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Abstract. Missing values occur in studies of various disciplines
such as social sciences, medicine, and economics. The missing
mechanism in these studies should be investigated more carefully.
In this article, some models, proposed in the literature on longitu-
dinal data with dropout are reviewed and compared. In an applied
example it is shown that the selection model of Hausman and Wise
(1979, Econometrica 47, pp. 455-473) and the shared paramecter
model of Follmann and Wu (1995, Biometrics 51, pp. 151-168),
two of the most used models for longitudinal data with dropout in
economics and medical researches, respectively, cannot sufficiently
consider the relation between response variables and missing mech-
anism. In this paper, the Follmann and Wu's (1995) dropout model
is also generalized by adding a previous time outcome component
to the model. Having modified this model, in the case of lengitu-
dinal data with two time periods, a general form of this mode] is
obtained, which is able to consider all relations between response
and missing mechanism. This is proven in an implicit way. A test
for missing at random in the generalized Heckman model (('rouch-
ley and Ganjali, 2002, Stat. Moedel. 2, pp. 39-62) is also introduced
where onc has to use é-method to find the variance of the test
slatistic.

Keywords. longitudinal data; continuous response; missing val-
ues; selection bias; dropout; random effect madel.
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76 A Comparative Review of Selection Models in . ..

1 Introduction

In longitudinal studies, each subject is measured. for some responses, repeat-
edly at different times. In these studies the missing values commonly occur.
Rubin (1976) and Little and Rubin (2002) Lave done an important classification
ou missing response mechanism for modeling longitudinal data. In accordance
with their taxonomy, missing data mechanism is clasgsified into three different
types. These three types are called missing completely at random (MCAR),
missing at random (MAR), and not missing at random (NMAR). We shall
discuss these mechaunisms in section 2. The pattern of missing values may he
dropout. (monotone) or intermittent (nonmonotone). In the dropout pattern,
some subjects withdraw and never come back to the study, but in intermittent
missing pattern, observed values may be available even after a missing value
oceurs. In section 3, we review the Hausman and Wise {1979, hereafter HW),
Diggle and Kenward (1994, hereafter DK) and Follmann and Wu {1995, here-
after FW) models for longitudinal data with dropout. Crouchley and Gaujali
(2002) explain why these models can not completely describe relations between
response and missing mechanisms. In this paper we shall propose an extension
of FW model and will show that this extension will lead to the special case
of the two-period longitudinal data of the generalized Heckman model (here-
after, GH), introduced by Crouchley and Gaujali (2002}, We shall conclude
that between the four above mentioned models only GH model can. properly.
asses the relationship between response and missing mechanism due to the use
of multivariate normal distribution to obtain various conditional distributions,
but needs to he used along with a sensitivity analysis. A test for MAR in GH
model will also be presented where a é-method approach is used to find the
variance of the test statistic. In section 4, in an applied example of two period
longitudinal data, the above mentioned points can he seen practically. The
lack of fit of FW model in analyzing these data is what Crouchley and Ganjali
{2002) have not covered. In section 5, we have some conclusiouns.

2  Some Basic Definitions

2.1 Response Indicator Variable

Let R denote a variable that indicates whether the value of the response is
observed or not, i.e. R = 1 if the response value i3 observed and R = 0
otherwise. It is lmportant to note that % is generated hy a latent variable
denoted by R¥, that is R = 1 when ¥ passes a particular threshold point
(such as 0, without losing any generality) and B = 0 otherwise. The lateut
variable B* can be interpreted as the propeusity to response of the individual.
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. Vahidi-Asl and M. Ganjali 7T
2.2 Selection Model
The selection model for the ith response is defined as
Flyo i, B, X0) = fly:B. Xo) Plr]y:. . X)), (1)
where r; = (r;1,..., 1) 1s the indicator respounse vector for T subsequent
periods, y = (g1, .., y,1) denotes the vector of observations, and f(y, | 3. X,)

is the probability density function of y;. Here, X, is a vector of explanatory
variables. The vector of parameters are 2 and 15, where 3 is the parameter
of interest and 1 is the missing mechanism parameter. It is assumed that 3
and ¥ are distinct which means these vector of parameters are not functionally
related. The expression of selection madel in equation (1}, in view of P(r; |
v.. 1, X, ). means that, observing response is due to a probabilistic model, which
is conditioned on values of the response and explanatory variables.

