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Abstract. We present a new skew-normal distribution, denoted
by NSN(A). We first derive the density and moment generating
function of NSN()). The properties of SN(\), the known skew-
normal distribution of Azzalini, and NSN(A) are compared with
each other. Finally, a numerical example for testing about the
parameter A in NSN()) is given.
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1 Introduction

Azzalini (1985) introduced the following density function by the name of skew-
normal density with parameter A,

o(z; ) = 20(2)@(Az2), ze€R, AXeR

where ¢(z) and ®(z) are density and distribution functions of standard normal
random variable, respectively. We denote a random variable Z, with the above
density by Zx ~ SN(A). This density and its generalization have been studied
during the past years. For example, the distribution GSN(A), given by Gupta
and Gupta (2004), is a useful generalization of SN(A).
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48 A New Skew-normal Density

In this paper we consider the density

Fla;X) = e(\)p(2)@ (Ax), (1)
where ¢()) is given by
1
V= p@ony (2’

with U ~ N(0,1). We denote a random variable with this new density by
X, ~ NSN()), which is in fact a special case of GSN()). Azzalini (1985)
showed that the maximum value of skewness for SN(A) is about 0.995 . The
motivation of introducing this new density is the fact that it has a bigger
skewness.

In section 2, we use orthant probability to compute c(\) easily without
integration and illustrate a real data. Section 3 presents two representation
theorems regarding the properties of NSN()). The moment generating function,
some moments, skewness, and kurtosis of NSN(\) are given in section 4. In
section 5, we compare the properties of SN(A) and NSN()). Finally, in section
6, we generate some data from NSN(A) and we concentrate on a testing about
the parameter .

2 Calculation of c(A) by Orthant Probability

An orthant probability is the probability P(Vy > 0,V, > 0,...,V,, > 0) where
V = (V1,Va,...,V,) is a multivariate normal vector with mean 0 and covari-
ance matrix X = (p;;), where p;; = 1 and p;; = cov(V;,V}), 4,5 =1,2,...,n
(see Kotz et al., 2000).

Now, we write

B{$(\U)} = /_ 82 0)(u) du
= /00 P(Uy < M, Uy < Mu)p(u) du,

where U; and U, are i.i.d. N(0,1) and independent from U ~ N(0,1). Using
the above integral we have

E{®2(\U)} = /Oo P(Uy < AU, Uy < AU U = u)p(u) du

— 00

= P(Uy < AU, Up < AU)

=P(V1 20, V2 >20),
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where
i= u Vo = M
1 T2 2 Cewvh
with ,,
\2
(Vi,¥2) ~N2(0,%), = ( Alz 1“2) .
1+A2 1

Hence, we have

. 1 1 A2
2 _1 -1
E{® (/\U)}—4+27Ts1n <1+)\2>.

Using the simple trigonometric relation,

11 ., 1, [T+=
Z4 == -1 1
4+27rs1n x 7Ttan 1= <z <
from (2), we obtain
1 T
c(N) = - = . 3
V= E@00) " viTow 3

This coefficient is obtained in Arnold et al. (2002) by integration, but our
method, by orthant probability, is much easier.
Therefore, density (1) becomes

flz;A) =

™

m@(@q’z (Az). (4)
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Figure 1. The density of NSN(A) for A = 3 (soiled line),
A =5 (dotted line), and A = 10 (dashed line).
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50 A New Skew-normal Density

Table 1. MLE’s parameters for I1Q score data

Distribution N(u,0%) SN(u,0,2) NSN(u,o,))

m 106.653 98.79 94.88

G 8.23 11.38 13.07

by — 1.71 2.09
Log-likelihood ~ —183.387  —182.436 —182.206

Figure 1 shows the shape of f(z; ) for some values of A.
The location-scale of NSN()) is defined as that of Y = p + 0X), where
uwe€R o>0,and X, ~ NSN()). Its density is given by

100 = () 2 (50 (151,

where 6 = (u,0,A). We denote this by Y ~ NSN(u, 0, A).

