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Abstract. This paper introduces measures of information for
Bayesian analysis when the support of data distribution is trun-
cated progressively. The focus is on the lifetime distributions where
the support is truncated at the current age t > 0. Notions of un-
certainty and information are presented and operationalized by
Shannon entropy, Kullback-Leibler information, and mutual infor-
mation. Dynamic updatings of prior distribution of the parameter
of Tifetime distribution based on observing a survival at age ¢ and
observing a failure or the residual lifetime beyond ¢ are presented.
Dynamic measures of information provided by the data about the
parameter of lifetime distribution, and dynamic predictive informa-
tion are introduced. These measures are applied to two well-known
lifetime models. The paper concludes with some remarks on use of
generalized uncertainty and information measures, and some top-

ics for Turther research.
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Introduction

Nader Ebrahimi’, S. N. U. A. Kirmani*, and Ehsan S. Soofi**

This paper integrates two lines of information theoretic research: dynamic in-

formation measures and Bayesian information measures. In lifetime studies,
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114 Dynamic Bayesian Information Measures

consideration of the current age truncates the support of lifetime distribution
progressively and leads to the past and remaining lifetime distributions where
the age becomes a parameter. The information measures of the truncated dis-
tributions are functions of time, and thus are dynamic. Several authors have
considered information functions that take age into account, see, for example,
Ebrahimi (1996), Ebrahimi and Kirmani (1996 a, b), Di Crescenzo and Longo-
bardi (2002), Belzunce et al., (2004), Asadi, Ebrahimi, and Soofi (2005), Asadi
et al., (2004, 2005), and Ebrahimi. Kirmani, and Soofi (2007). This line of
research has provided some important results for lifetime models.

Bayesian information measures are for an observation y made or to be made
from a random variable Y having a distribution Fy |4(y[f) about the parameter
# when the prior belief can be described by a probability distribution with
density fo(#). The objective is to measure information provided by data about
the parameter. Bayesian information measures are for the purposes such as
design comparison, data evaluation, model comparison, and prior construction;
see for example, Lindley (1956), Zellner (1971, 1977), Bernardo (1979), Goel
and DeGroot (1979), Polson (1992), Soofi (1994, 2000), Singpurwalla, (1997),
Yuan and Clarke (1999), Sebastiani and Wynn (2000). We develop dynamic
versions of several Bayesian information measures. Given a prior distribution
fo(6) for the parameter of the lifetime model Fy|4(y|#), observing a failure
time y > t, the age ¢ induces dynamic into the posterior distribution of # and
leads to dynamic Bayesian information measures. Either or both y and # may
be vectors, but to simplify notation, we discuss the case when both are scalar.

Section 2 presents the notion of uncertainty and information functions. Sec-
tion 3 presents dynamic updating of prior distribution of the parameter of
lifetime distribution based on observing a failure beyond age ¢ and dynamic
Bayesian information measures in the data about the parameter. Section 4
presents dynamic sequential updating of prior distribution of the parameter
of lifetime distribution first based on observing a survival at age ¢ and then
observing the residual lifetime beyond ¢, and the decomposition of total in-
formation measure about the parameter into information for the two stages.
Section 5 presents dynamic information for the predictive distribution and dy-
namic version of Zellner’s Maximal Data Information Prior (MDIP) criterion.
Section 6 presents applications to the exponential and Weibull distributions.
Section 7 gives some concluding remarks.

2  Uncertainty and Information Functions

The notion of information refers to the ease of predictability of an unknown
prospect having a probability distribution F'. The distribution maps uncer-
tainty about all values of the unknown prospect in the range of its possible
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values 8, referred to as the support of the distribution. The overall uncer-
tainty of F' is measured by an uncertainty function mapping the difficulty of
predicting the unknown prospect using F'. The notions of information and un-
certainty are relative and involve comparison of F' with another distribution,
referred to as the reference distribution. We define uncertainty as follows.

The uncertainty associated with a probability distribution F’ having a den-
sity or mass function f is defined by a scaler function U(f) such that:

(a) U(f) is concave in f;
(b) U(f) <U(f),

where f* is the uniform density (possibly improper).

This definition is a modification of the uncertainty function defined by Goel
and DeGroot (1981) where (a) is the only requirement for Z{( f).