2.3 The Mechanism of Missing Responses in Longitudinal
Studies

Assume that the observed and missed components of Y, are denoted as Y.
and Y,uiss- Let R, be the vector of response indicators. Under MCAR mech-
anism. the prohability of observing an observation is independent of any re-
sponses whether ohserved or missing. That is

.P(:R,i =T, | y.;.zi)\JY) = P(R, =r; | ’lp.,)[—.;),
Tuder MAR mechanism we have,
P(RL =T, I y“w-X'i) = P(Rl =T | Yiobss 1,[)~4Yi)

where the missing mechanism, given the observed values of responses (yons ).
docs not depend on missed responses.

The expression of informative dropout was used by Diggle and Kenward
(1994) to describe the NMAR mechanism where the missing mechanism de-
pends on the respouse values, the values which should have heen observed if
not missing. In practice, the missing data mechanism is usually NMAR and
ignoring this. leads to the bias estimates of parameters (Little and Rubin, 2002,
ch. 13).

3 Joint Modeling of Response and Nonresponse
in Longitudinal Studies

In this section, four wide-used models, HW, DI, FW, and GH models for
longitudinal data are reviewed and compared. Some of these revisions and
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T8 A Comparative Review of Selection Models in . ..

comparisons are also given by Crouchley and Ganjali (2002).

3.1 Hausman and Wise Selection Model in Economic and
Social Applications

There arc two statistical modcls that, commonly, ate used to study the behavior
of subjects: the random effect and fixed effect models. In this subsection, we
use the random effect model of Hausman and Wise (1979). In particular, we
assume a model with two time periods. The regression model for behavior of
the subjects is given hy

Yi=x,3+Us (=12, nt=12), (2)

where ¢ indexes subjects, t denotes the time period. and x; is a vector of
cxplanatory variables. Errors, Uy, are partitioned into two perpendicular com-
pounents. The first component, y;, is the individual effect. These individual
effects are assumed to be independent and identically distributed with zero
mean and variance O'i. The second component, v, is the measurement error.
These are independent of p; and also assumed to be independent and iden-
tically distributed with zero mean and variance Jf. So U7, is partitioned as
Uy = p; + vy with E(I) = 0 and var(l7,;) = Ji + a2 = g2,

In practice, it is often observed that rrﬁ > ¢2, and this is due to the large
differences between the subjects. The correlation between U7 and Uy is

2
C"‘M

P12 = o + o2

Here. it is assumed that ;1 is always observed, but y;» is unobserved for some
individuals. Suppose that the probability of missingness of y,2 depends ou w2,
so the mechauism of missingness is not at random. R; (the respouse indicator
variable) is one if y;» is observed and zero if yio is not observed. Hausman
and Wise (1979} applied the latent variable R} so that R, is zero if and only if
R €0, where R} is defined as

R{ = ifm + X;zg + W’;'Y + wi.

wlere W, is a vector of variables that do not affect conditional expectation of
Y but affect probability of missinguess in y;». The vectors of parameters are
0 and . the scale parameter is «, and the variables w; for ¢+ = 1,2,... ,n are
independent and identically distributed random variables. By substituting ;2
from equation {2) in the model for B}, we reach the following egnation:

R; =xi3(af +0)+ Wiy + oliy +w.. (3)
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L. Vahidi-Asl and M. Ganjali 79

In (3) let € = 3 + 8 and '3 = alls +w;, then it turns out that
B = xle+ Wiy + Uy

Assuming Uy and w; are independent and normally distributed, and defining
Zl = [x!,, W] and & = [¢, 7], then RI* = Z/6" + U'%, where

s R: R;
\/ var{l7;3) \/a-2 o? + o2
T U Uiy

T Vvar(Uis) B Vala? 4o
and
6 8
& = — = .
Vvar(Up)  Ja?ol +o2
Since var{l';) = 1, specifying the binary regression model for the indicator
of response is possible and the parameters become identifiable {(Loug, 1997, p.

