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ABSTRACT 

Unsteady MHD visco-elastic fluid flow has been studied numerically under the action of transverse magnetic 
field with diffusion-thermo and thermal diffusion for small magnetic Reynolds number. The governing 
equations are non-dimensionalized by usual non-dimensional variables. The obtained equations are solved by 
explicit finite difference technique. The solutions of the dimensionless velocity, temperature and 
concentration equations are shown graphically. The effects of parameters on the shear stress, Nusselt number 
and Sherwood number are discussed in graphical form. Finally, a qualitative comparison with previous work 
is tabulated. 
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1. INTRODUCTION 
The mixed convection boundary layer flow of non-
Newtonian fluid in the presence of strong magnetic 
field has wide range of application in nuclear 
engineering and industries. In astrophysical and 
geophysical studies, the MHD boundary layer flows 
of an electrically conducting fluid have also 
enormous applications. Many researchers have 
studied the transient laminar natural convection 
flow past a vertical porous plate for the application 
in the branch of science and technology such as in 
the field of agriculture engineering and chemical 
engineering. In petroleum refineries, movement of 
oil, water and gas through porous media for 
purification and filtration are bright applied areas of 
research. With the advancement of science and 
technology, MHD study on any fluid flow 
phenomenon exhibits some results which have 
constructive application for the design of devices. 
MHD heat transfer has great importance in the 
liquid metal flows, ionized gas flow in a nuclear 
reactor and electrolytes. Research works on 
radiation of heat in natural convection flow are very 
limited, though these have many modern 
applications viz. missile technology used in army, 
nuclear power plant, parts of aircraft and ceramic 
tiles.  

Heat and mass transfer in non-Newtonian fluids is 
of great interest in many operations in the chemical 
and process engineering industries including 
coaxial mixers, blood oxygenators, milk processing, 

steady-state tubular reactors, and capillary column 
inverse gas chromatography devices, mixing 
mechanisms, bubble-drop formation processes , 
dissolution processes, and cloud transport 
phenomena. Many geometrical configurations have 
been addressed including flat plates, channels, 
cones, spheres, wedges, inclined planes, and wavy 
surfaces. Non-Newtonian heat transfer studies have 
included power-law fluid i.e. shear-thinning and 
shear thickening fluids, simple viscoelastic fluids, 
Criminale-Ericksen-Fibley viscoelastic fluids, 
Johnson-Segalman rheological fluids, Bingham 
yield stress fluids, second grade (Reiner-Rivlin) 
viscoselastic fluids, third grade viscoelastic fluids, 
and bi-viscosity rheological fluids. Viscoelastic 
properties can enhance or depress heat transfer 
rates, depending upon the kinematic characteristics 
of the flow field under consideration and the 
direction of heat transfer. Firstly for such a fluid 
considering the oscillatory two-dimensional 
viscoelastic flow along an infinite porous wall, 
showing that an increase in the Walters elasticity 
parameter and the frequency parameter reduces the 
phase of the skin-friction has been investigated by 
Soundalegkar and Puri (1969). The laminar flow of 
an electrical-conducting Walter’s liquid, past an 
infinite non-conducting vertical plate for impulsive 
as well as uniformly accelerated motion of the plate 
has been presented by Samria et al. (1990), in the 
presence of a transverse magnetic field. The 
Unsteady magnetohydrodynamic flows in a rotating 
elasto-viscous fluid have been analyzed by 
Nanousis (1992). The MHD free convection flow of 
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a visco-elastic fluid past a vertical porous plate has 
been investigated by Chowdhury and Islam (2000). 
Recently, the effects of thermal radiation on 
unsteady free convection flow of an elasto-viscous 
fluid over a moving vertical plate with variable 
temperature in the presence of magnetic field 
through porous medium have been studied be 
Rajesh and Varma (2010). The analytical study of 
Heat source and mass transfer effects on MHD free 
convection flow of a visco-elastic fluid past an 
exponentially accelerated infinite vertical plate with 
variable temperature through porous medium has 
been investigated by Rakesh Kumar et al. (2011).  
The heat and mass transfer occur simultaneously 
between the fluxes, the driving potentials are of 
more intricate nature. An energy flux can be 
generated not only by temperature gradients but by 
composition gradients. The energy flux caused by a 
composition is called Dufour or diffusion-thermo 
effect. Temperature gradients can also create mass 
fluxes, and this is the Soret or thermal-diffusion 
effect. Generally, the thermal-diffusion and the 
diffusion-thermo effects are of smaller-order 
magnitude than the effects prescribed by Fourier’s 
or Fick’s laws and are often neglected in heat and 
mass transfer processes. The thermal-diffusion 
effect, for instance, has been utilized for isotope 
separation and in mixture between gases with very 
light molecular weight (H2, He) and of medium 
molecular weight (Nitrogen-air) the diffusion-
thermo effect was found to be of a magnitude such 
that it cannot be neglected. Many transport 
processes can be found in various ways in both 
nature and technology, in which the combined heat 
and mass transfer occur due to buoyancy forces 
caused by thermal diffusion and mass diffusion. 
Some of the convective heat and mass transfer 
processes with phase change include the 
evaporation of liquid at the interface between a gas 
and liquid or the sublimation at a solid-gas 
interface. The process of mass transfer affects all 
separation processes in chemical engineering such 
as the drying of solid materials, distillation, 
extraction and absorption. Heat and mass transfer 
for Soret and Dufour effect on mixed convection 
boundary layer flow over a stretching vertical 
surface in a porous medium filled with a 
viscoelastic fluid has been analyzed by Hayat et al. 
(2010). The steady mixed convection boundary 
layer flow due to the combined effect of heat and 
mass transfer over a stretched vertical surface in a 
porous medium filled with a viscoelastic fluid under 
Soret and Dufour effects in the presence of 
magnetic field has been investigated by Gbadeyan 
et al. (2011). Mixed convective MHD flow of 
visco-elastic fluid past a vertical infinite plate with 
mass transfer in the presence of magnetic field has 
been studied by Mahanta and Choudhury (2012). 
MHD unsteady memory convective flow through 
porous medium with variable suction has been 
studied by Hussaini et al. (2013). 