The concavity condition (a) implies reduction of uncertainty by averaging.
By (b), U(f) measures the uniformity (lack of concentration) of probabilities
under F', where the uniform distribution reflects the most unpredictable sit-
uation, when we are unable to forecast in favor or against any values for the
unknown prospect. Thus we have no reason to assess if any value is more or less
likely than the others and invoke Laplace’s “Principle of Insufficient Reason”,
assigning equal probabilities to all possible values (intervals of equal width in
the continuous case). The uniform distribution is the global reference distribu-
tion for quantifying uncertainty in terms of unpredictability. This definition is
easily extendible to a restricted set such as the set of all distributions having
certain moment values where f* is the density of the maximum uncertainty
distribution in the set; the concavity of U ensures uniqueness of I/(f*).

The uncertainty function U(f) includes some well-known measures such
as Shannon entropy (Shannon, 1948) and Rényi entropy (Rényi, 1961). The
concavity condition (a) includes variance as an uncertainty measure (Goel and
DeGroot, 1981). But the uniformity condition (b) excludes variance, in general.
First, variance does not necessarily map uniformity of probabilities and hence
does not map uncertainty in the sense of difficulty of predicting outcomes; e.g.,
beta distribution Be(a, 8) with «, 8 < 1, see Ebrahimi, Maasoumi, and Soofi
(1999 a, b). Second, uncertainty function provides a scaler measure for the
multivariate case, but the natural extension of variance is a variance-covariance
matrix, which cannot be summarized uniquely. Third, when the distribution is
heavy tail, the variance is not finite and a finite uncertainty measure is need.
However, for some distributions like normal and exponential, uncertainty can
be measured by variance or a monotone function of it.

Two distributions F; and F5 are compared by an information discrepancy

function
D(f1: f2) 20,
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such that D(f; : fo) is convex in f; and D(f; : fo) = 0 if and only if
fi(x) = fo(x) almost everywhere. An information discrepancy function maps
how different are the two distributions. But it does not indicate which of the
two distributions is more informative (more concentrated).

A discrepancy function between F and the uniform distribution D(f : f¥)
quantifies the information associated with a probability distribution F. An
example of such information measures is the uncertainty difference,

D(f = f7) =AU(f: f7) =U(f") —U(f) =2(f) - Z(f") 2 0,

provided that U(f*) < co. The quantity Z(f) = —U(f) is referred to as the
information function of F.

The uncertainty difference also provides comparison of information for two
distributions F7 and F5,

AD(fr: fo) = AU(f1: f7) = AU(fo : ) = T(f1) — I(f2)-
Note that when U(f;) < o0, 7=1,2,

AZ(fi: fo) = Z(FH) — I(f2)

is well-defined even when U(f*) = co. However, AZ(f; : f2) can be positive
or negative depending upon which of the two distributions is more informative
(concentrated).

An important question in statistics is to what extent the use of a variable
Y reduces uncertainty about predicting the outcomes of another variable X;
Retzer, Soofi, and Soyer (2008) provides a comprehensive treatment of this
topic. When Y is stochastic with distribution Fy-, information provided by an
observation Y = y about predicting outcomes of X can be measured by an
information discrepancy function

D(fx)y: fx) =20, (1)

where fx is the marginal distribuiion of X and fx|, is the conditional distri-
bution of X given y. The information discrepancy function maps how different
are the marginal and conditional distributions. It does not indicate which of
the two disiributions, the conditional density fx|, or the marginal density fx
is more informafive.

Alternatively, information provided by an observation Y = ¥ about predict-
ing outcomes of X can be measured by the uncertainty difference

I(Xy) = AZ(fxpy - fx) = AU(fx : fxpy) = U(Fx) —U(fx)y),

Note that AZ(fx|, : fx) can be positive (negative) when conditional density
fx)y is farther (closer) to uniformity than the marginal density fx.

© 2006, SRTC Iran



Nader Ebrahimi, S. N. U. A. Kirmani, and E. S. Soofi 117

The expected information provided by outcomes of Y for prediction of X is

defined by
I(X|Y)=E, [U(fx)-U(fx)y)] 20, (2)

where E, denotes the expectation with respect to the marginal density fy.
The inequality is implied by concavity of Z/(-) and Jensen’s inequality, and
the equality holds if and only if X and Y are independent. It is reasonable
to require that outcomes of Y, on average, contain some information about
prediction of X, and at worst, in the long-run, use of a variable provides no
information for predicting outcomes of another variable (DeGroot, 1962).

