotic cell scheduling problems. What 
follows include some other special cases which have been studied by others: Drobouchevitch et al. 
(2006) provided a model for cyclic production in a dual-gripper robotic cell. Gultekin et al. (2006) 
studied robotic cell scheduling problem with tooling constraints for a two-machine robotic cell 
where some operations can only be processed on the first machine and some others can only be 
processed on the second machine and the remaining can be processed on both machines. Gultekin et 
al. (2007) considered a flexible manufacturing robotic cell with identical parts in which machines 
are able to perform different operations and the operation time is assumed a variable and not a 
system parameter. They proposed a lower bound for 1-unit cycles and 2-unit cycles. Sriskandarajah 
et al. (1998) classified the part sequence problems associated with different robot movement 
policies. In this paper a robot movement policy is considered, whose part scheduling problem is 
NP-Hard. This is the problem that Baghchi et al. (2006) proposed to solve by a heuristic or meta-
heuristic. In this paper a meta-heuristic method based on particle swarm optimization is applied to 
solve the problem. 
 
In this paper an m-machine flexible cyclic cell is considered. All parts in an MPS (A minimal part 
set) visit each machine in the same order, the production environment is cyclic, and parts are 
produced in the same order repeatedly.  
 

 

 
 

Figure 1. Robotic work cell layout with three machines 
 
In this paper we consider multiple-type part, three-machine robotic cells which have operational 
flexibility in which the operations can be performed in any order; moreover each machine can be 
configured to perform any operation. To explain the problem, consider a machining centre where 
three machine tools are located and a robot is used to feed the machines designated as 

321 ,, MMM (see Figure 1). All parts are brought to and removed from the robotic cell by 

M3 

M2 

M1  
 

 
AS/RS 

 

Robot
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Automated Storage & Retrieval System (AS/RS). The pallets and feeders of the AS/RS system 
allow hundreds of parts to be loaded into the cell without human intervention. Machines can be 
configured to perform any operation.  
 
The aim of this paper is to find a schedule for the robot movement and the sequence of parts to 
maximize throughput (i.e., to minimize cycle time). As it is shown, this problem is NP-Complete in 
general (see Hall et al. 1998). Thus a meta-heuristic algorithm, based on particle swarm 
optimization is proposed for solving this problem. The rest of this paper is organized as follows: 
The problem definition and required notations are presented in Section 2, Section 3 presents the 
developed mathematical model, and in Section 4 the implementation of particle swarm optimization 
algorithm is described. The computational results are reported in Section 5, and the conclusions are 
presented in Section 6. 
 
2. PROBLEM DEFINITION 
 
The robotic cell problem is a special case of the cyclic blocking flow-shop, where the jobs might 
block either the machine or the robot. In a cyclic schedule the same sequences repeat over and over 
and the state of the cell at the beginning of each cycle is similar to the next cycle. It is assumed that 
the discipline for the movements of parts is an ordinary flow-shop discipline in which a part meets 
machines 321 ,, MMM  consequently. 
 
2.1. Notations 
 
The following notation is used to describe the robotic cell problem: 
 
 m  The number of machines  
 OI /  The automated input-output system for the cell 
 iPT  The part-type i to be produced 
 ir  The minimal ratio of part i to be produced 
 MPS  A minimal part set consisting of ir  parts of type iPT   
 n  The total number of parts to be produced in the MPS ( krrrn +++= ...21 ) 

 ia  The processing time of part i on 1M  

 ib  The processing time of part i on 2M  

 ic  The processing time of part i on 3M  
 δ  Robot travelling time between two successive machines (I/O is assumed as 

machine 0M ) 
 ε  The load/unload time of part i 

 
j

iw  The robot waiting time on iM  to unload part i  

 
kS  The robot movement policy S under category k 

 kT  The cycle time under kS  
 
In this study the standard classification scheme for scheduling problems: 321 || ψψψ  is used where 

1ψ  indicates the scheduling environment, 2ψ describes the job characteristics and 3ψ defines the 
objective function (Dawande et al, 2005). For example t

1
3 C|S 2,k|FRC ≥  denotes the 
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minimization of cycle time for multi-type part problem in a three flow-shop robotic cell, restricted 
to robot move cycle 1S . 
 