We now fit this new distribution on the real IQ score data for 52 non-white
males given by Gupta and Brown (2001). Table 1 and Figure 2 show that
our distribution better fits the data comparing with the normal and Azzalini’s
distributions.
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Figure 2. Histogram of 52 Otis IQ Scores. The lines represent distri-
butions fitted using maximum likelihood estimation: N(j,&?) (dotted
line), SN(@, 6, A) (dashed line), and NSN(/i, &, A) (soiled line).
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3 Two Representation Theorems about NSN(A)

Azzalini and Dalla-Valle (1996) define the density of the bivariate skew-normal
vector (Y1,Y2)T ~ SN5(Q, «) by

©2(y1, Y25 py @) = 20(y1, y2; p) (011 + 2y2),

where ¢(y1,y2; p) is the standard bivariate normal density with

_(L »r
n—(p 1), ol <1,

o= (g;).

By the following representation theorems, we relate X, with normal and
bivariate skew-normal variables.

and

Theorem 1 (first representation theorem). If (Y1, Y5)T ~ SNy (Q, o) with
T
a= (p/ 1 —p2,0) , then

(Vi)Y > 0) 2 Xy ~NSN(), A=—2—
1—p?
where 2 denotes equality in distribution.
Proof.
P(Y; < 2,Ys > 0)
P(Y; < 2|Ys —
Mi<ele>0=""55,50)
2T [ ey s p)@(Ayn) dyady
N P(Y; > 0)
20 e(y)® (M) dy (5)
N P(Y; > 0)
On the other hand, by Azzalini and Capitanio (1999),
/\2
Vo~ SN[ —2 ),
? <\/1 T 2>\2>
and by Gupta and Brown (2001),
11 A
P(Ya>0)= -+ —tan™! ——=.
¥>0=3+37 V1+ 222
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52 A New Skew-normal Density

Now, using the following trigonometric relation for z € R,

11, a? 2,
— 4+ —tan=T ———= = —tan" "~ V1 + 222,
2 7 V14222 7

we have

2
P(Y; >0) = =tan~ " /1 +2)2. (6)
™
From (5) and (6), we obtain

™

PYi<zlYoa >0 =/ _
(¥ Y2 ) oo tan~t /1 4+ 2)2

which is the distribution of X by (4). This completes the proof.

o(y1)®* (A\y1) dyr, (7)

Theorem 2 (second representation theorem). If (U, Us,Us) ~ N3(0,X)

with
1 »p P
E=1|p 1 ],
p p* o1
then

_r
V1—p?
Proof. Let U = min{U,,Us3} and compute the joint density of U1 and U.

Using the fact that the pair (Us,Us) is exchangeable and (Ul,Uz) (U1, Us),
we have

(Uy| min{T, Us} > 0) 2 X, ~NSN()), A=

P(U < ur, U< up) =PUp Sur, Uy <up|Us <U3)P(Us < Us)
+ P(Ur w1, Us S uslUs < Us)P(Us < Us)

=P(U; < u1, Uy < us|Up 2 0), (8)
where
Uy
20—

On the other hand, (Uv()7 Uy,Up) ~ N3(0, E*) with

1 0 —/5
¥ = 0 1 p
— 1—2,0“ p 1
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By Azzalini and Dalla-Valle (1996)

((U1,Us)|Up > 0) ~ SN2(£2, av), (9)
where
_p
1—p2
a=(, 7). -
p 1 —1
\1—p2

Now, from (8) and (9) we have
(Ul, U) ~ SN2(Q, Oé).
Then, by the approach of Theorem 1, we conclude that

(Uy| min{Us, Us} > 0) 2 X,.

4 Moment Generating Function of NSN(\)

In this section, we find the moment generating function (m.g.f.) of X, which
has density (4).

Theorem 3 The m.g.f. of X, is

™ t? Y 1
Mx, (t) = ————— expl — ¢+ & ; , 10
X1 tan™! /1 4+ 2A2 Xp{2} 1(\/1+)\2 \/1+2>\2> (10)

where ®1(2;0) is the distribution function of Zy ~ SN(0), given by Azzalini
(1985), as follows.