47}. Therefore, the probabilities of observing or not observing v;». respectively,
are defined with prabit madels as

P(R, = 1) = &(Z8"),
P(R; =0} =1— ®(Z6").

where ® is the cnmulative distribution function of standard normal distribution.
The conditional expectation of Y;; given that ¥ is observed can he obtained
as (for more details, see Johnson and Kotz, 1972)
6(2,8")
E(Yi | % By = 1) = X3 + pyyo———~, 4
( 12 | 12 T ) 12-3 23 @(Z':(S) ( )

where pas is the correlation between Uy and U7, and @ is the probability den-
sity function of the standard normal distribution. The conditional expectation
of Y;1 given that Y3, is observed can be obtained as:
VAL

. olL;
E(Y; le;Rzzl)ZXglﬁerlzpz:sU@EZ‘iE)- (5)

Due to the assumptions of the HW model, the correlations are related as
P13 = Pr2p23-

where py3 is the correlation between U7;; and U};. From equations (4) and (5),
it is realized that the important parameter in determiniug the bias of selection
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80 A Comparative Review of Selection Models in . ..

is the correlation between Uy and U, The hypothesis to test whether the
dropout mechanism is completely at random or uot, is defined as

Hy:poy = 0.

This hypothesis can be tested by using, for example, a generalized likelihood
ratio test. Variables [7y, U, and U have joint normal distribution with zero
mean and the covariance matrix

2 2
a 21207 Prapaaad
2 2
Zgw — | puzo G Pas@
P120230 230 1

It is important to note that cov(U;y, U%) and cov(Usn, U);) depend on pag. Our
criticism of HW model is that it lacks distinction between MAR and MCAR
mechanisms. This can be corrected hy adding a previous response as a covariate
in the model of R} (see next subsection).

3.2 Diggle and Kenward Model for Dropout in Clinical
Applications

Diggle and Kenward {1994) propose a model as

Yo =x,, 8+ Ui, (6)
Yiz = X0+ Ui, (7)
Ry =50+ myin + veye + Us. (8)

which can hetter describe the relation hetween the missing mechanism and
response variables in comparing with HW model. That is, this model considers
the effect of current response (y;2) and previous rvesponse (y;1) in Ri. The
errors in equatious (6) to (8) have zero mean and the covariance matrix as
follows.
O'% Tz 0
Spk = |ow oF 0
0 0 1

Furthermore, Diggle and Kenward (1994) consider the logistic link function
for dropout mechanism. It is importaut to note that this model distinguishes
MCAR and MAR mechanisms. In subsection 3.4 we shall see that this model
gives a different form of GH model for two-period longitudinal data. So, hy
adding a previous outcome in the model for missing wechanism, we may im-
prove HW model with the property that having the same missing mechanism
as DI model, which itself is the same as GH model.
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3.3 The Shared-parameter Random Effect Model of Foll-
mann and Wu

In this section, shmilar to HW model, we consider the random effect model.
W model is defined as

Y = x4 B+ pu + va.
Yo = %08 4 1 + vie
R = Wl + 8p; + v33.

The variance covariance matrix of (Y1, Yo, R}) is given by

2 2 2 2
T, +2:7l,1 , o , 905_
Trw = o, o, +a, 07,
2 2
to, to 1

For the ideutifiability of parameters in model R*, it is necessary to impose the
condition
E)Qai + Ui; =1.

In this model, the missing mechanism is ignorable when = . This madel
cannot also distinguish the MAR mechanism from the MCAR mechanism (see
subsection 3.5).

3.4 Generalized Heckman Maodel

Crouchly and Ganjali (2002), using Heckman model {1979) for cross sectional
studies, have proposed a more general madel for longitudinal data that is known
as GH wmodel. This model is defined as

Yi =x, 8+ Ui,
Yie = X0 + Ui,
R =28 + U

t

Here, there is no structural depeudency between errors and, therefore, the
variauce-covariance matrix is defined as

2
25 P1201G02 P130)
_ 2
Zaa — | pr2oioy [oF5} 2302
21301 P2302 1

The GH model is more general than HW model, since variances of responses
could be different and also there is no restriction on the correlation of respounses
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with R;*. If we evaluate the adjusted form of DI model for two time periods,
by substituting ¥;; and ¥, of equations (6) and (7) into equation (8), then it
can be seen that the two models (DK and GH) are identical. In GH model the
missing mechanism is MCAR if

P13 = p23 = 0,
and it is MAR if

P23 — P12/13
(for more details, see Ganjali and Rezaee, 2005). Suppose pi2 7 0 and pmz # 0,
and let h = pag — prap1z. The function h may be estimated by using the

invariant property of maximum likelihood as h= P23 — f12p13- The é-method
is then used to find an estimate for the variance of % (see Appendix A}. This
is useful for testing MAR. mechanism against NMAR.

