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ABSTRACT 
In this work, a 19-bit Incompressible Generalized Lattice Boltzmann (IGLB) method has been proposed for three-
dimensional incompressible fluid flow simulation, for the first time. Equilibrium moments in moment space are 
derived from an incompressible BGKLB method. The incompressible Navier–Stokes equations can be recovered 
through the Chapman-Enskog multi-scale expansion without artificial compressible effects. To compare the 
performance of proposed model, several benchmark problems (such as a cubic lid-driven cavity flow, flow over a 
backward-facing step, and a double shear flow) are solved and the results are compared with those of both 19-bit 
Incompressible BGK Lattice Boltzmann (IBGKLB) method and existing CFD simulations. It is shown that the 
stability and accuracy of the 19-bit IGLB method is better than those of the 19-bit IBGKLB method; in fact with the 
IGLB model we can increase the Reynolds number by factor of 2.5 and still get stable results. The proposed 3-D 
IGLB method is successfully expanded and applied to simulation of the 3-D incompressible buoyancy driven flows. 
The results of the 3-D steady-state natural convection in an air-filled differentially heated cubic cavity obtained by the 
extended model comply well with the existing data in literature. In addition, natural convection from a discrete heat 
source which is mounted flush with the bottom wall of a horizontal enclosure is simulated. The obtained results 
indicate that the proposed method is very convenient for simulation of thermally driven flow problems.  
 
Keywords: BGK lattice Boltzmann method, Generalized LBM, Hybrid thermal lattice Boltzmann method, D3Q19 

NOMENCLATURE 
B   total number of lattice streaming 
  vectors  
c  magnitude of lattice streaming 
  vectors 

sc   speed of sound  
D   dimension of system 

ie   lattice streaming vector in i 
  direction 
e  kinetic energy 
F  external force  

if   density distribution function 
eq

if   equilibrium density distribution
  function 
g  acceleration due to gravity 
H  height 
M   moment space 
M  transformation matrix 
m  moment 
p  pressure 
Pr  υ α  , Prandtl number 
q  heat flux vector 
r   position vector 

Ra  
3g THβ

υα
Δ , Rayleigh number 

U   maximum velocity at the inlet 
0U   top lid velocity  
, ,u v w   x, y and z components of flow 

  velocity vector 
V   discrete velocity space 
u  flow velocity vector 
Ŝ   relaxation matrix 
S  step height 
t  time 
T  temperature 
x, y, z                  Cartesian coordinate system 
Greek  symbols 
α   fluid thermal diffusivity 
β   thermal expansion coefficient 

rδ   lattice spacing 
tδ   time step 

ε   square of kinetic energy 
εω , ,jεω xxω  free parameters 

ρ   local density 
τ   local relaxation time 
υ   kinematic viscosity 
Subscripts and superscripts 
eq  equilibrium  state 
i   lattice streaming vector direction 
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1. INTRODUCTION 

The Lattice Boltzman Method (LBM) (McNamara and 
Zanetti. 1988; Chen and Doolen 1998), a derivative of 
lattice gas automaton method (Wolfram 1986; Frisch et 
al. 1986; Higuera and Jimenez 1989), is a relatively 
new numerical approach for fluid flow simulation. Due 
to its micro and meso scale theoretical bases as well as 
its ease of numerical implementation, it has gained a 
fast growing popularity in science and engineering, 
particularly for complex fluid flows (Shan and Chen. 
1993; Ladd 1994; Chen et al. 1995; Boon et al. 1996; 
Pan et al. 2004; Zheng et al. 2006; Rahmati and 
Ashrafizaadeh 2007; Rahmati et al. 2008a,b,c,d,e,f,g). 
 
Perhaps, the simplest and consequently the most 
popular form of the LBM is the BGK Lattice 
Boltzmann method (BGKLB) (Qian et al. 1992; Chen 
et al. 1992). However, this simplicity comes at the 
expense of some deficiencies (e.g. numerical instability 
and inaccuracy in implementing boundary conditions). 
To overcome some of the BGKLB deficiencies, the 
Generatlized Lattice Boltzmann (GLB) method 
(D’Humières 1992) has been developed. 
 
Most of the existing GLB models have been 
constructed for the compressible Navier-Stokes 
equations in the low Mach number limit. As a result, 
the recovered macroscopic equations through the 
Chapman-Enskog multi-scale expansion are the nearly 
incompressible Navier-Stokes equations. Therefore, 
some compressibility errors can exist when 
incompressible flows are simulated. In this paper, we 
present some results to demonstrate compressible errors 
of a BGKLB model in comparison with those of an 
incompressible BGKLB (IBGKLB) model. On the 
other hand, the incompressible Navier-Stokes equations 
are of great importance in theory and application. 
Hence, it is necessary to develop exact incompressible 
LB models. 
 
Du et al. (2006) showed that IGLB models are more 
accurate than IBGKLB models using a two-dimensional 
lid-driven cavity simulation. Following the method of 
GLB model, a three- dimensional incompressible GLB 
(IGLB) model is proposed in the present work. In this 
model the equilibrium moments in moment space are 
derived from an earlier incompressible BGK method by 
Guo et al. (2000). The Navier-Stokes equations can be 
recovered through the Chapman-Enskog multi-scale 
expansion without artificial compressibility effects. To 
compare the performance of the new IGLB model with 
that of the IBGKLB model, numerical models have 
been developed using a D3Q19 lattice. The numerical 
stability and performance of these models are 
investigated through several well-known fluid flow 
benchmarks including a three-dimensional lid-driven 
cavity flow, flow over a backward-facing step, and a 
double shear flow. 
 
The proposed 3-D IGLB method is successfully 
extended and utilized in simulation of the three-
dimensional incompressible buoyancy induced flows. 
Natural convection in an air-filled side-heated cubic 
cavity and natural convection from a heat source 

mounted on the bottom wall of a horizontal enclosure 
are simulated by the extended model.  
 
The rest of this paper is organized as follows. Section 
two describes governing equations associated with both 
the incompressible BGK lattice Boltzmann and the 
incompressible generalized lattice Boltzmann methods. 
Section three explains the hybrid thermal lattice 
Boltzmann method. Results and Discussions are 
presented in section four and followed by conclusion in 
the last section. 
 

2. GOVERNING EQUATIONS 

2.1 Incompressible BGK Lattice Boltzmann 
Method 
The LBM utilizes a particle distribution function to 
describe the collective behavior of fluid molecules. In 
LB methods, particles are assumed to move 
synchronously along the bonds of a regular lattice, and 
satisfy the discrete form of the lattice Boltzmann 
equation. Basically, this method consists of the 
following two phases: 
(i) Streaming: in this phase, particles move along 

lattice bonds to the neighboring lattice nodes. 
(ii) Collision: in this phase, particles on the same 

lattice node shuffle their velocities locally such 
that mass and momentum are conserved. 

One of the most widely used collision model is the 
Bhatnagar-Gross-Krook (BGK) collision operator 
(Bhatnagar et al. 1954), which applies the single time 
relaxation approximation. The collision step occurs 
locally in the sense that it does not require any spatial 
and temporal derivatives. The streaming step following 
the collision moves the updated distribution functions 
to neighboring nodes by perfect shift on a uniform 
lattice. 
 
For flow field, the evolution equation using the density 
distribution function, fi, and the collision operator 

)( fiΩ  is given as the following form (Hou 1995): 
 

( , ) ( , ) ( ) ,i i n i n if t t t f t fr e rδ δ+ + − = Ω                     (1) 

here r  is the position of each lattice node, nt  is the 

discrete time, tδ is the time step, and ie is the particle 
speed in the i  direction. A simple model for collision 
operator )( fiΩ is BGK model (Bhatnagar et al. 1954) 
given by: 

( , ) ( , )( ) ,
eq

i n i n
i

f t f tf r r
τ
−

Ω = −  
     

(2) 

where τ  is the relaxation time and eq
if  is the 

equilibrium density distribution function. 
 