2.2. Three Machine Robotic Flow Shop Cell tCkFRC |2|3 ≥  
 
In the three machine robotic flow shop cell, there are six different potentially optimal policies for 
the robot to move the parts between machines (Bagchi et al, 2006). Sethi et al. (1992) showed that 
any potentially optimal one-unit robot move cycle in a m machine robotic cell can be described by 
exactly m+1 following basic activities: 
 

−
iM Load a part on iM ,     mi ,...,2,1=  

 
+
iM Unload a finished part from iM , mi ,...,2,1=  

 
In other words, a cycle can be uniquely described by a permutation of m+1 activities. The following 
are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al, 1992): 
 

},,,,{:

},,,,{:

},,,,{:

},,,,{:

31323
4

32133
3

32313
2

33213
1

+−−−+

+−−−+

+−−−+

+−−−+

MMMMMS

MMMMMS

MMMMMS

MMMMMS

 

},,,,{:

},,,,{:

31233
6

33123
5

+−−−+

+−−−+

MMMMMS

MMMMMS  

 
In this paper we consider a three machine robotic cell problem under the

6S policy (Figure 2). The 
problem of finding the best part sequence using the robot move cycle 6S is NP-complete (Hall et al, 
1998).  

 

 
Figure 2. Robot movements under 6S policy 

 
The following lemma helps to achieve this purpose. 
 
Lemma 1: The cycle times of one unit for the policy 6S  are given by: 
 

}4-8-c,4-8-b,4-8-amax{0,812T (i)1)+(i2)+(i2)+(i1)+(i(i)
6 εδεδεδεδ σσσσσσ ++=  

 
Proof: According to Figure 2 the robot movement under policy 6S  is as follow:  

M3 M1 

I/O 

δ 
δ 

M2

δ 

2δ 

δ 

2δ 

2δ 

2δ 
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Pickup part 2+iP  from )( I/O ε , move it to )( M1 δ , load 2+iP  onto )( M1 ε , go to )(2 M3 δ , if necessary wait 
at )(w M 3

i
3 , unload iP  from )( M 3 ε move it to )( I/O δ drop iP  at )( I/O ε go to )(2 M2 δ  if necessary wait at 

)(w M 2
1i

2
+ , unload 1+iP  from )( M 2 ε , move it to )( M3 δ , load 1+iP onto )( M3 ε , go to )(2 M1 δ , if necessary 

wait at )(w M 1
2i

1
+ , unload 2+iP  from )( M1 ε , move it to )( M 2 δ , load 2+iP onto )( M 2 ε , go to )(2 I/O δ , then 

start a new cycle by picking up part 3+iP . 
 
The cycle time by considering waiting times is as follow: 
 

I, (i) (i+1) (i+2)

6 2 1
1 2 3T 12 8 i i iw w w

σ σ σ
δ ε + += + + + +  

 
2 1

1 ( 2) 2 3max{0, 8 4 }i i i
iw a w wσ δ ε+ +

+= − − − −  
 

1
2 ( 1) 3max{0, 8 4 }i i

iw b wσ δ ε+
+= − − −  

 
2

3 ( ) 1max{0, 8 4 }i i
iw c wσ δ ε+= − − −  

 
6

(i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4σ σ σ σ σ σδ ε δ ε δ ε δ ε= + +  
 
3. DEVELOPING THE MATHEMATICAL MODEL 
 
In this section we develop a systematic method to produce necessary mathematical programming 
formulation for the robotic cell problem. First, we model a single-part type problem through Petri 
nets, and then extend the model to a multiple-part type problem. 
 
A Petri-net is a four-tuple ),,,( WATPPN  where },...,,{ 21 npppP =  is a finite set of places, 

},...,,{ 21 mtttT =  is a finite set of transitions, )()( PTTPA ××⊆ U  is a finite set of arcs, and 
,...}3,2,1{: →AW is a weight function. Every place has an initial marking ,...}2,1,0{:0 →PM . If time 

is assigned to transitions then PN is called a Petri net. 
 
The behavior of a system can often be described by states of the system and their changes in order  
to simulate its dynamic behaviour. Marking in a Petri-net is changed according to the following 
transition (firing) rule:  
 
1) A transition is said to be enabled if each input place p  of t  is marked at least with ),( tpw  

tokens, where ),( tpw  is the weight of the arc from p  to t . 
 
2) An enabled transition may or may not be fired (depending on whether or not the event takes 

place). 
 
