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Abstract. Among all measures of independence between ran-
dom variables, mutual information is the only one that is based
on information theory. Mutual information takes into account of
all kinds of dependencies between variables, i.e., both the linear
and non-linear dependencies. In this paper we have classified some
well-known bivariate distributions into two classes of distributions
based on their mutual information. The distributions within each
class have the same mutual information. These distributions have
been used extensively as survival distributions of two component
systems in reliability theory.

Keywords. mutual information; entropy; survival distribution;
bivariate distributions.

1 Introduction

In reliability theory, a number of bivariate and multivariate distributions have
been developed in order to model the probability distributions of two com-
ponent systems. Among these distributions are bivariate extreme value dis-
tribution (Tawn, 1988), Freund’s (1961) bivariate distribution of X and Y
where failure of one component changes the distribution of the other compo-
nent, Gumbel’s (1961) bivariate logistic distributions, Hougaard’s (1986) class
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of multivariate failure time distributions, Marshall and Olkin’s (1967) bivariate
exponential distribution. Hutchinson and Lai (1991) and Mardia (1970) pro-
vided a review of a large number of such distributions that are used in reliability
theory.

Although information theory and reliability theory have been studied ex-
tensively and almost independently in the literature, many authors such as
El-Sayeed (1969), Evans (1969), Soofi et al. (1995), Teitler et al. (1986), Tribus
(1962) among others have used information theoretic measures in reliability
analysis. In this paper we studied the mutual information of several bivari-
ate distributions and observed that some bivariate distributions have identical
mutual information. This led to the formation of some classes of bivariate
distributions based on common mutual information. In section 2, we briefly
explained the concept of entropy and mutual information of bivariate distribu-
tions. In section 3, we proposed two classes of distributions based on general
expression of mutual information for different bivariate distributions.

2 Measures of Entropy and Mutual Information

In information theory, the uncertainty associated with the distribution of a
random variable X is measured by the entropy

= —/ f(x)log f(z) dx, if X is continuous.

If the random variable X is discrete with a probability mass function p(z) in
the sample space S, then the entropy H(z) is given by

== p(x)logp(x),
z€eS

and is equivalent to the amount of information required on the average to
describe the random variable X.

For bivariate continuous density function f(z,y) of the random variables X
and Y, the entropies of the joint and the marginal densities are

Hin(X,Y) = //fxy)lnf(xy)dxdy,

_ /_ O; fi(2)In fi(x) de,

)=~ [ " () n faly) dy,

and
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where fi(z) and f2(y) are the marginal densities of the random variables X
and Y respectively.

The mutual information I(X,Y") of the random variable X and Y is defined
by

y)
()

= H1(X) + Hy(Y) — Hip(X,Y).

I(X,Y)>0and X and Y are independent if and only if I(X,Y) = 0.
We have studied the entropies and the mutual information of the following
bivariate distributions with joint survival function F (z,y).

1. Bivariate Weibull distribution (Mardia, 1970):

F(z,y) = expd — <%)_+(%)_ :

where x,y > 0; 61,02,31,8: >0;0<c< 1.

I(X)Y) / flx y)ln ()f dxdy

2. Bivariate extreme value distribution (Mardia, 1970):

Faa=enf- (o { =} ren{Z}) ],

where z,y > 0; 0 <c < 1.
3. Bivariate Gompertz distribution (Mardia, 1970):

— - 1 11¢
F(a,y)=exp{= [{m (@ = D} + {m(@ - 1}] },
where z,y,m >0;a>1;0<c< 1.
4. Bivariate Makeham distribution (Mardia, 1970):
F(Ly):exp{[{Ax—i-m(a — 1)} +{By+m(a —1)}° ] }
where z,y > 0;0<c<1;a>1; A,B,m > 0.
5. Bivariate copula distribution (Nelson, 2005):
— 1 1]¢
Fay) =exp{- [{-ln(1-2)} +{-m(1-p)}7] },

where 0 < ¢ < 1, and z, y are uniform random variables in (0, 1).
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6. Bivariate Gumbel’s logistic distribution (Gumbel, 1961):

1
(1 +exp{—z} +exp{—y})°’

F(x,y) = —oo <z, y<oo; c>0,

with a joint density function

clc+1)exp{—z—y}
(1 +exp{—=} + exp{—y})

f(z,y) =

c+2°

7. Bivariate Pareto distribution (Mardia, 1970):

_ 1
F($7y)=m7 z,y 20; ¢>0,
with joint density function
f(x,y) = w
T (A ta+y)t?