3.5 Generalized Follman and Wu Model

Counsider the FW model. As previously noted, there is no relationship between
the missing mechanism and responses if # = 0, and in this case the mechanism
is MCAR. We may add a componeut to this model in order to distingnish
between the two mechanisms (MCAR and MAR) when # = 0. To do this we
assume that the mechanism of missingness is related to the past respouse ().
Then, the full meodel would he

Vi = x4 8+ i + v,
T2 = X 4 pi + vi.
B = Wla + fu; + vy + is-

In this model, for testing MCAR mechanism. the hypotheses v = 0 and # = 0
are required to be tested. To test MAR, we just need to test that # = 0. In the
following. we show, in an implicit way. that including this compouent to the
FW model, makes it equivalent to the GH model for two-period lougitudinal
data.

By substituting Y,; in B}, we have the fallowing equatious:

Yo = x84+ v
Vip = xbyB + i + via.
R =Wia +5(x,8) + {0 + ) + v + v,

By defining

U T+ i v
i3 = = = — —
VVar(a +ve) /120l + ol
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the equations can be rewritten as

-

=X B s+ v,

Vie = X8 + s + viss
. Wia+~(x] 84~ N
. (x};8) (8 +7) i+ vy

3.2 7 2.2

i Jul + 0-113 \/f 0-1)1 + 0-1/3
We shall counsider this model in the form of GH model as
x ! T

o =x; 8+ U

i Xiglﬁ + Ui
R; = Zia“ + I,"Ti;g,

where
Ui = g + 41,
Uis = pa + viz,
. (@ +)
["3: — — i, + V.
i "r'zﬁfﬁl‘i‘o'ﬁgfj i3
o Wia ++(x!
Zga}: z. ‘.( 11.18):
Vel + ol
and )
. a4~ ) 5
var{lUp) = | ————— | o +1.
Vel + ol !
Defining

o Ui
B W VEll‘(L‘r-;g) ;

where var(l7;;) = 1. the FW model becomes

Yo =x3,8+ Ui

Yoo =x0uB8 + Ui

R =Za™ +Uj,
where

#

[

To show that the above model is a form of GH model, we may write the
covariance matrix of (Y51, Y. RI*) as

a’’t =

J. Statist. Res. fean 3 (2008): 75-89



84 A Comparative Review of Selection Models in . ..

Table 1. Number and percentage of cows in the first and the second periods
of mastitis data for jth selected vear {(j = 1,2,...,5)

Selected year 1 2 3 4 5
No. of cows in the first period 9 27 25 23 23
Percentage of cows in the first period 84 252 234 215 215
No. of cows in the second period 19 19 15 21
Percentage of cows in the second period 66.7 704 T6.0 652 91.3
. . . g4 0'2‘ 4+ 0'5
{ o2 + o2 o2 Wi tary
£ 1 [ \/(6'-)—",)-crl-,+';»-‘cr,-,1+cT,‘,‘,j
. . : (B4}
Son = al o2 + o2 z
GIH i I v J(0+ﬁ,.)2a-.ﬁ +AJ,20.;_11+O.;_13
(64+~)o) 4ol (04~)a2 1
Vel taial vel At yPeltyiol ol

With respect to the covariance matrix, the dropout mechanism is completely at
random if # = v = 0, and in the case of # = ( the relation between correlations
is

P23 = L1213,
which means that the dropout mechanism is at random. It is hmportant to
know that for identifiability of parameters in the probit model the following
restriction should be held:

(O +7)°0h + 70l + o, = 1.