The objective of this study is to extend the work of 
Mahanta and Choudhury (2012) with visco-elastic 
flow characterized by second-order fluid as MHD 
free convection and mass transfer visco-elastic fluid 
flow in vertical porous plate with mass diffusion 

and thermal diffusion. The governing equations 
involved in this problem have been transformed 
into non-similar coupled partial differential 
equations by usual transformations. The problem 
has been solved by explicit finite difference 
method. Finally, the comparison of the present 
results with the results of Gbadeyan et. al. (2011) 
has been shown in tabular form. 

2. MATHEMATICAL 
FORMULATION  

Consider an unsteady MHD visco-elastic 
(Walters's liquid B') mixed convective heat and 
mass transfer flow of an incompressible, 
electrically conducting viscous fluid past an 
electrically nonconducting isothermal impulsive 
vertical plate. The positive x  coordinate is 
measured along the plate in the direction of fluid 
motion and the positive y  coordinate is measured 
normal to the plate. A uniform transverse magnetic 
field of magnitude 0B  is applied in the direction 
of axisy . Initially, it is considered that the plate 
as well as the fluid is at the same temperature 
  TT  and concentration level   CC . Also it 

is assumed that the temperature of the plate and 
concentration are raised to   TTw  and 

  CCw  respectively, which are there after 
maintained constant, where wT , wC  are 
temperature and concentration at the wall  and T ,

C  are the temperature and concentration of the 
species outside the boundary layer respectively. The 
physical configuration of the problem is furnished 
in Fig. 1.  

Fig. 1. Physical configuration and coordinate 
system. 

The magnetic Reynolds number of the flow is taken 
to be small enough and the magnetic field is 
negligible in comparison with applied magnetic 
field and the magnetic lines are fixed relative to the 
fluid. Using the relation 0 J  for the current 
density  zyx JJJ ,,J  where constantyJ . 