Therefore, the BGK lattice Boltzmann equation can be 
written as (Hou 1995; He and Luo 1997): 
 

( , ) ( , )

( , ) ( , )
,

n n

eq
i n ni

f t t t f ti i i

f t f t

δ δ

τ

+ + =

−
−

r e r

r r   (3) 
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For D3Q19 model (c.f. Fig. 1), the lattice velocities are 
defined as: 
 

( ) ( ) ( )
( ) ( ) ( )

0, 0,

1,0 , 0 , 0 , 1,0 , 0,0 , 1 , 1 6,

1, 1,0 , 1,0, 1 , 0, 1, 1 , 7 18.
i

i

c c c i to

c c c i to

e

⎧ =
⎪⎪= ± ± ± =⎨
⎪
± ± ± ± ± ± =⎪⎩

  
(4) 

where c  is the particle velocity and is given by x tδ δ . 
In lattice units, the time step tδ  is set equal to 1, as is 
the lattice spacing ( 1x tδ δ= = ). 
 
For Incompressible BGKLB model which is proposed 
by Guo et al. (2000), the equilibrium functions for the 
density distribution function are given as: 
 

( ) ( )

( )

0 0 02

2

1 , 0,

, 1 18,

seq
i

i i
s

pw s i
c

f
pw s i to

c

u

u

ρ⎧ − − + =⎪
⎪= ⎨
⎪ + =
⎪⎩

     
(5) 

where 0
1 ,
3

w =
1

18iw =  for i  =1 to 6 and 1
36iw =  for 

i  =7 to 18. Also 0 ( )s u  and ( )is u are given by: 
 

( )
2

0 02 ,
2 s

s w
c

u
u = −   (6) 

( ) ( )2 23 . 4.5 . 1.5 .i i i is wu e u e u u⎡ ⎤= + −⎣ ⎦   (7) 

In addition, 0ρ , u and p  are calculated by: 
 

0
0

,
b

i
i

fρ
=

=∑     
(8) 

1

,
b

i i
i

c f
=

=∑u e     
(9) 

( )
2

0
0 1

,
1

b
s

i
i

cp f
w

s u
=

⎡ ⎤
⎢ ⎥= +

− ⎢ ⎥⎣ ⎦
∑   

(10) 

where b is the number of directions in the lattice model. 
Furthermore, the sound speed is 3sc c= . 
 
In order to derive the incompressible Navier-Stokes 
equations, 

0
ρ  should be a fixed quantity, for 

example, 0ρ  is equal with 0  (Guo et al. 2000). 
 
The incompressible Navier-Stokes equations can be 
derived from the IBGKLB model using a Chapmann-
Enzkog multi-scale expansion. From the expansion, 
these equations are given by the following expressions: 
 

. 0,u∇ =     
(11) 

( ) ( ) ( )2. ,p
t
u

uu uν
∂ ⎡ ⎤+∇ = −∇ + ∇⎣ ⎦∂

    
(12) 

where kinematic viscosity is calculated by : 
 

(2 1) / 6.ν τ= −     (13) 

The IBGKLB model has some deficiencies (Lallemand 
and Luo 2000). One of these deficiencies is the 
numerical instability, and as soon as the relaxation time 
approaches 0.5, this model may lead to numerical 
instability. In order to alleviate this shortcoming of the 
IBGKLB model, the generalized lattice Boltzmann 
method can be used. 
 
2.2 Incompressible Generalized Lattice Boltzmann 

Method 

For a GLB model with B (=b+1) discrete 
velocities{ }0,1,...,i i b=e , a set of density distribution 

functions ( ){ }, 0,...,i nf t i br =  is defined on each 

lattice node r . The collision step is executed in the 
moment space M , while the streaming step is 
performed in the velocity space V . The evolution 
equation for the GLB on a D-dimensional lattice with 
discrete time nt can be written as (D’Humières et al. 
2002): 
 

( ) ( ) ( )

( ) ( ) ( )1

, , ,

, ,

i i n i n n

eq
i n i n

f e t t t f t t

M S m t m t

r r r

r r

δ δ

−

+ + − = Ω

⎡ ⎤= −⎢ ⎥⎣ ⎦
,  (14) 

where symbol .  denotes a column vector. Therefore 
 

( )

( ) ( )
( )

0 1 1

,

, ,
,

... ,

i i n

T
n n

b b n

f t t t

f t t f t t t

f t t t

r e

r r e

r e

δ δ

δ δ δ

δ δ

+ + =

⎛ ⎞+ + +
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

     
(15) 

( ) ( ) ( ) ( )( )0 1, , , ... , ,
T

i n n n b nf t f t f t f tr r r r=      
(16) 

( ) ( ) ( ) ( )( )0 2, , , , ,..., , ,
T

i n n n b nm t m t m t m tr r r r≡      
(17) 

( ) ( ) ( ) ( )( )0 1, , , , ,..., , ,
Teq eq eq eq

i n n n b nm t m t m t m tr r r r≡      
(18) 

where T is the transpose operator and im  is moment in 

the i  direction and eq
im  is its corresponding 

equilibrium state. 
M is a B B×  matrix which linearly transforms the 
distribution functions f ∈V  to the 

moments m M∈ and vice versa the moments m M∈  

to the distribution functions f ∈V  , i.e. 
 

,m M f=   and    1 .f M m−=    
(19) 

The transformation matrix M is constructed from the 
monomials of the discrete velocity components 

... ,m n l
i j ke e eα β γ where { }, , , ,and x y zα β γ ∈ by means of 

the Gram–Schmidt orthogonalization procedure 
(Lallemand and Luo 2000, 2003, Bouzidi et al. 2001). 
The row vectors of M are mutually orthogonal, that is, 
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TM M is a diagonal matrix, but not normalized, so all 
the elements of matrix M are integers. 
 
The transformation matrix M for the nineteen velocity 
model in three dimensions (D3Q19) is given as 
(D’Humières et al. 2002): 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 11 11 11 11 11 11 8 8 8 8 8 8 8 8 8 8 8 8

12 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 4 4 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 4 4 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0

− − − − − − −
− − − − − −

− − − − −
− − − − −

− − − − −
− − − − −

− − − − −
0 0 0 4 4 0 0 0 0 1 1 1 1 1 1 1 1

0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
0 4 4 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1

− − − − −
− − − − − − − −

− − − − − −
− − − − − −

− − − − − −
− −

− −
− −

− −

.

1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

  
(20) 

The nineteen moments for the nineteen-velocity model 
in three dimensions (D3Q19) are: 
 

0 3
,

3

T
x x y y z z xx

xx ww ww xy yz xz x y z

e u q u q u q p
m

p p p p m m m

ρ ε

π π

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

where 0 0m ρ= is the mass density, 1m e=  is the 
energy, 2m ε=  is the square of energy, 3,5,7 , ,x y zm u=  
are the components of the velocity vector 

( , , )x y zu u uu = , 4,6,8 , ,x y zm q=  are components of the 

heat flux ( , , ),x y zq q q=q  9 3 xxm p= , 11 wwm p=  and 

3,14,15 , ,xy yz zxm p=  are components of the traceless and 

symmetric strain-rate tensor, 10 3 xxm π= and 12 wwm π=  
are the fourth-order moments, 16,17,18 , ,x y zm m= are the 
third-order moments. Among these moments, the mass 
density 0ρ and the velocity vector u  are invariant 
quantities and the rest of them are non-invariant 
quantities. 
 
The equilibria of the moments, ( )eqm , are the functions 
of the invariant moments, which are the mass density 

0ρ  and the velocity vector u  for athermal fluids. 
However, in the current method, the pressure p  has 
been used instead of the mass density 0ρ , i.e., 

( )( ) ,eq
nm tr =  ( ) ( )( )( ) , , ,eq

n nm p t u tr r . 