The shared information between a pair of random prospects (X,Y) having
joint distribution Fx y is defined by

CX,Y)=U(fx)+U(fy) —U(fxy)- (3)

This quantity can be positive, negative, or zero. An uncertainty function {(-)
is said to be subadditive if C(X,Y) > 0.

2.1 Examples of Uncertainty and Information Measures

The most well-known example of uncertainty functions is Shannon’s entropy

HY) = H(fy) = - /; log fy (4) dFy (3). (4)

The entropy of uniform distributions over a finite set and finite interval are
finite. In this case

D(f: f*)=AH(f: f*)=H(f")— H(f).

For U(f) = H(f), we denote the information function Z(f) as I(f) = —H(f)
(Lindley, 1956, Zellner, 1971). For two distributions with finite entropy,

AI(fi: f2) = 1(f1) — I(f2)

is well-defined even when H(f*) = oc.
A well-known measure of discrepancy between two probability distributions
Fy and F5 is the Kullback-Leibler information

f1(y)
f2(y)

given that Fi is absolutely continuous with respect to 5.

K(fi:f2)= /s log dFi(y),

J. Statist. Res. Iran 3 (2006): 113-137
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For an observable random prospect K(f; : f2) assumes an interpretation
rooted in the Bayes rule. Given an observation Y = y, Bayes’ theorem relates
the likelihood ratio to the prior and posterior odds in favor of F' as follows:

hly) . P(Rly) | P(F1)
Ry = 8 B(Rly) 8 P(E)

where P(-) and P(:|y) denote the prior and posterior probabilities of the model.
As the difference between the posterior and prior log-odds, the logarithm of the
likelihood ratio log[f1(y)/ f2(y)] quantifies the information in ¥ = y in favor
of F1 against Fy (Kullback 1959). When y is not observed specifically and
there is no information on vy, other than y € S, then K(f; : f2) gives the mean
information per observation y from Fi against F5.

For distributions over a finite set and a finite interval we have

K(f: ) =AH(f: f7) = AI(f": f). (6)

This relationship provides AH(f : f*) the Bayesian interpretation of the
Kullback-Leibler information between F' and the uniform distribution. In gen-
eral, K(f1 : f2) # AI(f1 : f2); Soofi, Ebrahimi, and Habibullah (1995) and
Ebrahimi, Soofi, and Soyer (2008) provide generalizations of (6).

Information provided by an observation Y = y about a random prospect X
can be measured by the entropy difference AH(fx : fx|,) or by the Kullback-
Leibler function K'(fx), : fx) = 0. The expected information, referred to as
mutual information (Shannon 1948), is given by:

log (5)

M(X,Y) = E,JH(X) — H(X]y)] (7)
= B, [K(fxpy: fx)] =0. (8)

Other representations of mutual information are:

M(X,Y)=H(X)- H(X[Y) (9)
—HX)+ HY) = HX,Y) (10)
=K(fx,y: fxfr)s (11}

where H(X|Y) = E,[H(X|y)] is referred to as the conditional entropy, and
H(X,Y) is the entropy of the joint distribution Fx y. The equalities (7)-(11)
follow from the additive decomposition property of Shannon entropy.
Representation (11) is the information discrepancy between the actual joint
distributions of two variables and their joint distribution as if they were inde-
pendent, showing that M(X,Y) > 0 and the equality holds if and only if two
variables are independent. Representations (10) and (11) show the symmetry:
M(X,Y) = M(Y,X). By (10), Shannon entropy is subadditive. By (7)-(11),
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the expected information (2) and shared information (3) based on Shannon
entropy, and the expected information discrepancy between the conditional
Fx|, and marginal Fy distributions (1) and information discrepancy between
the joint Fx y and product marginals Fx Fy based on the Kullback-Leibler
function all provide a unique dependence measure M(X,Y).

2.2 Dynamic Information Functions

In reliability and survival analysis problems, Y is a nonnegative random vari-
able representing a lifetime. In such cases, the age can be taken into account
when measuring information. For taking the current age into account, let Y; <
YTY > ¢. Then the density function of distribution Fy,(y;) = P(Y < w]Y > ¢)

is given by

o) = = P> Y > = U, (12)
where Fy(t) =1- Fy(t).

Let R, 2 Vi —t|Y > ¢, ie, Ry 2 Y, — t is the residual lifetime. Then the
residual density (12) can be represented in terms of r; as

fR,(Tt):%(;t)7 re 2 0.