A firing of an enabled transition t  removes ),( tpw  tokens from each input place p  of t  and adds 

),( ptw  tokens to each output place p  of  t , where ),( ptw  is the weight of the arc from t  to p . 
 
By considering a single-part type system, the robot arm at the steady state is located at machine 2M , 
therefore by coming back to this node we have a complete cycle for the robot arm.  
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The related Petri net for robot movements is shown in Figure 3 and the description of the nodes for 
this graph with respective execution times would be as follows: 
 

1R : Go to )(3 δM  2R : Load )(3 εM  3R : Go to )2(1 δM  
4R :Unload )(1 εM  5R : Go to )2(2 δM  6R : Load )(2 εM  
7R : Go to input, pickup a new part, go to )3(1 δε +M  
8R : Load )(1 εM  9R : Go to )2(3 δM  10R : Unload )(3 εM  
11R : Go to output, drop the part and go  to )3(3 δε +M  
12R : Unload )(2 εM  

jRP : Wait at )( i
jj wM  

is : starting time of iR  
jsp : starting time of jRP  

α : 1M  is ready to be unloaded; 
β : 2M  is ready to be unloaded; 
γ : 3M  is ready to be unloaded; 
 
By considering a multiple-part type system, at machine M1, when we want to load a part on this 
machine we have to decide which part should be chosen such that the cycle time is minimized. The 
same thing also can be achieved for M2 and M3. Based on the chosen gate definition we simply have 
three gates α , β , and γ  to choose. Thus we can formulate the following 0-1 integer program: 
 

εα +≥+− ∑
=

8,4,1 )(1:
1

1

n

i
iintn axCss  

 

njaxss
n

i
iijjj ,,2)(1:

1
81j L=+≥− ∑

=
,+4, εα  

 

njbxss
n

i
iijjj ,,1)(2:

1
612j L=+≥− ∑

=
,, εβ  

 

.,,1)(3:
1

210j njcxss
n

i
iijjj L=+≥− ∑

=
,, εγ  

 
Where ijx1 , ijx2 , and ijx3 , are integer variables. 
 
In order to validate this model the following definition and theorem are presented 
 
Definition. A marked graph is a Petri-net such that at every node (place) it has just one input and 
one output. 
 
Theorem 1. For a marked graph which has im tokens at every node (see Figure 4), the 
elation tiAB CmSS +≥ holds, where AS , BS are starting times of   transitions A  and B  respectively, 
and tC is the cycle time, is true. 
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Figure 4. The marked graph in theorem 2 
 
 

Proof: See Maggot, (1984). 
 
 

 
Figure 3. Petri net for 6S policy 

 
In addition, the following feasibility constraints assign a unique positioning for every job: 
 

1
1 1 1, ,

n

ij
i

x j n
=

= =∑ L  

 

1
1 1 1, ,

n

ij
j

x i n
=

= =∑ L  

 
To keep the sequence of the parts between machines in a right order, we have to add the following 
constraints: 

γ 

P2

P12 β 

β’ 

R1 

R12 

R14

P1 P3R2 P4 R3

P11 

R11 

P10 
P9 P8 P7

P5

P6

α 

α’ 

γ’ 

ε 

ε 

ε+3δ ε 2δ 

w1 

w3 

w2 

a 
b 

c 

PA B
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11 2 1,..., 1i j i jx x i n j n, , + = = , = , ,L  
 

12 3 1,..., 1i j i jx x i n j n, , + = = , = , ,L  

 
Where, we assume that 1,1, 11 ini xx =+ because of the cyclic repetition of parts.  
 
Thus the complete model for the three machine robotic cell problem with multiple-parts would be 
as follows: 
 
Min t

6C  
 
Subject to 
 

δε +=+ tn12,2,11,1 -: Cssp  (1) 
δε +=−: 12 jjj ssp 2,1  (2) 

δε 2124,3 +=−−: jjjj wssp  (3) 

δε +=−: jjj ssp 46,5  (4) 

δε 3268,7 +=−: jjj ssp  (5) 

δε 23810,9 +=−−: jjjj wssp  (6) 

δε 32201,11 +=−−: 12 jjjj wssp  (7) 

εα ≥−+− ∑
=

,14,1 )(1:
1

71

n

i
iint axCss  (8) 

εα ≥−− ∑
=

,4,

n

i
iijjj axss

1
7j )(1:  (9) 