Since the plate is nonconducting, 0yJ  at the 
plate and hence zero everywhere. 
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Within the framework of the above-stated 
assumptions the generalized equations relevant to 
the unsteady problem are governed by the following 
system of coupled partial differential equations as; 

The Continuity equation; 
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The Concentration equation; 

2
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corresponding boundary conditions are; 
0yCCTTvUu ww   at,,0,                                 (6) 
  yCCTTvu as,,0,0     .(5) 

where vu and

 

are the yx and  components of 
velocity vector,   is the electric conductivity, 

21,   are the kinematic coefficient viscosity,   is 
the density of the fluid,   is the thermal 
conductivity, pc  is the specific heat at the constant 

pressure , D  is the coefficient of mass diffusivity, 
tk  is the thermal diffusion ratio, sc  is the 

concentration susceptibility, mT

 

is the mean fluid 
temperature, T  is the co-efficient of volumetric 
expansion for heat transfer, C  is the co-efficient 
of volumetric expansion for mass transfer. 

To obtain the governing equations and the boundary 
condition in dimension less form, the following 
non-dimensional quantities are introduced as; 

1


xUX , 
1


yUY , 



U

uU , 



U

vV , 




2


tU , 









TT
TT

w
  and 










CC
CC

w
 . 

Substituting the above dimensionless variables in 
Eqs .(1) to (4) and corresponding boundary 
conditions (5), the obtained dimensionless coupled 
non-linear partial differential equations are; 
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boundary conditions are; 
1,1,0,1  VU at 0Y                            

(10) 0,0,0,0  WU  as Y     
where   represents the dimensionless time, 

YX and  are the dimensionless Cartesian 
coordinates, U is the dimensionless velocity,   is 
the dimensionless temperature,   is the 
dimensionless concentration,  
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3. SHEAR STRESS, NUSSELT AND 
SHERWOOD NUMBER 

All the quantities of chief physical interest are shear 
stress, Nusselt number and Sherwood number. The 
following equations represent the local and average 
shear stress at the plate, local shear stress, (Mahanta 
and Choudhury (2012)) 

 
0

2

2

0























































y
L

y
uv

t
u

yy
u

  and 

average shear stress,  























































 dx

y
uv

t
u

yy
u

y
A

0
2

2

0   

which are proportional to  

0
2

2






















































Y
Y
UvU

YY
U


  and 























































100

0 0
2

2
dX

Y
UvU

YY
U

Y


  

respectively. From the temperature field, the effects 
of various parameters on the local and average heat 
transfer coefficients. The following equations 
represent the local and average heat transfer rate 
that is well known Nusselt number, local Nusselt 
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respectively. And from the concentration field, the 
effects of various parameters on the local and 
average mass transfer coefficients. The following 
equations represent the local and average mass 
transfer rate that is well known Sherwood number, 
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4. NUMERICAL SOLUTIONS 
The system of non-dimensional, nonlinear, coupled 
partial differential equations (6) to (9) with 
boundary condition (10) are solved numerically 
using explicit finite difference method. To obtain 
the difference equations, the region of the flow is 
divided into a grid or mesh of lines parallel to X  
and Y  axes, where X -axis is taken along the plate 
and Y -axis is normal to the plate. 

Here the plate of height  100max X  is considered 
i.e. X  varies from 0  to 100  and assumed 

 35m ax Y  as corresponding to Y  i.e. Y  
varies from 0  to 35 . There are  180m  and 
 180n  grid spacing in the X  and Y  directions 

respectively as shown in Fig. 2.  

 Fig.2.Explicit finite difference system grid. 

It is assumed that X , Y  are content mesh size 
along X  and Y  directions respectively and taken 
as follows,  100056.0  XX and 

 35019.0  YY  with the smaller time-step, 
005.0 . 

Let CTWU  and,,  denote the values of 

CTWU and,,  are the end of a time-step 
respectively. Using the explicit finite difference 
approximation, the following appropriate set of 
finite difference equations are obtained as; 
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computed by successive applications of the above 
finite difference equations. The numerical values of 
the local shear stresses, local Nusselt number and 
local Sherwood number are evaluated by Five-point 
approximate formula for the derivatives and then the 
average shear stress, Nusselt number and Sherwood 
number are calculated by the use of the Simpson’s 
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3
1  integration formula. The stability conditions of 

the methods are 
 

12
2 















YPY
V

X
U

r

  and 

 
11

2 














YSY
V

X
U

c

 . Our solution is 

valid for the above mentioned conditions. When the 
value of  , X  and Y  approach to zero then 
the problem will be converged. That’s mean the 
results of the explicit finite difference method 
approach the true solutions. 