3 Classes of Bivariate Distributions Based on
Mutual Information

In this section, we proposed two classes of distributions characterized by two
theorems. The members of each class have the same mutual information.

Theorem 1 Suppose (X,Y) are random variables with joint survival function

Fley)=ep{- [{-mFE@)} +{-nhu)}]}, (1)

where £,y > 0; 0 < ¢ < 1, and Fy, Fy are marginal survival functions of X
and 'Y respectively. Then the mutual information of (X,Y) is given by

[(X,Y) = —1—r'(1)+cexp{1—1}r' (2,%-1),

where T' (2,1 - 1) = f1 1z exp{—x}Inzdr, I'(1) = Euler’s Constant.

Proof. We have

f(z.y)
Ix,y)= //f”““ F@h S
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and
fla,y) F@y) T 0 F (o0 = B (o)) 5!
fi(@) f2(y) Fl( VEy(y )[{ 1 Fl( )} { 1 FZ(?/)} ]
1 _ 17¢—2
[{ In Fy ( )}Z-i-{—lan(y)}“]
= i = 11e 1
X ( {-InF(2)} +{—lan(y)}"] +E_1>'
Let uw'/c = {—lnFl x)} Y and (1—uw)wc = {-InF (y)}l/c, 0<u<

1; w > 0. This gives F (z,y) = exp{—w}, F1( ) = exp{—u‘w}, F»(y
exp{—(1 = u)w}, w = {(~In F} (2))/° + (~ In Fa(y))"/}*

% = explw (u¢ + (1 —w)° — 1)},
and after simplification, we get
0 @) {i;v’]é/)(y) =u (1 —u) " Cw! (w + % - 1) exp{w (u®+ (1 —u) “—1)}
and

f(z,y) dedy = (1 — ¢+ cw) exp{—w} dudw, 0<u<l;, w>0.

Substituting these in I(X,Y), we get

f(z,9)
IxY) //f”““ F@hE S

[ [ o (o)

x exp{w(u® + (1 —u)° — 1)}] (1-c+cw)exp{—w} dudw

1 1
—1—F'(1)+cexp{——1}f"(2,Z—l>, 0<cgl.

If ¢ =1, then I(X,Y) = 0, which means that X and Y are independent. The
bivariate distributions whose survival functions are given by (1) will be called
to form a class C;.

There are many such distributions who are members of this class. Some of
them are (a) bivariate Weibull distribution, (b) bivariate extreme value distri-
bution, (c) bivariate Gompertz distribution, (d) bivariate Makeham distribu-
tion, and (e) bivariate copula distribution.
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For example, if we consider

F (z) :exp{— <%>ﬁ} P (y) :exp{— (5’—)52}

then (1) will reduce to

£1 Ba

which is the bivariate Weibull distribution.

Lemma 1 Suppose X and Y are two continuous random variables. Then the
following result holds.

I=c(c+1) /_°° /_°° In (1 + exp{—a} + exp{—y})

exp{—z}exp{-y}
(1 +exp{—z} + exp{—y})°+?
2c+1
c(e+1)

dxdy

Proof. Let u = exp{—x}/(1 + exp{—y}) and v = exp{—y}. Then 1 +
exp{—z}+exp{—y} = (14u)(14+v) and exp{—z}exp{—y} dzdy = (1+v) dudv,
where u,v > 0. Then it follows that

:c(c+2)/oo/oo{1n(1+u)+1n(1+v)} a7t 1‘+v 5 dudv

w)et2(1 + v)et?
In(1+ u)
c+1/ / A+ ) 21 1 0)eh dudv

In(1+ )
c—l—l)/ / T+ 0)2(1 4 o) dudv

°° In(1 °° In(1
c+1)/ n(1+u) u+c/ Mdv
0

c+2 (1 + v)c-l—l
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Let w =In(1 4+ u) and z = In(1 + v). Then

I=(c+1) /oo w exp{—(c+ 2)w} exp{w} dw

+ c/ z exp{—(c+ 1)z} exp{z} d=
0
1 + 1
c+1 ¢
_ 2c+1

cle+1)

I tends to zero as ¢ tends to infinity.