εβ ≥−− ∑
=

,, )(2:
1

612j

n

i
iijjj bxss  (10) 

εγ ≥−− ∑
=

,, )(3:
1

210j

n

i
iijjj cxss  (11) 

jiji xx ,1−,  = 21  (12) 

jiji xx ,1−,  = 32  (13) 

11
1

=∑
=

n

i
ijx  (14) 

11
1

=∑
=

n

j
ijx  (15) 

 
,0, ≥0≥ kjij ws }1,0{3,2,1 ∈xxx  

 
4. PARTICLE SWARM OPTIMIZATION 
 
Particle swarm optimization (PSO) is a population based stochastic optimization technique that was 
developed by Kennedy and Eberhart (1995). In PSO, each solution is a bird in the flock and is 
referred to as a particle (Shi and Eberhart, 1998). The PSO has been applied successfully to a wide 
variety of optimization problems to find optimal or near-optimal solutions. Due to the complexity of 
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the proposed model, it is very difficult to obtain the optimum solution for this kind of problem by 
means of traditional approaches. Therefore, in this paper, we apply the PSO to large sized problems. 
 
The general scheme of the applied PSO is provided in Figure 4. In the PSO, the position of the ith 
particle , ix , is adjusted by a stochastic velocity, iV . At each iteration of the algorithm, ix and iV  are 
calculated according to the following equations  (Shi and Eberhart, 1998).  
 

)().(.)().(.. 21 idgdidididid xpRandcxprandcVwV −+−+=  (16) 
 

ididid Vxx +=  (17) 
 

maxmax VVV id ≤≤−  (18) 
 
Equation (16) calculates a new velocity for each particle based on its previous velocity, the  
 

 
Figure 4. The general scheme of Particle Swarm Optimization algorithm 
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particle's position at which the best fitness has been achieved so far ( idp , or pBest), and the position 
of the best particle of population ( gdp , or gBest). In this equation, Rand () and rand () are two 
uniformly distributed random numbers in the range [0, 1]. 1c and 2c are two learning factors, which 
control the influence of pBest and gBest on the search process and w is an inertia weight that 
balances the global exploration and local exploitation which has been proposed to decrease linearly 
with time from a value of 1.4 to 0.5 (Hu, Shi and Eberhart, 2004). maxV is an upper limit on the 
maximum change of particle velocity. 
 
4.1. Solution Representation 
 
The solution representation should be such that one is able to decode it easily to reduce the cost of 
implementing the algorithm. In this paper, a continuous representation is used (Tasgetiren et al, 
2004). 

 
Table 1. Continuous representation 

 
Generated random numbers 0.36 1.21 2.45 0.59 1.75 

Sequence 5 3 1 4 2 

Continuous representation 2.45 1.21 0.36 1.75 0.59 
 
To construct the continuous representation, we first need to generate as many random numbers in 
the range ],0[ maxx  as the number of jobs, then the smallest of them will be assigned to the position 
that contains the first job, the next smallest will be assigned to the position that contains the second 
job, and so on (Table 1.).  
 
5. EXPERIMENTAL RESULTS 
 
To validate the proposed model and the implemented algorithm, various test problems are 
examined. The algorithm has been coded in Visual Basic 6 and run on Pentium 4 processor with 1.7 
GHz and Windows XP using 256 MB of RAM. The experiments are implemented on both small 
and large-sized problems. For both of these experiments, we consider the following assumptions: 1. 
the values of ε  and δ  are equal to 1; 2. each experiment is repeated 15 times; 3. the processing 
times for all parts on all machines are uniformly generated in the range [10, 100]. 
 
Small-sized Problem: The problem instances have been randomly generated as shown in Table 2. 
The number of particles, termination criterion of PSO, learning factors ( 1c and 2c ), and maxV  were 
assumed fixed to be 50, 50, 2, 2, and 3, respectively. For each instance, the results obtained were 
compared with the ones produced by Lingo8.0. By comparing the results it can be concluded that 
this algorithm is capable of finding the optimum solutions for most of these problems.   
 