 
For the D3Q19 model, the equilibria for the non-
conserved moments are given by the following relations   
(D’Humières et al. 2002): 
 

( )( ) 2 2 2
1 19 ,eq

x y ze p u u uγ= + + +  

( )( ) 2 2 2
2

11 ,
2

eq
x y zp u u uε γ= + + +  

( ) 2 ,
3

eq
x xq u−

=  

( ) 2 ,
3

eq
y yq u−

=  

( ) 2 ,
3

eq
z zq u−

=  

    
(21) 

( )( ) 2 2 2 21 ,
3

eq
xx x x y zp u u u u= − + +  

( ) 2 2 ,eq
ww y zp u u= −  
( ) ,eq
xy x yp u u=  
( ) ,eq
yz y zp u u=  
( ) ,eq
xz x zp u u=  

( )( ) 1 ,
2

eqeq
xx xxpπ −

=  

( ) ( )1 ,
2

eq eq
ww wwpπ −

=  

( ) ( ) ( ) 0.eq eq eq
x y zm m m= = =  

In the present work, 1γ and 2γ  are calculated so that the 
incompressible Navier-Stokes equations can be derived 
correctly. These quantities are as follows: 
 

1

2

57,
27.

γ
γ
=
= −

     
(22) 

The relaxation matrix Ŝ  is diagonal in the moment 
space M : 
 

1 2 4 4 4 9

10 9 10 13 13 13 16 16 16

1 1 1 1ˆ .
s s s s s s

S diag
s s s s s s s s s

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠
 

The speed of sound in the model is 3sc c= . 
 
The incompressible Navier- stokes equations can be 
derived from this method using a Chapmann-Enzkog 
multi-scale expansion. More details are presented in 
Ref. (Du et al. 2006). From this expansion, the 
kinematic viscosity ν  is given as: 
 

9 13

1 1 1 1 1 1 .
3 2 3 2s s

ν
⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     
(23) 

It should be noted that the present model reduces to the 
IBGKLB model if we use a single relaxation parameter 
for all the moments, i.e. 1 .is τ=  In the next section, 
the thermal lattice Boltzmann methods are explained. 
 

3. HYBRID THERMAL LATTICE 
BOLTZMANN METHOD 

Although the kinetic-based lattice Boltzmann method 
has attained considerable success in simulating fluid 
flows and modeling the physics in fluids (Rahmati and 
Ashrafizaadeh 2007; Rahmati et al. 2008a,b,c,d,e,f,g). 
However, the application of lattice Boltzmann model to 
thermal problems has not achieved great prosperity for 
the thermal models due to the severe numerical 
instability caused by breaking the isothermal condition 
(Lallemand and Luo 2003). 
 
Constructing LB models for thermal flows remains 
challenging in the LBM community, although some 
efforts have been made from various viewpoints. A 
recent comprehensive review on this topic can be found 
elsewhere (Lallemand and Luo 2003a,b).  
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The existing approaches for thermal LB models can be 
categorized into three categories, i.e., the multi-speed 
lattice Boltzmann scheme (Teixeira et al. 2000), the 
double-density-distribution-function lattice Boltzmann 
(DDDFLB) approach (Chen and Doolen 1998; Peng et 
al. 2003), and the hybrid thermal lattice Boltzmann 
(HTLB) technique (Lallemand and Luo 2003a,b; van 
Treeck et al 2006; Mezrhab et al. 2004). The multi-
speed scheme is a straightforward extension of the 
isothermal LB models, in which only the density 
distribution function is used; the DDDFLB approach 
uses two different density distribution functions, one for 
the velocity field and the other for the internal energy 
field; and the HTLB technique is similar to the 
DDDFLB approach except that the internal energy 
equation is solved by finite-difference methods, rather 
than by solving the LB model (Lallemand and Luo 
2003a,b).  
 
In the present study, the proposed IGLB method is 
extended based on HTLB technique (Lallemand and 
Luo 2003a,b; van Treeck et al. 2006) for simulation of 
thermal flows and successfully applied to simulate 
natural convection in a differentially heated cubic 
cavity and to simulate natural convection from a 
discrete heat source on the bottom of a horizontal 
enclosure.  
 
The equation used for solving the temperature field is 
given by: 
 

2 2 2

2 2 2 ,

T T T Tu v w
t x y z

T T T
x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂
α + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

     
(24) 

where α is the fluid thermal diffusivity. The energy 
equation is discretized by the finite-difference 
technique. In this scheme, x, y and z components of 
heat flux and Laplassian operator can be discretized as 
the following formulae (Lalleman and Lou, 2003b): 
 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

, ,
1, , 1, ,

1[ 1, 1, 1, 1,
8

1, 1, 1, 1,

1, , 1 1, , 1

1, , 1 1, , 1 ],

T x y z
T x y z T x y z

x

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

∂
= + − − −

∂

+ + − − + +

+ − − − − +

+ + − − + +

+ − − − −

 
(25) 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

, ,
, 1, , 1,

1[ 1, 1, 1, 1,
8

1, 1, 1, 1,

, 1, 1 , 1, 1

, 1, 1 , 1, 1 ],

T x y z
T x y z T x y z

y

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

∂
= + − − −

∂

+ + − + − +

− + − − − +

+ + − − + +

+ − − − −

 
  

(26) 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

, ,
, , 1 , , 1

1[ 1, , 1 1, , 1
8

1, , 1 1, , 1

, 1, 1 , 1, 1

, 1, 1 , 1, 1 ],

T x y z
T x y z T x y z

z

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

∂
= + − − −

∂

+ + − + − +

− + − − − +

+ + − + − +

− + − − −

 
  

(27) 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

2 2 2

2 2 2
, , , , , ,

2[ 1, , 1, , , 1,

, 1, , , 1 , , 1 ]
1 [ 1, 1, 1, 1,
4

1, 1, 1, 1,

, 1, 1 , 1, 1

, 1, 1 , 1, 1

1, ,

T x y z T x y z T x y z
x y z

T x y z T x y z T x y z

T x y z T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z T x y z

T x y z

⎛ ⎞∂ ∂ ∂
⎜ ⎟+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

+ + − + + +

− + + + − −

+ + + − + +

+ − + − − +

+ + + − + +

+ − + − − +

+( ) ( )
( ) ( ) ( )

1 1, , 1

1, , 1 1, , 1 ] 9 , .

T x y z

T x y z T x y z T x y

+ + − + +

+ − + − − −

 
 (28) 

It should be noted that the stencil used for finite 
difference operator must have the same symmetries as 
those of the discrete velocity set of the model, i.e. it is a 
nineteen-point stencil for the D3Q19 model. This 
stencil helps to improve the numerical stability of the 
scheme. 
The lattice Boltzmann equation may include external 
forces such as gravity force and buoyancy force. For a 
force term F, one can add it to the momentum. In order 
to conserve mass up to a second order one in Chapman-
Enskog analysis, the net effect of force term F is such 
that the resultant momentum is equal to / 2V F tδ+ . 
Preferably, it is better to add one-half of the force term 
before the relaxation, and one-half after it.  
 

4. RESULTS 

4.1 Description of the Errors Due to 
Compressibility 

In order to illustrate the error due to compressibility, a 
cubic cavity flow (c.f. Fig. 2) is simulated by both 
compressible BGKLB (CBGKLB) and incompressible 
BGKLB (IBGKLB) models. In these simulations, an 
81×81×81 lattice is used. In order to investigate the 
compressibility error, velocity at the top edge of the 
cavity is varied. The Reynolds number is about 400. 
 