Since entropy is location-invariant, H(f;t) = H{fy,) = H(fr,). In general,
the residual entropy is a function of ¢.

Noting that for the uniform distribution fy, is also uniform over {y : ¢t <
y < b}, the residual entropy H(f;¢) measures uncertainty due to lack of pre-
dictability of the remaining lifetime at age ¢. It is clear that for to = inf{y :
F(y) =1}, H(f;to) = H(f); without loss of generality, hereafter we let ty = 0.
For each ¢ > 0, H(f;t) possesses all the properties of H(f). If we consider
7 = {t : t > 0} as an index set, then H(f;?) provides a dynamic entropy
ranging over 7 .

Dynamic discrimination information function between two residual life dis-
tributions F (y;¢) and Fy(y;t) implied by two lifetime distributions F(y) and
Fy(y) is given by K(f1 : fo;t) = K[fi(y;t) : f2(y;t)]. Dynamic mutual in-
formation function M(X,Y';t1,ts) is defined when both components in (X,Y)
are residual lifetimes. When only one of two components is a residual lifetime
M(X,Y;t) gives a dynamic mutual information.

J. Statist. Res. Iran 3 (2006): 113-137
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3 Bayesian Information Measures

In Bayesian analysis the focus of interest is a pair of random prospects (©,Y)
which plays the role of (X, Y") of the preceding sections. The second component,
Y, is an observable random variable whose distribution depends on an unknown
parameter 8. The first component O, represents values that the parameter 6
can take according to a prior probability distribution with density fg(#). Thus,
O can be thought of as an unobservable random prospect.

Suppose that Y is a nonnegative random variable representing a lifetime
with distribution Fy|s. We observe y and update our prior beliel about a
parameter # reflected in the prior distribution with density function fo(6). We
use the lifetime density fy|4(y]@), y > 0, for the likelihood function and obtain
the posterior distribution having the density function

fory(0l) = LT o,y 20 (13)

We also obtain a predictive distribution having density function

fr(y) = /0 Frio@0)fo(0) do, >0,

The prior information I(©) = —H(0O) and the likelihood information I(Y]6)
= —H(Y|#) are measures of input information. The posterior information
1(B|y) = —H(Oly) and predictive information I(Y) = —H(Y) are measures
of output information. Three well-known Bayesian measures of information
in data y about the parameter 6 are based on various combinations of these
measures (Lindley, 1956, Zellner, 1977, Abel and Singpurwalla, 1994). The
predictive information is studied by (Press 1996).

3.1 Dynamic Updating

Consider updating the prior belief in situations such as the one follows. Suppose
that Y is the age at death of an insured person who purchases the policy at age t.
The length of time between Y and ¢, together with the age at which insurance
is purchased, is crucial for pricing life insurance products for individuals in
various age groups. Since fy|s(y|0) is the density of lifetime distribution at
birth, various age groups are not distinguished, hence the updating (13) is
static and so is the predictive distribution.

The density function (12) takes the age into account and provides the like-
lihood function

_ fY|e(3/t|9)

frijo(uelf,t) = my Yy > L. (14)
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Given an observation y; > t, the likelihood function (14) is a function of the
observation y; as well as the age ¢, hence it is dynamic.

Using the dynamic likelihood (14) we update the prior for the lifetime model
parameter fo(f) to the posterior distribution having density function

fy10(y:10) fo (0)
Fypa(tl6)

Jfoly, (Blys; 1) o y. >t €0, (15)

In this updating the posterior is a function of the observation y; as well as the
aget at which insurance is purchased, hence it is dynamic. Clearly fg|y, (|y0;0)
= foly(fly), the static posterior (13).

Applications of the dynamic updating extend well beyond life insurance
and lifetime distributions. When the subject of duration study is other than
lifetime (e.g., search time, unemployment period) the present time point plays
the role of “age”. More generally, the dynamic measures are applicable to any
continuous distribution with a positive support. For example, for the distribu-
tions of wage, income, and diminishable natural resources such as petroleum,
the minimum wage, poverty line, and amount of oil extracted to date play the
role of the current age, respectively.