Theorem 2 Let X, Y be continuous random variables with the joint proba-
bility density function given by

~cle+1) (g1 (2) g2 (1) /{G1 (z) G2 (y)}]
f (:an) - {1 . ln él(;l;) _ ln G_Q(y)}c+2 (2)

and joint survival function given by

1
Fla,y) = {1 -InGi(x) —InGa(y)}e’ ¢>0,

subject to the condition

1-InGi(x) —InGy(y) >0 and Gi(x)=1-Gi(z), i=1,2,

where Gi(x), i = 1,2, are distribution functions.

The marginal densities and the survival functions of X and Y are given
respectively by

_ cqi(2)/Gi() - _ 1
file) = {1 -InGy(z)}et? and File) = m’

 ep(y)/Ga(y) -
hin) = 2B )

where g; (x) = dG; (z)/dz, i =1,2.
Then the mutual information is given by

_ 1
{1 -InGy(y)}’

c+1 1
I(X,)Y)=1 - .
(X,Y)=1In . oy c>0 (3)
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Proof. The entropies of the marginal and joint distribution of distributions of

X and Y are
Hi(z) = —E{lnfi(z)} = —lnc - E ( Gi(x)

Hy(y) = —E{In fo(y)} = —lnc— E (m -

—Hiz(2,y) = E{ln f(z,y)}
=lnc+In(c+1)+ E (ln%) +FE <ln%> — I,

where

Il = (C + 1) /OO 111{1 —1In él (:E)} {1cfllfg1G(;§:}lfc)+l o)

— 00

L=(c+1) /Oo In{1 —InGsy(y)} {lcfﬂfgj;ﬁfﬂ Y,

— 00

I3 = (c+2)c(c+ 1)/_00 /_00 In{1-InGi(z) —InGa(y)}

{91(2)g2()}/{G1(2)Ga(y)}
{1 —InG1(x) — In Ga(y)}et2 daxdy.

Letting In{1 — In G1(2)} = exp{u}, we get

L =(c+1) /oo u exp{utexp{—(c+ 1)u} du

— 00

=c(c+1) /_00 uw exp{—cu} du

c+1

c
Similarly, using In{1 — In G5 (y)} = exp{v}, we get

L =(c+ 1)/00 v exp{v}exp{—(c+ 1)v} dv

— 00

=c(c+1) /_00 v exp{—cv} dv

c+1

c
Also putting —InGy(z) = exp{—2} and —InG4(y) = exp{—y}, we can see

that
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Table 1. Mutual information I(X,Y) as a function of ¢

c 0.5 1 2 10 100
I(X,Y) 1.7853  0.1931 0.0721  0.0044 0.0000

Is = (c+2)c(c+1) /_00 /_00 In (1 + exp{—2z}+ exp{—y})

exp{—zjexp{—y}
dxd
(Lt exp{—z} +exp{-y})=2
2c+1

= (C + Q)W, by Lemma 1.

Thus the mutual information is given by

I(X,Y) = Hi(X) + Ha(Y) — Hi2(X,Y)
2(c+1) 2c+1
—_— - (c+2)c(c+1)

=ln(c+1)—Ilnc+

c+1 1
c c+1

Table 1 gives the values of I(X,Y") for some selected values of ¢. Thus I(X,Y)
is small for large values of c.

The bivariate distributions whose joint probability function are given by
(2) will be called to form a class Cy. If we put Gy () = exp{—exp(—x)} and
Gs (y) = exp{—exp(—y)} in (2), we will get the bivariate Gumbel’s distribution,
and its mutual information is given by (3). Similarly, if we consider G4 (x) =
exp{—2} and G (y) = exp{—y} in (2), we get the bivariate Pareto distribution,
and its mutual information is also given by (3).

The authors could not find any reason why the continuous bivariate distri-
bution developed by Block and Basu (1974) does not belong to either of class
C1 or C5. The entropy and the mutual information of this bivariate distribution
was studied by Ahsanullah and Habibullah (1996).

=In
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