Tables 1 and 2 show both maximum and minimum 
values of the x and z components of velocity and those 
of          Ku et al. (1987). As shown in the tables, the 
results of the incompressible model are more 
compatible with Ku’s results (Ku et al. 1987) compared 
to those of the compressible model. 
 
In the case of the compressible model, it is seen that the 
accuracy of the results deteriorates by increasing the 
velocity at the top plate of the cavity. While the flow 
field is simulated by an incompressible lattice 
Boltzmann method, the compressibility error is 
removed and it is possible to increase the velocity at the 
top wall of the cavity for the simulation of the flow 
field in higher Reynolds number. 
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In the next section, the three-dimensional lid-driven 
cavity flow, three-dimensional flow over backward-
facing step, and three-dimensional double shear flow 
problems are simulated by the proposed model, i.e., 
IGLB model, and the obtained results are compared to 
the IBGKLB results and the existing CFD numerical 
data. 
 
4.2 Simulation of Isothermal Fluid Flows  

4.2.1 Cubic Cavity Flow 
Figure 2 shows a schematic view of the three-
dimensional cavity geometry and boundary conditions 
used for the simulation. The model problem consists of 
a cubic cavity with a constant velocity moving top lid. 
The cavity is filled with an incompressible viscous 
fluid. This test case is a classic benchmark for which 
many simulation results exist in the literature. In this 
simulation, an 81-cubic lattice is used. 
 
Initially a constant pressure 1/3p =  is prescribed for 
the whole cavity field, and the velocities in the interior 
of the cavity are set to zero. On the top face, the x 
component of velocity is 0U , which is set to 0.1, and 
the y and z components of velocity are zero. The no-slip 
boundary condition is imposed on other walls. The 
results are presented for two Reynolds numbers (400 
and 1000) and compared with those of Ku et al. (1987). 
 
To investigate the performance of the IGLB model and 
compare its stability with that of an IBGKLB model, 
the three-dimensional lid-driven cavity flow has been 
simulated using a D3Q19 model. The set of model 
parameters used for the IGLB model is as follows: 
 

5 11 17

2 5

3 2

1.2,

0.1 1.1,
0.1 1.0.

s s s

s s
s s

= = =

= − =

= − =

    (29) 

The relaxation parameters 9 13s s=  are determined by 
the viscosity from Eq.     (23). 
 
Although the computations are performed with a fully 
explicit scheme in time, only steady state solutions are 
presented here. In order to define steady state situation, 
the following expression is used: 
 

1 2 1 2 1 2

1

1 ( ) ( ) (w w ) ,
N

n n n n n n

i

u u v v
N

δ + + +

=

= − + − + −∑       
(30) 

where N  is the total number of nodes in the solution 
domain; n is old time level; and 1( , ),n nu u +  

1( , ),n nv v + and 1( , )n nw w + are x, y and z components of 
the velocity for the old and new time levels, 
respectively. The steady-state results are obtained when 
δ  becomes smaller than 1010− . 
 
Figure 3 shows time history of relative error of the 
velocity distribution at Reynolds number of Re = 100, 
400, and 1000. From Fig. 3, it can be observed that both 
IBGKLB and IGLB models need approximately the 
same time step or iteration number to reach the steady 

state at Re = 100. Furthermore, for Re = 400 and 1000, 
the number of iteration for IGLB model, which is 
required to achieve the steady sate, is more than that of 
IBGKB model.  
 
The grid dependency studies for cases of Re = 100, 400, 
1000 are conducted first. The mesh size in the 
computational domain is varied from 21×21×21 to 
81×81×81. The results of the grid dependency study are 
exhibited in Table 3 in terms of min ,u min ,w maxw at the 
mid-plane of Y = 0.5. In addition, Figs. 4 and 5 display 
the x and z components of the velocity distributions 
along the vertical and horizontal centerline of the cavity 
for Re = 400 and 1000 at different mesh sizes, 
respectively. As shown in Table 3 and in Figs. 4 and 5, 
with increasing of mesh size from 21×21×21 to 
81×81×81, the differences between presented IGLB 
results are decreased from 2.44% to 0.47%, 1.29% to 
0.13%, and 10.10% to 0.39% for Reynolds numbers of 
Re = 100, 400, and 1000, respectively. These findings 
manifest that the utilization of 81×81×81 mesh points 
by IGLB model can produce very accurate numerical 
results, hence it is used in the numerical simulations. 
 
Figures 6 to 11 present the velocity profiles of the u 
component on the vertical central line and the w 
component on the horizontal central line on the plane of    
Y = 0.5 in a cubic cavity for Re = 100, 400 and 1000, 
respectively. As shown in those figures, all the IGLB 
results are in good agreement with both IBGKLB and 
Ku’s results (Ku et al. 1987) 
 
Figures 12 to 17 illustrate the comparison of x and z 
components of the velocity distributions very close to 
the left vertical wall (i = 2 lattice point) for IBGKLB 
and IGLB models at various Reynolds numbers (Re = 
100, 400 and 1000). Results clearly show that the 
velocity distributions (both x and z components) by 
IBGKLB model present obvious spatial oscillations 
close to the upper-left corner, while the velocity 
distributions by IGLB model display much less spatial 
oscillations in the same region of interest. 
 
In general, the spatial oscillations of solution around the 
upper-left corner intensify as the Reynolds number 
increases. The difference represents that IGLB model is 
more suitable, as compared to IBGKLB model, for 
simulation of fluid flow around geometrical singularity 
and potentially higher Reynolds-number fluid flows. 
 
Figures 18 to 20 show the pressure contours at middle 
plane of Y = 0.5 for different models at Reynolds 
numbers of 100, 400 and 1000. The pressure contours 
near the top corners show that the IGLB results have 
less spatial oscillation, and have improved the quality 
of the flow field which is more significant at higher 
Reynolds numbers. 
 
Figure 21 reveals the streamlines projected onto three 
orthogonal mid-planes of (a) Z = 0.5, (b) X = 0.5 and (c) 
Y = 0.5 for Re = 100, 400 and 1000, respectively. 
Notice that the streamlines are created by the velocity 
vectors on the pertinent mid-plane. Therefore, they can 
be regarded as projection of streamlines. As it is seen in 
the plots of Y = 0.5 for Re = 100, 400 and 1000, the 3-D 
results are quite different from the 2-D ones due to the 
boundary layer effect by the lateral wall. Although the 
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streamlines in the mid plane of Y = 0.5 are similar to 
those of a two-dimensional case, the strength of the 
main vortex is decreased. As Reynolds number is 
increased from 100 to 1000, the main vortex gradually 
moves toward the center and its strength is also 
intensified. Additionally, a second vortex is formed at 
the lower right corner at Re = 1000.  
 
For the plots of Z = 0.5 and X = 0.5, it is observed that, 
above Re = 400, a couple of transversal vortices are 
produced near the lower right and left corners at each 
plane, and with an increase of the Reynolds number, 
their locations gradually move to the lower bottom 
wall. Furthermore, their strengths are enhanced.  
 
By accurately monitoring plots of X = 0.5 for Re = 100, 
400, and 1000, one can see that a pair of secondary 
vortices at the corners of the top wall becomes more 
obvious over Re = 400. Besides, for Re = 1000, as 
shown in plot of X = 0.5, the vortices at the bottom wall 
are observed to bulge to the center, demonstrating the 
formation of a couple of Taylor–Görtler-like (TGL) 
vortices. The TGL vortices are formed due to the 
concave surface produced by the downstream 
secondary vortex at the bottom of the cavity (mid-plane 
of Y = 0.5). 
 
Table 4 presents the locations of the main vortex core at 
the mid-plane of Y = 0.5 and the transversal vortex core 
at the mid-plane of X = 0.5 between the proposed IGLB 
results and those of Ku et al. (1987). From this table, 
one can observe that our GLB results conform well to 
those of Ku et al. (1987). 
 