3.2 Expected Information in Data

The exzpected information in the data about the parameter (Lindley 1956) is
given by

HOlY) = E,[H(©) — H(Bly)]
= By [K (feyy : fo)], (16)

where E, denotes the expectation with respect to the marginal density fy.
The expected information #(0|Y) = M(Y,©) is a mutual information, hence
it is symmetric in Y and © and is invariant under all one-to-one transforma-
tions of the data and the parameter. The new notation #(0O|Y) underscores
its directional Bayesian interpretation. The second expression in (16) has an
expected utility interpretation (Bernardo 1979). The reference priors which is
prevalent in Bayesian literature seek to maximize 9(©|Y"), approximately, due
the fact that a closed form solution is rare.

The dynamic expected information in the residual lifetime about the param-
eter is

HOlY;;t) = E,,[H(0) — H(Oly:; 1)]
= Eyt [[( (f@lyt : f@;t)] > (17)

J. Statist. Res. Iran 3 (2006): 113-137
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where F,, denotes the expectation with respect to the marginal residual density
fy, and H(O|y;¢) is the entropy of (15). Clearly, ¥(0|Yp;0) = ¥(O|Y).

Applications of #(O[Y; ) will take the item’s age into account in numerous
applications of Lindley’s measure such as reference priors and diagnostics for
comparison of designs and experiments, model evaluation, information loss due
to censoring, collinearity, and multivariate dimension reduction (see, references
in Singpurwalla 1997 and Soofi 1994).

3.3 Information in Observed Data

The information provided by an observation y about € is measured by the
entropy difference

V(Oly) = H(©) — H(O]y).

Although J9(0]Y) = AI(fe,,fo) we use a new notation to emphasize its
Bayesian interpretation.

In the continuous case, the entropy (4) is not invariant under transforma-
tions. For any nonsingular transformation A = ¢(6)

Zall ) a0

Thus, the information measure ¥(@][y) is invariant under location and scale
transformations of §. However, unlike the expected information #(0[Y), the
information in an observation ¥(O|y) is not invariant under all one-to-one
transformations. Abel and Singpurwalla (1994) found the lack of invariance
of ¥(O|y) useful for comparing the informativeness of outcomes, survival at
time ¢t = t* and failure of an item in a small interval (#*,#* + A) about the
failure rate and mean lifetime under an exponential model.

The dynamic information in an observation y; > ¢ about the parameter 8
is given by

H(A)=H(O)—-E\ [log

HOly:;t) = H(O) — H(Olys; 1), (19)
where H(OJy;t) is the entropy of (15). It is clear that J(O]yo;0) = J(OJy).

4 TInformation Difference Measure

When we observe that a system survival at time ¢ > 0, we can update the prior
distribution fo(6) for the lifetime model parameter based on the survival event
Y >t Let

o 1, if the system is functioning at time ¢
b 0, otherwise.
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Updating the prior distribution fg for the system functioning at time { we
obtain

fois,=1(011,1) < Fy 5 ([0) fo(F), 0 €O. (20)
The information provided by observing the survival event Y > ¢ is given by
the difference
¥(O[S: =1) = H(O) — H(O[S: = 1),
where H(O[S; = 1) = H[fo)s,=1(0]1,1)] is the entropy of (20).

Suppose that after observing the survival we continue the experiment until
the system actually fails at time y; > ¢. Then the likelihood (14) can be
represented in terms of the residual life r, = 4y, — t as
fyio(re +1]0)

Fyo(t0)
The posterior (20) updated by the survival event provides a dynamic prior

distribution for the model (21) and can be updated again upon observing R, =
¢, 1.e., when the system actually fails. We then obtain

fo(Olri,t) = fois,=1,r (OI1,7¢)
< fyja(t +7¢10) fo (0)

Frojo(r:l05t) = re > 0. (21)

T+ 2 0, €0
X fY|9(Z/t|9)f®(9)
ye >t, §€0. (22)

The first expression shows the posterior distribution by decomposing the failure
time y; as t+7; and the second expression shows the dynamic in terms of y; > .
The sequential learning of failure provides the same updating as observing
the failure in a single stage. That is, the total information in the two-stage
updating remains the same as static updating (13). However, we can compute
the information provided by each stage.

For the two-stage updating we have

I(Olys;t) = [H(O) — H(O|S; = )] + [H(O|S; = 1) — H(Oly:; t)]
where ©; denotes the parameter with the event updated distribution fo)g,=1.
The second equality in (23) is obtained from (22).