4 An Application

4.1 Mastitis Data

The mastitis disease in cows could decrease the amouut of milking. Diggle and
Kenward (1994) studied the amount of milking of 107 cows in two successive
time periods. The aim was to find the relation hetween amount of milking and
the disease of mastitis. In each of five years, a group of cows in their third
lactation (which may happen in any of tlese 5 years) and free of mastitis is
selected and the amount of milking are recorded for two successive years. In
this study, 27 of 107 chosen cows became infected. The vield of milking of
these 27 cows for second period are supposed to be missed. Table 1 shows the
number aud the percentage of chosen cows in the jth year (y = 1,2,...,5) and
also denotes the number and percentage of cows, which have no infection in
second period.
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Tt is seen that the percentage of cows which were present (did not have mastitis)
in the second time period, is minimum in the 4th selected vear {with value of
65.2%) and it has the maximum in the 5th selected vear (with value of 91.3%).

4.2 Model Building

The following GH model can be used for the mastitis data to find the explana-
tory variable and timme effects on the mean of respouses and also the relation
hetween the responses and the missing mechanism

i = o+ Srwa + Bewor + Bawis + Pawas + €,
Jo+ Braon + Fowio + Aaain + Fawis + 0+ €0

R = ag + oy + aoiie + agag + agiyg + i,

22

where the explanatory variables are defined as

1, if the ith cow is chosen in the jth vear
Xy = .
7 0. otherwise.

Here y shows the time effect on the second response mean. The NAG (1996)
program, or function optim in R may be used to maximize the logarithm of
the likelihood function given by Crochley and Ganjali (2002). We have also
fitted DX model to the data. The form of this model is

i = o+ Srwa + Bewonr + Bawis + Jawas + €,
o+ haa + Feain + Jaivig + Jawia + 0+ €0,
BRI =g + arra + ot + agas + aiig + Y190 + Tl + e,

32

where it is assumed that there is no corrvelation between the missing mechanisim
error term (e;3) and response errors (e;1 and €,2). The form of the HW model
that we use, is a special case of DK model, where the previous outcome is not
included in the model for B;. The following FW model is also fitted:

= 80+ Sraen + Fowes + Fyaas + Jaas + I+ v
2= 5o+ Bira + Baie + Jziiz + Bawia + 0+ s + vin,

Ry =og 4+ orra + oo + oy + oudig + 8ps + vis.

Results of fitting these models are given helow.
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Table 2. Parameter estimates and their standard errors for fitting different models with
mastitis data {* significant at 0.01 level, ** significant at 0.03 level, GH: Generalized
Heckman model, DI{: Diggle and Kenward model, II'W: Hausman and Wise model, FW:
Follmann and Wu maodel)

GH model DK HwW FW
Parameters Est. S.E. Est. S.E. Est. S.E. Est. S.E.

2o 5.624%%  0.189 5.624%% 0189 B5.624%* 0196 5.581%%  (0.187
31 0.158  0.336 0.158  0.356 0.110 0366  0.235  0.353
32 —0.031 0.252 —0.031 0.252 0.052 0.262 0.032 0.252
3y 0.324 0.262 0.324 0.262 0.232  0.266 0.359 0.261
3 0.277 0.264 0.277  0.264 0.298 0.274 0.337 0.263
7 0.293%  0.143 0.293*% 0.143  0.762%F 0.118  0Q.736% 0.108
M2 0AGT**  0.088  0.AGT** 0.088  0.562%* 0.072

/a3 —0.148%% 0.132

723 0.729%*  0.101 —0.165 0.193

o1 0.9L1*%  0.630  0.911%% 0.063  1.020%*% 00539 0.436%* 0.107
o2 1.310%%  0.122  1.310%% 0.122 0.846**  0.088
anq 0.965* 0335 0.509%% 1855  1.378%* 0.371  1.536%%  0.269
wq —0.031  0.597 —0.114  1.476 —0.965 0.571 —0.925 0.571
wy —0.449  0.376 —1.100  0.595 —0.829 0A1T  —0.823 0447
w3 —0.165 0.371 —0.483 0.941 —0.689 0464 —0.647 0.465
&7 —0.697  0.370 —1.789 1.213 —0.985x 04538 —0.965 0457
" —1.696% 0.794