00 Ow
Dy(2;0) = B(z) — 2/ / e(u)p(w) du dw. (11)
z 0
Proof. Using density (4) and the change of variable x — ¢t = u, we have
- _ [ 7T 2
Mx, (t) = E(exp{tX,}) = /_Oo pr— mexp{tw}go(m)@ (A\z) dx

m
——— ¢
tan=! /1 + 2)2
with U ~ N(0,1). We can show that

Xp {g} E{®*(\U + At)},

, B Ao ]
E{Q*(\U + A\t)} = &1 (\/1_,_/\2’\/1-1-2)\2)

(see Appendix Al). Therefore, we have (10).
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4.1 Moments of X,

We can find expectation, variance, and third and forth moments of X, by
taking derivative from My, (¢) with respect to t. The results are

A

— B(X)) = z (12)
= M tan ! VIF2X2 V214 N2
o =var(Xy) =1+ X -3 (13)
A g (1+A2)VT 42X 2tan~" /1 +2)2 -
To find skewness and kurtosis of Xy, we have
3+ 2)2
A2(5A2 + 3)
E(X$)=3E(X}) + 15
A X

(14 A2)2(1+2X2)% tan~" /T + 2X2

(see Appendix A2). Using (12)-(15) and some computation we obtain

E(X, — 4
3 < kurtosis of X, = % < 3.8692
A
E(X\—m)?

—5.6330 < skewness of X, = < 5.6330

3
O

We may consider the more general skew-normal density
F@ih) = cNp(@)(Aa),  n=1,2,...

by the name of skew-normal density of order n with distribution GSN(X), which
was introduced by Gupta and Gupta (2004). More Properties of this density
are studied by Sharafi and Behboodian (2006). The result of Theorem 3 can
also be obtained from this general density.

5 Comparison of SN(A) and NSN(X)

In this section, we discuss some properties of Z) ~ SN(\) and X ~ NSN(A).

1. For A=0, X, 2 Z, ~N(0,1).
2. As A\ — £00, the densities of X and Z, go to the half-normal density,
i.e., the density of |U| with U ~ N(0, 1).

© 2006, SRTC Iran



M. Sharafi and J. Behboodian 55

3. =X\~ NSN(—)\) and —Z) ~ SN(—)\).
4. X, and Z, are both strongly unimodal (see Karlin, 1968).

5. Skewness of X, and Z, is positive for A > 0 and negative for A\ < 0.

6. E(XY)>E(Z¥)>0 for X>0, k=13
E(X}) < E(ZF)<0 for A<0, k=13
7. E(X})>E(Z}) for M€R

8. var(X,) <var(Z,) for XeR

skewness of 7,

9. skewness of X >
skewness of 7, <

VAS\%

skewness of X
10. kurtosis of X, > kurtosisof Z, for MeR.

11. P(X, > ) (ZA> 0) for

(see Appendix A3).

6 Hypothesis Testing about A

Let X1, Xo,..., X, beiid. from NSN(A). We want to test Hy : A = A\ versus
Hy : X # A\g. It is easy to show that

_Llgn X
n =1 @()\Xl)

is a decreasing function of A. Using

(see Azzalini, 1985), we have

o3 = var(T) =

s A2
1- .
ntan~t V1 4 2X2 ( 2(1 4 A2?)tan~! \/1+2)\2>

J. Statist. Res. Iran 3 (2006): 47-61



56 A New Skew-normal Density

(see Appendix A4). For large n, we have approximately (under Hy)

_T—pr
or

Z

~N(0,1).

Therefore, the critical region for the above test at the level a is [Z| > z4/2,
where P(Z > z,/2) = /2.

We observe that this statistic is simpler than the similar statistic used by
Gupta and Gupta (2004). Using the following generated data from NSN(1)
with size 60, we want to test Hy : A = 1 versus Hy : A # 1. Under Hy we
obtain

t =0.96331, pr =0.846284, op =0.195198,

z = 0.599830, p-value =2P(Z > 0.599830) = 0.54862

Therefore Hy is not rejected, and the power of the test for A = 0 is 0.9638 at
level a = 0.05.