Large-sized Problem: The problem instances were randomly generated as shown in Table 3. The 
number of particles, termination criterion of PSO, learning factors ( 1c and 2c ), and maxV were 
assumed to be 100, 100, 2, 2, and 3, respectively. Because of the complexity of such problem, the 
Lingo software cannot produce any results for the large-sized problems. However according to the 
computational results which is shown in Table 3, this algorithm can achieve suitable solutions in 
acceptable time. 
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Table 2. Computational results for small-sized problems 
 

No. of Parts Problem 
number 

Problem 
Condition 

Lingo 8.0 PSO 

OFVa Time 
OFV 

Time Ave. STDb 

 
 
 
 
 
 

5 

1 iii cba ≥≥  483 <1 483 0 <1 

2 iii bca ≥≥  435 <1 435 0 <1 

3 iii cab ≥≥  363 <1 363 0 <1 

4 iii acb ≥≥  459 <1 459 0 <1 

5 iii bac ≥≥  454 <1 458 0 <1 

6 iii abc ≥≥  404 <1 404 0 <1 

7 Unconditional 
case 321 <1 323 0 <1 

 
 
 
 
 
 

10 

8 iii cba ≥≥  754 1 754.1 0.3 1 

9 iii bca ≥≥  763 1 763 0 1 

10 iii cab ≥≥  910 <1 910 0 1 

11 iii acb ≥≥  825 1 825 0 1 

12 iii bac ≥≥  907 <1 907 0 1 

13 iii abc ≥≥  753 <1 753 0 1 

14 Unconditional 
case 739 132 746.5 6 1 

 
 
 
 
 
 

15 

15 iii cba ≥≥  1312 <1 1312 0 1 

16 iii bca ≥≥  1272 <1 1273.4 1.5 1 

17 iii cab ≥≥  1212 1 1212.7 0.6 1 

18 iii acb ≥≥  1352 <1 1352 0 1 

19 iii bac ≥≥  1331 <1 1331 0 1 

20 iii abc ≥≥  1222 1 1226.7 4.4 1 

21 Unconditional 
case 1260 7200c 1181.5 13.1 1 

 
a Objective Function Value 
b Standard Deviation 
c Indicates that the Lingo processing was interrupted after this time and the best achieved value was 

reported 
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Table 3. Computational results for large-sized problems 
 

No. of Parts Problem 
number Problem Condition 

PSO 
OFV 

Time Ave. STD 

 
 
 
 
 
 

50 

22 iii cba ≥≥  4427.2 4.5 14.5 

23 iii bca ≥≥  4239.1 7.8 14.5 

24 iii cab ≥≥  4026.9 11.3 14.5 

25 iii acb ≥≥  4334.3 6.8 14.5 

26 iii bac ≥≥  4295.1 8.5 14.5 

27 iii abc ≥≥  4364.3 2.4 14.5 

28 Unconditional case 3583.1 23.1 14.5 
 
 
 
 
 
 

75 

29 iii cba ≥≥  6347 14.6 24.9 

30 iii bca ≥≥  6437.8 8.7 24.9 

31 iii cab ≥≥  6469.7 9.6 25.1 

32 iii acb ≥≥  6431.6 15.1 25.3 

33 iii bac ≥≥  6764.1 8.6 25 

34 iii abc ≥≥  6419.4 7.5 25.1 

35 Unconditional case 6173.3 25 25.1 
 
 
 
 
 

100 

36 iii cba ≥≥  8889.4 7.6 37.9 

37 iii bca ≥≥  8728.5 17 37.8 

38 iii cab ≥≥  8836.9 20.6 37.8 

39 iii acb ≥≥  8861.9 11.5 37.9 

40 iii bac ≥≥  8258.3 15.3 37.9 

41 iii abc ≥≥  8645.7 11.3 38.1 

42 Unconditional case 8113.7 30.3 38.1 

 
6. CONCLUSION 
 
In this paper a new mathematical model for a cyclic multiple-part type three-machine robotic cell 
problem under 6S robot movement policy was developed that minimizes the cycle time. The 
developed model is based on Petri nets and provides a new method to calculate cycle times by 
considering waiting times. It was proved that calculating the cycle time under 6S  policy is unary 
NP-complete (Hall et al, 1998). Therefore, the PSO algorithm was implemented to tackle the 
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problem. To validate the model and its solution algorithm, various test problems were considered. 
The computational results show that the proposed algorithm which is based on PSO could achieve 
optimum solutions for most  small sized problems. For large-sized problems this algorithm was able 
to find suitable solutions in acceptable time. 
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