The numerical experiments show that when the 
Reynolds number is increased to 2000, the pressure 
field obtained by using the IGLB scheme still bears 
useful information, at least at some distance from the 
top corner singularities. In contrast with the entire 
pressure field acquired by IBGKLB model conveys the 
severe spurious oscillations at Re = 2000. As the 
Reynolds number is increased up to 4000, in which the 
flow field becomes unsteady and complex three-
dimensional vortex shedding is observed, the IBGKLB 
code blows up due to the numerical instability while the 
IGLB code is stable although the results are not 
convergent to the required criteria.  
 
Figures 22 and 23 display the results of IGLB model for 
time step of 225000 at Reynolds number of Re = 4000. 
By noticing Fig. 23, the TGL vortices can be observed 
in mid-plane of Z = 0.5 and X = 0.5. 
 
In order to study the stability of the method, we 
perform high Reynolds number simulations with a 
smaller grid size. It is found that the present method can 
perform simulations at low values of the viscosity (thus, 
high Reynolds number) without any numerical 
instability.  
 
As the width of the system is approximately 50 lattice 
units, the Reynolds number is set by varying the 
viscosity. We compute the lower bounds of the 
viscosity for this particular flow by using the IGLB and 
IBGKLB schemes. The lower bounds are 1.0×10-3 for 
the IGLB scheme and 2.5×10-3 for the IBGKLB scheme 
with identical discretization, and initial and boundary 

conditions; Viscosities smaller than these bounds lead 
to numerical instability in the simulation. Hence for our 
test problem with the same grid size, the maximum 
Reynolds number attainable by using the IGLB model 
is about 2.5 times that achievable using the IBGKLB 
model. 
 
The number of sites updated per second of the D3Q19-
IGLB method for our test case conducted using a 
personal computer with an AMD Athlon (tm) 64 3200+ 
2.01 GHz processor is about 0.149862×106 in 
comparison with 0.155774×106 for the D3Q19-
IBGKLB method. Therefore, the IGLB scheme is 
approximately 4% slower than the IBGKLB 
counterpart. Hence, the computational overhead due to 
the projections between V  and M  is not heavy. It is 
generally about 5% of the IBGKLB algorithm. 
However, it is important to mention that, with the same 
computational effort and near the limit of numerical 
stability, the results obtained by using the IGLB scheme 
are more accurate. 
 
4.2.2 Backward-Facing Step Flow 
The backward-facing step flow is a second well 
documented test case (Chiang et al. 1999). By imposing 
periodic conditions on the front and back faces of a 
three-dimensional channel (c.f. Fig. 24), one may 
simulate the two-dimensional flow using a three-
dimensional geometry and flow solver. To perform this 
simulation, the grid dependency study is performed and 
a suitable lattice (945×13×63) is appointed. At the 
channel inlet, a quadrature velocity profile is imposed. 
At the outlet flow boundary, a fixed pressure is imposed 
and velocity components are extrapolated downstream. 
Furthermore, the no-slip boundary condition is imposed 
on the solid walls. 
 
The size of the step is such that 31 63S H =  (c.f. Fig. 
24), and the Reynolds number is defined by: 
Re 4 ( ) / 3U H S υ= − (Chiang et al. 1999), which is 200 
here. In this definition, U is the maximum inlet 
velocity. 
 
One of the most representative and sensitive flow 
characteristics is the recirculation zone length. Table 5 
presents the results for the normalized recirculation 
zone length (x /S). Considering the presented results in 
Table 5, it is shown that the result of IGLB model is 
more accurate than that of IBGKLB model. Also, the 
slight discrepancy between present results and those of 
Ref. (Chiang et al. 1999) can be due to the slight 
difference between S H  values in the channel 
geometry. In the present model 31 63,S H =  whereas 
in Ref. (Chiang et al. 1999) 49 101.S H =  
 
The results for the backwards-facing step flow at Re = 
200 are shown in Figs. 25 to 29. Figures 25 and 27 
show the pressure contours at Y = 0.5 for the D3Q19 
IBGKLB and IGLB models, respectively. Also, Figs. 
26 and 28 show the pressure contours near the step. 
Once again, it is shown that the contour lines are much 
smoother near the corners for the IGLB model, which 
demonstrates the improved stability of the IGLB model. 
 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-95, 2009. 

 78

4.2.3 Double Shear Flow 
The double shear flow is a standard test case to check 
the accuracy of different schemes used in 
incompressible flows (Di et al. 2005). This problem is 
governed by the incompressible Navier–Stokes 
equations. The shear layers are perturbed at the initial 
time. The initial perturbation evolves with time and 
eventually large vertical structures appear. The initial 
conditions are given by: 
 

( )
( )( )
( )( )0

tanh 0.25 , 0.5,
,

tanh 0.75 , 0.5,

z z
u x z

z z

κ

κ

⎧ − ≤⎪= ⎨
− >⎪⎩

 

( ) ( )0 , sin 2 ,w x z xδ π=  

    
(31) 

 
where ( ) ( ), 0 1 .x z ∈ The parameter k  and δ  
represent the shear layer width and the size of the 
perturbation, respectively. In our computations, the 
shear layer width is k = 30 and the perturbation size 
used is 0.05δ = . In order to the grid dependency study, 
three meshes such as 416×6×416, 576×6×576, and 
768×6×768 are used. As shown in Figs. 30 to 33, both x 
and z components of the velocity vectors obtained by 
576×6×576 and 768×6×768 have good conformity with 
each other. So, a 576×6×576 lattice is selected in the 
simulation. The Reynolds number defined as that of the 
previous test case is 10,000. Furthermore, the periodic 
boundary condition is used for all variables on the 
boundaries in the all directions, i.e., x, y, and z 
directions.  
 
Figures 34 and 35 show the vorticity contours, 

( ) ,x z z xu uω = ∂ − ∂  the pressure contours, and the 
streamlines of the double shear flow at t = 0.8, where 
layer width parameter, k, is 30, viscosity, υ, is 
1 10,000 , respectively. The same contour levels are 
used to create all the figures. As the vorticity contours 
are illustrated in    Fig. 34, both proposed generalized 
lattice Boltzmann and the moving mesh finite element 
methods (Di et al. 2005) produce the same structure.  
 
4.3 Simulation of Thermally Driven Flows  

4.3.1 Simulation of Natural Convection in a 
Side-Heated Cubic Cavity  

Numerical simulation for the natural convection flow in 
a side-heated cubic cavity is carried out using the 
extension of the proposed IGLB method for simulation 
of thermal flow problems, i.e. Hybrid Thermal IGLB 
(HTIGLB) model. Figure 36 shows a schematic 
configuration of the setup in the simulation. No-slip 
boundary conditions are imposed on all the faces of the 
cube. Two opposite vertical walls of cube are 
maintained respectively at +T0 (for x = 0.5) and -T0 (for 
x =Lx - 0.5). The four other faces are adiabatic.  With 
respect to the LB scheme, we use the bounce back 
scheme at all solid walls to satisfy the no-slip condition 
together with the extrapolation scheme to obtain values 
for T at the boundaries. Initially, the fluid is at rest and 
a temperature field is varied linearly from the hot plate 
to the cold plate. 
 
The temperature difference between the hot and cold 

walls introduces a temperature gradient in a fluid, and 
the consequent density difference induces a fluid 
motion, that is, convection. In the simulation, the 
Boussinesq approximation is applied to the buoyancy 
force term. 
 

( ) ,mg T Tρ ρβ= −G j   (32) 

where β is the thermal expansion coefficient, g is the 
acceleration due to gravity, Tm is the average 
temperature and j  is the vertical direction opposite to 
that of gravity.  
 
The dynamical similarity depends on two dimensionless 
parameters: the Prandtl number Pr and the Rayleigh 
number Ra defined as: 
 

3
Pr , ,xg TLRa βυ

α υα
Δ= =    

(33) 

where Lx is the horizontal length of the cavity, and 
TΔ  is the temperature difference between the hot 

and cold walls.  
 