1.01597 1.16863 0.29148 1.00454 0.29135 1.80183
0.44544 —0.00673 1.81410 —0.57200 1.47283 0.04330
2.46565 —0.03888 1.13157 0.44446 0.64613 1.13833
1.49379 0.00786 0.54528 2.12881 1.58779 1.32810
2.05071 0.56590 0.70947 1.60860 1.70980 1.36679
1.19152 —0.01076 —0.19823 0.58204 —0.02293 0.27317
1.96351 —0.09878 0.46880 1.60463 0.48174 1.48968
0.68240 1.46606 0.61545 1.46024 0.56457 1.53633
0.10162 0.14067 0.48807 0.59445 0.58263 1.01765
0.45428 0.89725 2.09898 0.22074 0.18980 1.43234
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Appendix Al
Let ®1(2;0) be the distribution function of Zg ~ SN(6), and U ~ N(0,1). Then

E{¢2(AU+At)}:¢1(\/xv;\ﬂiW) (16)

Proof. Consider U, Uy, Us i.i.d N(0,1),

[eo]

E{®*(\U + )} = ®2(Mu + Mt)p(u) du

— 00
[ee]

P( SN + Aty Uy S AU + MU = u)p(u) du

\\

( SAU + M, Uy < AU + At

Il
"U

Il
|

(W At At )
S S e
At
= P { max(Wyi, Ws) € ——2— ¢,
{ (W1, W) \/1+)\2}
where W; = (Ui—=AU)/VI+ A2, i = 1,2, and (W1, Wa) ~ Ny (o 0,11, 2 )
By Loperfido (2001) we have

1
Wi, Wa) ~ SN [ ———— |
max{Wi, Wa} <\/1+2>\2>

Thus, we have (16).

Appendix A2

Proof of the formulas (12) and (14): We know that

k dk
B(X}) = My, ()]t = 0.

dt

Therefore

d

B(Xy) = 2 Mx, (1)

=0

——[texp{—t }@1( )\t 2' 2)
tanl\/1+2/\ 2 \/1+)\.’\/1+2/\
2 dt \/1+/\ 7\/1"1‘2)\. t=

0
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Because of

d At 1 A At At
—d ; = 2 9
dt 1(\/1+)\2 \/1+2>\2> V1t g0(\/1+A2> (\/1+)\2\/1+2)\2)

we have

N>\=E(X/\)=< lﬂ >< 4 )
tan~' v1+2A2 ) \V2rv1+ N
Therefore the formula (12) is proved.
For E(X3}), by taking derivative and some calculations we obtain
d?

E(X/\) dthXA )|t:O

_3d¢()\t 1 >+d_3q)</\t. 1 )
Vit vizae) Tt \Vige vizen/ |,

=7 (tan_l ;HW) (x/ﬁx//\H—Az>

- (tan_l Jm> (\/%(1 +§)¢1+—A2>

T A A2
- 3-———
(tan_l V1 +2>\2> (x/ﬁxﬂ + )\2> < 1+ )\2>
34 2)2
1z )
Appendix A3

Proof of some properties (6)-(11):

Proof of (6). For k = 1 (see Azzalini, 1985),

E(X)\)—E(Z)\):(tan VIt (m\/u—v) \/g( 11/\2>

)
:\/7< 1+/\2> <2tan V1+2)2 1)'
Because {r/ (2tan~'v1+2)2)} — 1>

E(X)\) > E(Zy) 20 for X>0,

0 for A € R, we can see that

and

J. Statist. Res. Iran 3 (2006): 47-61



60 A New Skew-normal Density

Now consider k£ = 3. By (14) and Azzalini (1985),

3+2)\2 3+2)\2
E(X}) - E(Z3) = ( T > E(X)) - (H—)\g) E(Zy)
(342X
1+ A2

) (E(X)) - B(Z))).

By the above result for E(X,) — E(Z)), we obtain (6) for k = 3.

Proof of (7). By (13) and Azzalini (1985),

‘ ‘ A2
EXZ—EZZ=1+{ }—
(X3 = B(Z3) (1+A2)V1+ 2\ tan~' V1 + 2A2

)\2
(14 A2)y/1+2X2tan"1 /1 + 2)2

Therefore E(X}) > E(Z3) for A € R.

Appendix A4

Proof of pr and o2

_ / <tan 1+2>\2) <<1>(§x)> o(2)82(\a) da
B (tan VI+2)2 2/\2> E(Z))

-3 () (i)
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The variance of T is

0% = var(T)

o)

N { <tan VI+t2a 2A2> < ;fiw)) Pl (a)de - N%}

2

- ntan~? \/1+2/\2( )

T A2
= 1-— .
ntan~t /1 4 2)2 ( 2(1+ A2)tan~t /1 + 2)\2>
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