We therefore have the information difference between observing the survival
event Y > { and observing the actual failure y; > { given by

AY(O[S; = 1,0lys;t) = H(Olys; t) — H(O[S: = 1)
= H(O[S5 = 1) — H(Olys; 1)
= 19(673 T’t;t).

J. Statist. Res. Iran 3 (2006): 113-137
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5 Predictive Information and MDIP

The information functions presented in the preceding section were defined in
terms of difference between the input information about the parameter 7(©)
and the output information about the parameter 1{O[y). This section present
dynamic versions of two information measures that involve the predictive in-
formation I(Y) and the likelihood information I(Y|#).

5.1 Predictive Information

Press (1996) studied the marginal entropy of Y in the Bayesian predictive
context. For the dynamic updating (15) the prior predictive density is given
by

Frile) = / F9(0) fra(9:19)d6. (24)

The dynamic predictive information measure for (24) is I(Y;t) = —H(Y;t).
Using (9) and (17), we have

I(Yyt) = Eg[I(Y1]0;1)] — 9(0]Y2:1), (25)

where Fj denotes the expectation with respect to the prior distribution fo.
This representation provides an intuitive interpretation of the predictive infor-
mation as being the difference between the expected information in the residual
lifetime likelihood about residual life and the expected information in the resid-
ual life data about the parameter.

5.2 MDIP

An information measure proposed by Zellner (1977) for developing priors is
defined in terms of difference between the two inputs: prior information about
the parameter I(©) and the likelihood information I(Y]6). Zellner’s measure,
referred to as the maximal data information prior (MDIP) criterion, is defined
as

Z(©) = Eg[H(©) — H(Y|0)]
= BV~ 1(0)
= Epy [K (fyo : fo)],

where FEy), denotes the expectation with respect to the posterior distribution
Jo|y- By the virtue of second representation, the MDIP criterion function is
interpreted as the dpriori expected information in the likelihood from which
the information in the prior distribution is subtracted. The third expression is
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well-defined whenever the sampling distribution fy ¢ is absolutely continuous
with respect to the prior fg. For the case of lifetime distributions, typically
parameters are positive and the support of fy g is a subset of RT, hence the
absolute continuity is satisfied.

The MDIP criterion can be expressed in terms of expected information
about the parameter, the predictive information, and the prior information as

2(0) = 9(O|Y) + I(Y) — 1(0).

The MDIP distribution maximizes Z(©). The MDIP distribution has a
closed form density function given by

firprp(0) o exp{—H(Y|0)}.

The entropy expression for many well-known families of distribution has closed
form. When 0 ranges over a finite set or interval, f;,,;5(9) is a proper density
functions. Otherwise, it can be improper. The MDIP solution is maximally
committal to the data information (minimally committal to non-data informa-
tion). Note that the MDIP density function f3,,;5(8) is decreasing function
of the likelihood entropy.

Interestingly, for Z*(0) = max;y) Z(0), we have

Z2Y0) - 2(0) = K[f(0) : firnrp9)]-

Details and applications of the MDIP to various probability and econometrics
models can be found in Zellner (1997).
The dynamic MDIP criterion is given by

Z(05t) = Ep[H(O) — H(Y3]0;1)]
= E9|yf [[( (fyfle : fe;t)] :

The maximum dynamic data information prior is the density f;(#) that max-
imizes Z(0;t). A closed form solution is obtainable whenever the residual
entropy has a closed form, however it will be improper for most well known
models.

6 Exponential and Weibull Models

This section illustrates applications of the Bayesian dynamic information mea-
sures for two lifetime models shown in Table 1. These two models are chosen
because: (a) the exponential model is the most fundamental lifetime model
and has the unique lack of memory property; and (b) the Weibull model is also

J. Statist. Res. Iran 3 (2006): 113-137
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Table 1. Parametric functions of interest for Bayesian information analysis of the
exponential and Weibull models.

Lifetime Model Prior Density Failure rate Mean
Exponential
F(4l0) = 0 J0) x 65 1 B8, A(y[o) = 0 pyo =071
>0
Weibull
F10) = cBye=1e="  f(0) o 05"1eB0 A(yl0) = cyt10  puyp = T(1+ L)0 %
>0

an important model for which information functions provide example of more
general features than those for the exponential model. The Weibull shape pa-
rameter ¢ is assumed to be known. In each case, for the parameter of interest
f we use the gamma prior Gam(a, 8). For each model, we discuss the infor-
mation provided by an observation y; about the model parameter # and about
two important functions of the parameter, the failure rate ¢;(f) = A(y]f) and
the mean ¢3(6) = piy)9, shown in Table 1.