We carefully choose the characteristic velocity 

c xV g TLβ= Δ  so that the low-Mach-number 
approximation maintains. 
 
Nusselt number Nu is one of the most important 
dimensionless parameters in describing the convective 
heat transport. The volume-averaged Nusselt number 
can be defined as the following relation: 
 

( )
1 1 1

1

, , ,
x y z

x

x y z

L L L

x

LNu
T L L L

q x y z dxdydz

α
=

Δ

∫ ∫ ∫
   

(34) 

where ( , , ) ( , , ) ( ) ( , , )xq x y z uT x y z x T x y zα= − ∂ ∂  is 
the local heat flux in the horizontal direction. 
A uniform grid is used throughout the current numerical 
simulations. The convergence criteria in each case are 
as follows: 
 

1 2 1 2 1 2 51 ( ) ( ) (w w ) 10 ,n n n n n nu u v v
N

+ + + −− + − + − ≤∑     (35) 

1 2 51 ( ) 10 .n nT T
N

+ −− ≤∑     (36) 

In all simulations, Pr is set to be 0.71, and due to the 
restriction of computer capability, the grid size of 
127×127×127 is used for Ra = 103, 104, 105, and 106. In 
order to study the dependency of  the calculations on 
the grid size, the numerical simulations for Ra = 104 
using HTIGLB method are conducted on seven grid 
sizes: 21×21×21, 41×41×41, 51×51×51, 61×61×61, 
81×81×81, 101×101×101, and 127×127×127. The 
result is given in Table 6. This table contains the 
numerical result of the maximum of x and z 
components of the velocity in the cavity, with its 
location and the volume-averaged Nusselt number at 
the entire system. It should be noted that the velocity 
shown in the table is normalized by the reference 
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velocity of α/Lx (velocity reference of Vref is given 
as / / Prx xL g TL Raα β= Δ ). From the results 
presented in Table 6, it can be clearly observed that, as 
we increase the size of the grid, the difference between 
the computed quantities is alleviated from 6.253% to 
0.625% for max / refu V , 7.868% to 0.748% 

for max / refw V , and from 14.570% to 1.49% for Nusselt 
number. This indicates that the utilization of 127 × 127 
× 127 grid in our proposed model can give very 
accurate numerical results. 
 
In Fig. 37, we show the time history of the Nusselt 
number for Ra = 104 and 105. This figure shows that the 
required time step to reach the steady state for Rayleigh 
number of Ra = 105 is more than that of Ra = 104. 
 
Figure 38 displays temperature contours and 
streamlines for the cubic differentially heated buoyant 
cavity flow in final steady states at middle plane of Y = 
0.5 for Rayleigh numbers of Ra = 103, 104, 105, and 106, 
respectively. At Ra = 103, streamlines are those of a 
single vortex. The center of which is in the center of the 
cavity. The corresponding temperature contours are 
parallel to both hot and cold walls, manifesting that 
most of the heat transfer mechanism is by heat 
conduction. As the Rayleigh number is enhanced to Ra 
= 104, the central streamline is deformed into an elliptic 
shape and the effects of convection can be observed in 
the temperature contours. At Ra = 105, the central 
streamline is lengthened and two secondary vortices 
emerge inside it. The temperature distributions become 
horizontal in the middle of the system, indicating that 
the dominant of heat transfer mechanism is convection. 
At Ra = 106, two secondary vortices get stronger and 
the temperature distributions become more horizontal at 
the center of the cavity. Consequently, with regard to 
these figures, as the Rayleigh number increases, the 
fluid motion takes place near the vertical walls and the 
flow in the core of the cavity becomes quasi-stationary. 
Additionally, when the Rayleigh number increases, two 
tendencies are perceived for the temperature contours; 
1) an increase in the temperature gradients close to the 
hot and cold boundaries, and 2) intensified mixing of 
the hot and cold fluids. Both inclinations enhance the 
heat transfer in the flow domain. 
Table 7 presents the simulated results obtained for the 
Nusselt number at Rayleigh numbers of Ra = 103, 104, 
105, and 106, respectively, using 128×128 grid system. 
The equivalent Nusselt data presented by Tric et al. 
(2000) are also shown in Table 7 for comparison 
purposes. From this table, it can be observed that our 
results agree well with those by Tric et al. (2000) for 
Rayleigh numbers less than 104. At higher Rayleigh 
numbers, the current LB simulation slightly 
underestimates the heat transfer due to insufficient 
spatial resolution. 
 
The above results indicate that our new 3-D hybrid 
thermal IGLB model is capable of solving the thermal 
flow problems. 
 
 
 
 

4.3.2 Simulation of Natural Convection 
from a Discrete Heat Source on the Bottom 
of a Horizontal Enclosure 

Natural convection (Bejan 1984) has been regarded as 
an efficient procedure for cooling electronic devices 
due to its high credibility, low maintenance cost, and 
absence of noise. Natural convection from vertical 
enclosures with discrete heat sources attached on the 
vertical wall (Mathews et al. 2007; Keyhani et al. 1988; 
Heindel et al. 1996; Linhui et al. 2006; Mobedi and 
Sunden 2006) has been given a sizeable attention. The 
problem of discrete heat source related to a horizontal 
surface of an electronic package (Deng et al. 2002; 
Sezai and Mohamad 2000; Ichimiya and Saiki 2005) is 
of at least comparable significance and found in various 
engineering applications, such as cooling of electronic 
equipment and air-conditioning of buildings with 
chilled ceilings. From the point of view of the flow 
pattern and heat transfer features, natural convection of 
discrete heat source in horizontal enclosures can be 
much more complex than that happening in vertical 
enclosures or along vertical plates. 
 
Polentini et al. (1993) explain that a horizontal 
arrangement of discrete heat sources is preferred when 
uniform heat transfer rates are wanted from diverse 
rows, which is most often the case for cooling of 
electronic components. 
 
The natural convection from a discrete flush-mounted 
rectangular heat source on the bottom of a horizontal 
enclosure is similar to Raleigh-Bénard problem 
(Pallares et al. 1995, Ouertatani et al. 2008, Calcagni et 
al. 2005), which consists of an enclosure heated from 
below and cooled from top. The induced flow pattern 
includes rotating rolls or mushroom type construction 
depending on Rayleigh number, Prantdl number, and 
geometrical restrictions.  
 
In order to study Rayleigh–Bénard convection, diverse 
numerical simulations have been conducted using 
different thermal LB models (Chen and Doolen 1998; 
Shan 1997; Xu and Lui 1999; Inamuro et al. 2002; Kao 
and Yang 2007). However, the heat transfer and natural 
convection due to a discrete heat source which is 
mounted flush with the bottom wall of a horizontal 
enclosure has not been inspected and analyzed by 
thermal LB models. The present study utilizes the 
proposed HTIGLB model to simulate the natural 
convection from a discrete heat source on the bottom 
wall of a horizontal enclosure. 
 
Figure 39 displays the schematic illustration of the 
physical configuration and the coordinate system. The 
problem comprises a chip of constant surface 
temperature in an enclosure with the width of Lx, depth 
of Ly, and height of H. The aspect ratios ARx = Lx / H 
and ARy = Ly / H of the rectangular cavity are equal to 4. 
The chip with surface temperature Thot is on the bottom 
horizontal wall and has dimensions lx and ly in x and y 
directions respectively. The longitudinal aspect ratio arx 
= lx / H and the lateral aspect ratio ary = ly / H of the 
chip are unity. The bottom wall surface is presumed to 
be adiabatic except for the chip, while the upper wall 
surface is kept at temperature Tcold . The sidewalls of 
the enclosure are supposed to be adiabatic.  
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The cooling fluid is air which has a Prandtl number of 
0.71. The Rayleigh numbers of 103 and 105 are 
considered in this research. 
 