5. NUMERICAL SOLUTIONS 
To investigate the physical situation of the problem, 
the numerical values and graphs of velocity  U , 
temperature    and concentration    
distributions as well as shear stress, Nusselt number 
and Sherwood number  within the boundary layer 
have been computed for different values of Dufour 
number  uD , Visco-elastic Parameter   , 
Magnetic parameter  M ,  Prandtl number  rP , 
Schmidt number  cS  and Soret number  rS  with 
the help of a computer programming language 
Compaq Visual Fortran 6.6a and Tecplot 7. These 
computed numerical results have been shown 
graphically. To obtain the steady-state solutions, the 
computation has been carried out up to 80 . It is 
observed that the numerical values of  and,U  
however, show little changes after 40 . Hence at 

40  for all variables are steady-state solutions.  

The importance of cooling problem in nuclear 
engineering in connection with the cooling of 
reactors, the value of the Grashof number for heat 
transfer is taken to be positive  0rG  and the 
present study has considered 00.1rG . Since the 
most important fluids are atmospheric air and 
water, so that the results are limited to 71.0rP  

(Prandtl number for air at C20 ),  00.1rP  
(Prandtl number for or salt water)) and 00.7rP  

(Prandtl number for water at C20 ). Here the 
investigation are assumed for both lighter and 
heavier fluid particles, hence the values of 
Schmidt number  cS  are taken 60.0 , 78.0  and 

00.1  (in particular, 60.0  for water vapor that 
represents a diffusing chemical species of most 
common interest in air, 78.0  for ammonia and 

00.1 for carbon dioxide) which represent the 
specific condition of the flow. However the 
values of other parameters are chosen arbitrarily 
and also the modified Grashof number 00.1mG  
for mass transfer are considered as a fixed value. 
To observe the physical situation of the problem, 
the solutions have been illustrated in Figs. 3 to 33. 
The velocity profiles have been displayed for 
various values of Dufour number  uD , Magnetic 
parameter  M  , Prandtl number  rP , Schmidt 

number  cS  and Soret number  rS  respectively 
in Figs. 3 to 7. These results show that the velocity 
increases with the increase Dufour number, Soret 
number and decreases with the increase Prandtl 
number, Schmidt number, Magnetic parameter 
respectively.  

                               
 
 

Fig. 3. Velocity profile for different values of 
Dufour number, uD . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Velocity profile for different values of 
Magnetic parameter, M . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Velocity profile for different values of 
Prandtl number, rP . 
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Fig. 6. Velocity profile for different values of 
Schmidt number, cS .. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Fig. 7. Velocity profile for different values of 
Schmidt number, rS . 

The temperature distributions have been illustrated 
for various values of Dufour number  uD  and 
Prandtl number  rP  respectively in Figs. 8 and 9. 
These results show that the temperature 
distributions increase with the increase Dufour 
number and decrease for the increase Prandtl 
number respectively. The concentration profiles 
have been shown for various values of Schimdt 
number  cS  and Soret number  rS  respectively 
in Figs. 10 and 11. These results show that the 
concentation distributions increase with the increase 
Soret number and decrease for the increase Schmidt 
number respectively.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Temperature profile for different values 

of Dufour number, uD . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Temperature profile for different values 

of  Prandtl number, rP . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Concentration profile for different 

values Schmidt number, cS . 
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Fig. 11. Concentration profile for different 
values Soret number, rS . 

Figures. 12 to 14 show the average shear stress, 
Nusselt number and Sherwood number for various 
values of Dufour number  uD . The average shear 
stress, Nusselt number and Sherwood number 
increase with the increase of Dufour number. The 
average shear stress, Nusselt number and Sherwood 
number have been displayed for various values of 
Magnetic parameter  M  in Figs. 15 to 17, Prandtl 
number  rP  in Figs. 18-20, Schmidt number  cS  
in Figs. 21 to 23 and Soret number  rS  in Figs. 24 
to 26 respectively. The average shear stress, Nusselt 
number and Sherwood number deccrease with the 
increase of Magnetic parameter, Prandtl number, 
Schmidt number and decrease with the increase of 
Soret number. 