2 1.926%  0.807

o -0.191 0.201
T 0.784  0.108
—log! 304.441 304.441 310.717 307.075

4.3 Results

Results of fitting the four models, GH, DX, HW (where gz = prapeg and
a1 = g2), and F'W models are presented in Table 2. In this table the logarithim
of likelihood includes the constant value 1/v/2x. As seen in Table 2, the value of
log likelihood for the GH model is equivalent to that of DIv model. This shows
that GH and DK models give the same results for 8 and, in general, for the
relationship hetween responses and missing mechanism. Tahle 2 also shows that
for the GH model, the missing mechanism is not ignorable, since the missing
process is related to the response of the secoud period (jzz = .729}. The value
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of foz savs that, the larger the value of the response in the second period, the
more is the probability of respouse in the second period. Of course, a better test
for MAR against MN AR is to test i = pog — prapr1a =0 against h £ 0. Using
Appendix A, we find ho= P33 — papry = 0.798 and S F. (h) = 0.084, which
gives a p-value of (L00. This shows that the missing mechanism is NMAR.

Also the probability of not having mastitis for the selected cows in the
4th year is the lowest (ay = —0.697). Whereas, the probability of observ-
ing the cows in the 5th year is the largest. Results for DX model also show
that the missing mechanism is not at random, but they do not claim that
the missing of responses depends on covariates. From the results for HW
model we can conclude that the missing mechanism is completely at random
(p2g = —.165, S.F. =0.193). All the models show the same significant value
for the effect of time in the average of response in the secoud period. DBut
the HW model overestimates the parameters. The FW nodel does not reject
hypothesis of missing completely at random, and gives nearly the same results
as the HW model. This application as well as our theoretical views in previ-
ous sections confirm that the restrictions, which are imposed on HW and FW
model, causes these models not to properly investigate the relationship hetween
responses and missing mechanisms.

5 Recommendation and Concluding Remarks

Dealing with wmissing data should be done with care. Assuming that missing
data are at random, without any testing approach, and using methods such
as expectation maximization algorithm or multiple imputation to estimate the
parameters gives biased estimates if missing data, in fact. are not at random.
Although the use of joint modeling to, simultanecusly, model response and
missing mechanism cau give a way to test for missing at random, it can be
misleading if a wrong model is chosen. In this paper, for example, we show
that FW or HW models can not properly assess the relation between response
and missing mechanisms. On the other hand, GH model, in our example,
did the job perfectly well aud, in general, can be preferred to the other joiut
modeling approaches. This is due to having a nonstructural covariance matrix
for relations between response and missing mechanisms in GH model. However,
like any other model, GH model needs to be done along with some sensitivity
analysis. For one of these analyzes for GH model see Ganjali and Rezaei (2005).
Future works oun seusitivity analysis for data with missing values needs to be
investigated.
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Appendix A: §-method

Suppose 3 is the parameter vector to be estimated and the ML estimate of 3 is
,6 Let cov (ﬂ) denote the asymptotic covariance matrix of ,B Under regularity
conditions (Mood et al., 1974, pp. 315-316) cov{3) is evaluated by the inverse
of information matrix. The (7, &) element of the information matrix is given by

9*(8)
£ (a,-a_?aak) ’

where €(3) = log(L(3)} is the log-likelihood function. Standard errors are
the square roots of diagonal elements of the inverse information matrix. ML
estimates have large-sample normal distribution; they are asymptotically con-
sistent and asymptotically efficient when the model is correctly specified. Fur-
thermore, any subset of 3 has also large-sample normal distribution. For our
cxample, the vector

frz t
Y= P | = b
P23 t3

has large-sample normal distribution with mean + = (p2. p13. p23) and co-
variance matrix which can be found by partitioning of the inverse information
matrix. Let show this matrix by X,. Now, assume that p1o # 0 and 3 # 0.
One may use the §-method to find the variance of A = pag — prepss. This
variance can be used to test MAR against NMAR. in the generalized Heckman
model. As h(t1, 2, 3) has nonzero differential ¢ = (. g2, ¢3) at v, where

b = Oh
i 8t

11.7

then
D - . . . . . ,
Rt ta, t3) = N(h{p1a, prs. pas) {61, 02, 63) S (01, 2. ¢3)).
This distribution is used to test MAR (h = 0) against NMAR.
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