In LBM calculation, the characteristic velocity is 
assumed to be equal to 0.1. Besides, to perform this 
problem, a 161×161×40 lattice is used.  
 
Figures 40 and 41 reveal the streamlines and the 
temperature contours of discrete heat source, which is 
set up flush with the bottom wall of the horizontal 
cavity, on the symmetry plane of Y = 0.5 for Rayleigh 
numbers of 103 and 105. Furthermore, the results of 
Sezai and Mohamad (2000) are shown in these figures 
for comparison. As it is shown, the obtained results 
agree well with those of    Sezai and Mohamad (2000). 
Note that the streamlines of mid plane of Y = 0.5 are 
obtained from the x and z components of the velocity 
vector at that plane.  
 
From Figs. 40 and 41, it can be observed that the flow 
pattern is identified by a single roll cell of nearly 
toroidal shape. As Rayleigh number increases from 103 
to 105, centers of rotation in the two sections of the 
toroid moves towards lateral walls. This flow structure 
has a vertical symmetry axis which passes through the 
center of enclosure.  
 
The hot fluid ascends in the central section due to 
buoyancy forces, until it reaches close to the top wall 
where it turns radially outward, towards the lateral 
walls while it is cooled. Then, it turns downward near 
the sidewalls. Ultimately, the limitation applied by the 
bottom wall enforces the fluid to turn radially inward, 
receiving heat when it approaches the discrete heat 
source. The flow path is completed as the colder fluid is 
entrained to the ascending flow at the center of the 
enclosure.  
 
At Rayleigh number of 103, heat transfer from the 
discrete heat source is dissipated by means of 
conduction-dominated mechanism. For Rayleigh 
number of 105, the buoyancy driven flow in the central 
area between the rolls deforms the temperature contours. 
Furthermore, the heat transfer becomes increasingly 
advection dominated.  
 
Table 8 compares the positions of roll cell centers in the 
two sections of the toroid at the mid-plane of Y = 0.5, 
between the proposed HTIGLB results and those of     
Sezai and Mohamad (2000). As shown in Table 8, our 
HTIGLB results agree well when compared to those of 
Sezai and Mohamad (2000) and the relative errors 
percentage between the two sets of results which are 
given in parentheses are less than 1.64% at Ra = 103 
and 3.7% for Ra = 105. 
 
Consequently, computations of natural convection from 
a discrete heat source on the bottom of a horizontal 
enclosure accurately predicted the flow characteristics 
for different Rayleigh numbers. The results also agree 
well with those of Sezai and Mohamad (2000). This 
shows that our 3-D HTIGLB model has the capability 
to simulate the thermally driven flow problems.  
 
 

5. CONCLUSION 
In this work, the compressibility effect of lattice 
Boltzmann methods on the simulation of 
incompressible flows has been investigated. Then, an 
incompressible generalized lattice Boltzmann method 
has been proposed for the simulation of three-
dimensional flows. 
 
The proposed IGLB model is validated by its 
application to simulate three-dimensional lid-driven 
flow in a cubic cavity, a backward-facing step flow, and 
a double shear flow at different Reynolds numbers. 
 
It is found that the obtained results agree very well with 
those from Navier–Stokes solvers. This demonstrates 
that our proposed IGLB model can simulate three-
dimensional incompressible flows. 
 
The stability of the model is also analyzed and 
compared with the IBGKLB model. It is found that the 
mechanism of separate relaxations for the kinetic modes 
results in a model which is much more stable than the 
BGK LB model. 
The proposed IGLB model compared to the IBGKLB 
model needs the transformations between the velocity 
space V  and the moment space M , back and forth in 
each step in the evolution equation. However, the extra 
computational cost due to this transformation is about 
5% of the total computing time. Therefore the 
computational efficiency is similar to the IBGKLB 
model. 
 
The proposed three-dimensional generalized lattice 
Boltzmann method is successfully extended and applied 
to simulation of the three-dimensional incompressible 
buoyancy-induced flows. The numerical results of the 
three-dimensional steady-state natural convection of air 
in a cubical enclosure obtained by HTIGLB method 
agree well with the existing benchmark data. 
Additionally, natural convection from a discrete heat 
source flush-mounted on the bottom of a horizontal 
cavity is simulated. It is shows that the proposed 
scheme is very suitable for simulation of buoyant flow 
problems. 
 
As mentioned above, the obtained results show that 
IGLB model is more accurate and stability compared to 
the incompressible BGK lattice Boltzmann method. 
Therefore, the current proposed method is potentially 
capable of simulating high Reynolds number flows 
which will be discussed in the subsequent work and a 
relevant turbulent model will be applied to the proposed 
method.  
 
The principal advantage of lattice Boltzmann method, 
which has not been evaluated in this article and will be 
studied in the future work, is the high parallelism of 
such an algorithm. This provides a chance to use such a 
method for the simulation of higher complexity fluid 
flows. It makes lattice Boltzmann methods competitive 
tools in contrast to conventional CFD techniques. 
 
It is important to note that the numerical tests 
considered here are simple, and our aim is just to 
validate the scheme. More demanding complex tests 
will be carried out in future work. 
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Table 1 Minimum x-component velocity for Re = 400. 

0U  CBGKLBu  IBGKLBu  ku et al.u  

0.1 -0.236514 -0.236678 -0.241597 

0.15 -0.236189 -0.236536 -0.241597 

 
 

 
Table 2 Minimum and maximum z-component velocity for Re = 400. 

0U  CBGKLBw  IBGKLBw  ku  et al .w  

0.1 Max : 0.2058725 
Min: -0.37169405 

Max : 0.2060855 
Min: -0.37212809 

Max : 0.2081399 
Min: -0.3790700 

0.15 Max : 0.20548716 
Min: -0.3711390 

Max : 0.205942258 
Min: -0.372070342 

Max : 0.2081399 
Min: -0.3790700 

 
 

 
Table 3 Grid dependency study of cubic cavity driven flow for Re = 100, 400 and 1000. 

Reynolds no. Mesh size 21×21×21 41×41×41 61×61×61 81×81×81 

minu  -0.2049 -0.2099 -0.2119 -0.2129 

minw  -0.2087 -0.2294 -0.2358 -0.2392 100 

maxw  0.1301 0.1411 0.1449 0.1469 

minu  -0.2406 -0.2375 -0.2367 -0.2364 

minw  -0.3306 -0.3596 -0.3679 -0.3720 400 

maxw  0.1998 0.2039 0.2051 0.2058 

minu  -0.3187 -0.2866 -0.2825 -0.2814 

minw  -0.3970 -0.4155 -0.4223 -0.4275 1000 

maxw  0.2806 0.2520 0.2476 0.2466 
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Table 4 Positions of the main vortex (mid-plane of Y = 0.5) and the transversal vortex (mid-plane of X = 0.5) centers. 

Reynolds no.  100 400 1000 

  Present work Ku et al. Present work Ku et al. Present work Ku et al. 

z 0.765 0.75 0.578 0.6 0.468 0.5 Main vortex  
in mid-plane of 

 Y = 0.5. x 0.624 0.6 0.626 0.633 0.597 0.61 

z 0.355 0.33 0.202 0.204 0.133 0.136 Transversal vortex 
 in mid-plane of 

 X = 0.5. y 0.378 0.378 0.225 0.233 0.155 0.167 

 
Table 5 Dimensionless recirculation zone length for flow over backward-facing step. 

Model IBGKLB model IGLB model Chiang’s work Reynolds number 

x /S 5.252 5.266 5.359 200 

 
 

Table 6 Comparison of numerical results for Ra = 104 and different grid sizes. 