Local shear stress decreases with the increase of 
Visco-elastic parameter. The local shear stress and 
Nusselt number have been illustrated for various 
values of Dufour Number  uD  in Figs. 27 and 28. 
Local shear stress and Nusselt number increase with 
the increase of Dufour Number. In Fig. 29 displays 
the local shear stress for various values of Magnetic 
parameter  M . The local shear stress decreases 
with the increase of Magnetic parameter. Figs. 30 
and 31 show the local shear stress and Nusselt 
number for various values of Prandtl number  rP . 
The local shear stress and Nusselt number decrease 
with the increase of Prandtl number. Local 
Sherwood number has been displayed in Fig. 32 for 
various values of Schmidt number  cS  and in Fig. 
33 for various values of Soret number  rS . The 
local Sherwood number decreases with the increase 
of Schmidt number and increases with increases of 
Soret number. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Average shear stress for different values 

of Dufour number, uD . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Average Nusselt number for different 
values of Dufour number, uD . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 14. Average Sherwood number for different 
values of Dufour number, uD . 
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Fig. 15. Average Shear stress for different values 

of Magnetic parameter, M . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 16. Average Nusselt number for different 
values of Magnetic parameter, M . 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
Fig. 17. Average Sherwood number for different 

values of Magnetic parameter, M . 
 

 
 

 
 

Fig. 18. Average Shear stress for different values 
of Prandtl number, rP . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Average Nusselt number for different 
values of Prandtl number, rP . 

 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
Fig. 20. Average Sherwood number for different 

values of Prandtl number, rP . 
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Fig. 21. Average Shear stress for different values 

of Schmidt number, cS . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 22. Average Nusselt number for different 

values of Schmidt number, cS . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 23. Average Sherwood number for different 

values of Schmidt number, cS . 
 
 
 
 

 

 
 

Fig. 24. Average Shear stress for different values 
of Soret number, rS . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25. Average Nusselt number for different 
values of Soret number, rS . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 26. Average Sherwood number for different 
values of Soret number, rS . 
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Fig. 27. Local shear stress for different values of  

Dufour number, uD . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 28. Local Nusselt number for different 

values of Dufour number, uD . 
 

 
Fig. 29. Local shear stress for different values of 

Magnetic parameter, M . 
 
 

 
 

 
Fig. 30. Local shear stress for different values of 

Prandtl number, Pr . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 31. Local Nusselt number for different 
values of Prandtl number, rP . 

 

Fig. 32. Local Sherwood number for different 
values of Schmidt number, cS . 

 
Finally, a qualitative comparison of the present 
steady-state results with the published results 
(Gbadeyan et al. (2011)) is presented in Table. 1. 
The accuracy of the present results is qualitatively 
good in case of all the flow parameters 
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. 

 
 

Fig. 33. Local Sherwood number for different 
values of Soret number, rS . 

6. CONCLUSION 
In this study, the finite difference solution of 
unsteady diffusion-thermo and thermal-diffusion 
effects on MHD Visco-elastic fluid flow over a 
vertical plate is investigeted. Important findings of 
this investigation are given below; 

 

1. The velocity profiles increase with the increase 
of Dufour number and Soret number and reverse 
effect with the increase of Magnetic parameter, 
Prandtl number and Schmidt number. 

2. The temperature distributions increase with the 
increase of Dufour number and reverse effect with 
the increse of Prandtl number. 

3. The concentration profiles decrease with the 
increase of Schmidt number reverse effects with the 
increse of Soret number. 

It is expected that the findings of this investigation 
may be useful for study of movement oil or gas and 
water through the reservoir of an oil or gas field, in 
the migration of underground water or oil as well as 
in the filtration and water purification processes, the 
findings may be useful for study of movement of oil 
or gas and water through the reservoir of an oil or 
gas field. These results may also be useful for 
plasma studies as well as in power engineering, 
geothermal energy extractions, geophysics and 
astrophysics.

 

Table 1 Qualitative comparison of the present results with the previous results 
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