Grid size 21×21×21 41×41×41 51×51×51 61×61×61 81×81×81 101×101×101 127×127×127 

max / refu V  14.474 15.379 15.527 15.613 15.760 15.842 15.938 

x / lx 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

y / ly 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

z / lz 0.85 0.829 0.823 0.820 0.827 0.822 0.827 

max / refw V  15.861 17.109 17.389 17.569 17.778 17.918 18.046 

x / lx 0.143 0.146 0.137 0.131 0.123 0.129 0.126 

y / ly 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

z / lz 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Nu 1.537 1.761 1.818 1.859 1.914 1.948 1.975 

 
 

Table 7 Volume-averaged Nusselt number computed for different Ra. 
 

 
 
 
 
 
 
 
 

 
 

Table 8 Positions of roll cell centers in the two sections of the toroid at the mid-plane of Y = 0.5. 

Rayleigh no.  1000 100000 

  Present work Sezai  and Mohamad 
(2000) Present work Sezai and Mohamad 

(2000) 

x 1.180  
(0.77%) 1.171 0.573 

(3.7%) 0.595 Left roll cell 
center in mid-

plane of Y = 0.5. z 0.495  
(1.64%) 0.487 0.562 

(0.54%) 0.559 

x 2.869 
(1.63%) 2.823 3.477 

(2.54%) 3.391 Right roll cell 
center in mid-

plane of Y = 0.5. z 0.495 
(1.64%) 0.487 0.562 

(0.54%) 0.559 

Rayleigh no. Grid size Present work Tric’s work 

1000 127×127×127 1.07 1.07 

10000 127×127×127 1.975 2.0542 

100000 127×127×127 3.940 4.337 

1000000 127×127×127 7.291 8.641 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-95, 2009. 

 85

 

 
Fig. 1. D3Q19 lattice used in this work. Fig. 2. Configuration of 3-D lid-driven cavity flow 

problem including the boundary conditions. 

 
Fig. 3. Time history of the relative error of the velocity profile for different Reynolds numbers. 

 

 
Fig. 4. X-component velocity along the cubic cavity 

vertical centerline for different mesh sizes. 
Fig. 5. Z-component velocity along the cubic cavity 

horizontal centerline for different mesh sizes. 
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Fig. 6. X-component velocity along the cubic cavity 

vertical centerline for Re = 100. 
Fig. 7. Z-component velocity along the cubic cavity 

horizontal centerline for Re = 100. 

  
Fig. 8. X-component velocity along the cubic cavity 

vertical centerline for Re = 400. 
Fig. 9. Z-component velocity along the cubic cavity 

horizontal centerline for Re = 400. 

  
Fig. 10. X-component velocity along the cubic cavity 

vertical centerline for Re = 1000. 
Fig. 11. Z-component velocity along the cubic cavity 

horizontal centerline for Re = 1000. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-95, 2009. 

 87

Fig. 12. X-component velocity profiles at i = 2, Re = 
100. 

Fig. 13. Z-component velocity profiles at i = 2, Re = 
100. 

  
Fig. 14. X-component velocity profiles at i = 2, Re = 

400. 
Fig. 15. Z-component velocity profiles at i = 2, Re = 

400. 
 

  
Fig. 16. X-component velocity profiles at i = 2, Re = 

1000. 
Fig. 17. Z-component velocity profiles at i = 2, Re = 

1000. 
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a) D3Q19-IBGKLB model b) D3Q19-IGLB model 

Fig. 18. Pressure contours at mid-plane of Y = 0.5 for driven cavity flow at Re = 100 using a) D3Q19-IBGKLB model 
and b) D3Q19-IGLB model with an 81×81×81 lattice. 

 
 

  
a) D3Q19-IBGKLB model b) D3Q19-IGLB model 

Fig. 19. Pressure contours at mid-plane of Y = 0.5 for driven cavity flow at Re = 400 using a) D3Q19-IBGKLB model 
and b) D3Q19-IGLB model with an 81×81×81 lattice. 

 
 

  
a) D3Q19-IBGKLB model b) D3Q19-IGLB model 

Fig. 20. Pressure contours at Y = 0.5 for driven cavity flow at Re = 1000 using a) D3Q19-IBGKLB model and b) 
D3Q19-IGLB model with an 81×81×81 lattice. 
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(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Re = 100 

   
(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Re = 400 

   
(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Re = 1000 
Fig. 21. Streamlines at different Re using D3Q19 IGLB model and an 81×81×81 lattice. 

 
 

 
 

Fig. 22. Pressure contours at different planes for Re = 4000 at 225000-th time step using D3Q19 
IGLB model and an 81×81×81 lattice. 
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(a) Z = 0.5 (b) X = 0.5 (c) Y = 0.5 

Fig. 23. Streamlines at different planes for Re = 4000 at 225000-th time step using D3Q19 IGLB model and 
an 81×81×81 lattice. 

 
 
 

 
 

Fig. 24. Geometry of the backward-facing step channel. Flow is from left to right. 
 
 
 
 
 
 
 
 

 
Fig. 25. Pressure contours at Y = 0.5 for backward-facing 

step flow for Re = 200 using D3Q19 IBGKLB model and a 
945×13×63 lattice. 

Fig. 26. Enlarged region A in Fig. 25. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

A. R. Rahmati and M. Ashrafizaadeh  / JAFM, Vol. 2, No. 1, pp. 71-95, 2009. 

 91

 
Fig. 27. Pressure contours at Y = 0.5 for backward-facing 
step flow for Re = 200 using D3Q19 IGLB model and a 

945×13×63 lattice. 
 
 

Fig. 28. Enlarged region B in Fig. 27. 

 
Fig. 29. Streamlines and velocity vectors at Y = 0.5 for backward-facing step flow for Re = 200 using D3Q19 

IGLB model and a 945×13×63 lattice. 

 
Fig. 30. Z-component velocity along the horizontal 

centerline of double shear flow for t = 0.8 and different mesh 
sizes. 

Fig. 31. Enlarged region C in Fig. 30. 
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Fig. 32. X-component velocity along the vertical centerline 

of double shear flow for t = 0.8 and different grid sizes. 
 

Fig. 33. Enlarged region D in Fig. 32. 

a) IGLB model 
 

 
 
b) Moving mesh finite-element method by Di et 

al. (Di et al. 2005) 

Fig. 34. Vorticity contours at t = 0.8 with k = 30 and viscosity = 1/10,000 at Y = 0.5 
 (all quantities are in lattice units). 

 

 
Fig. 35. Pressure contours (left side) and streamlines (right side) obtained by the IGLB model at t = 0.8 with k = 

30 viscosity = 1/10,000 at Y = 0.5 (all quantities are in lattice units). 
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Fig. 36. Configuration of natural convection in a cubic cavity. 
 
 

 
b) Ra = 105  a) Ra = 104 

Fig. 37. Time history of Nusselt number at different Ra. 
 
 

  
a) Ra = 103 

Fig. 38. Temperature contours (left) and streamlines (right) for the cubic differentially heated buoyant cavity flow 
for steady states at different Ra at middle plane of Y = 0.5. 
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b) Ra = 104 

  
c) Ra = 105 

  
d) Ra = 106 

Fig.38. Continued. 
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Fig. 39. Physical configuration and coordinate system used by Sezai 

and Mohamad (2000). 
 
 

 
a) 
 

 
b) 

 
a) 
 

 
b) 

Fig. 40. Projection of streamlines (left) and isotherms (right) of a) Sezai and Mohamad (2000) and b) the present 
work on the mid-plane of Y = 0.5 for a discrete heater for Ra = 1000. 

 

 
a) 
 

 
b) 

 
a) 
 

 
 b) 
Fig. 41. Projection of streamlines (left) and isotherms (right) of a) Sezai and Mohamad (2000) and b) the present 

work on the mid-plane of Y = 0.5 for a discrete heater for Ra = 105. 
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