For both models, the posterior distributions for the model parameter are
also gamma fg|paia = Gam(a, ), where the updated parameters depend on
the updating scenarios. When a failure is observed, & = a + 1 and for ob-
serving a survival @ = a. For the exponential parameter , posterior (13)
is foy,(0ly:) = Gam(a +1, B+ y —t) = Gam(a + 1, B+ r;) and poste-
rior (20) is fe|s,=1(0|1,t) = Gam(a, B +t). For the Weibull parameter 6,
posterior (15) is foy, (0y:) = Gam(a + 1, B+ y° — t°) and posterior (20) is
fols,=1(0]1,t) = Gam(a, B +1°).

Figure 1 shows the density functions of the prior and posterior distributions
of the exponential failure rate A(y|f) =0 fora =5 =3,t =3, and r, = 1,3, 5.
The prior is the same as that used by Abel and Singpurwalla (1994) and the
posterior for survival at £ = 3 is also the same as theirs. The posterior for r; = 3
is equivalent to the static posterior (13) for observing a failure at y = 3 used by
Abel and Singpurwalla for illustrating that a failure is less informative about
the exponential failure rate than a survival at ¢ = 3. (The survival posterior
for ¢ = 3 is more concentrated than the failure posterior for y = 3). Figure
1 shows that the posteriors for observing failure become more concentrated
as the residual lifetime r; increases and eventually become more concentrated
(e.g., the posterior for r; = 5) than the survival posterior for ¢ = 3.
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Figure 1. Prior and dynamic posterior distributions of the exponential failure rate 4.

6.1 Expected Information

The entropy of prior distribution fo = Gam(a, () is given by
H(©) =logI'(a) —log 8 — (a — 1)¥(a) + a, (26)

where (@) = dlogI'(a)/da is digamma function. The posterior entropies are
given by (26) with the updated parameters.

The exponential and Weibull variables are related by a one-to-one transfor-
mation. Due to the invariance of mutual information, the expected information
in data about 6 is the same for both cases. Since y and ¢ only effect the scale
of prior distribution, the expected information is free of { and is given by

IOY) = é + () — loga. (27)

For each case, ¢1(6) = A(y[f) and ¢2(f) = p, 9 are one-to-one transformations,
thus the expected information about the failure rate and the mean is also given
by (27).

In general, however, dynamic Lindley’s measure need not be free of {. For
example, consider the case when Y has a uniform distribution over (8,6 4 1)
and the prior for # is uniform over an interval. It can be shown that J(O[Y;?)

depends on t.

J. Statist. Res. Iran 3 (2006): 113-137



128 Dynamic Bayesian Information Measures

6.2 Information in An Observation

For the exponential model, the information in an observation y; > ¢ about the
failure rate is

I(Oly;t) = log (1 + ytT_t> +¢(a) — loga

(28)

Ax(B,ys, t) + Bafa)

= AL(B,r) + Bala).

The prior and posterior entropies of u = #~! are obtained by (18), and the
information (19) for the mean lifetime is

-1 2
HO yt) = —log (1 + ytﬁ > + ¥(a) —loga + o

=A4,8,y:,0) + B,(a)
= A5 (B,71) + By(a). (29)

The following points are noteworthy.

-t
(a) Forr, =y, —1t, Ax(B,y:,t) = AL(B, 1) = log (1 + ytﬁ >; clearly, the

function is decreasing in § and ¢, and increasing in y; and 7;.

(b) Forry=yi—t, A (B,y:,t) = A (B,7¢) = —A3(B,7¢); clearly, the function
is increasing in 3 and ¢, and decreasing in y; and 7.

{c) As a functions of ¢, the information measures (28) and (29) are dynamic.
However, in terms of the residual life r; these information measures are
memoryless due to the lack of memory of the exponential model.

(d) Bi(a) = ¥(a) —loga < 0; the function is increasing for all « with the
upper bound zero.

2
(e) Bu(a)=19(a)—loga+ ~> 0; the function is decreasing for all o with

a lower bound zero.

(f) The average of (28) and (29) is

[9(Olye; t) + IO yas 1)] = D(OIY).

DO =
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That is, the information in an observation y; > ¢ about the exponential
failure rate and about the mean lifetime average to the expected infor-
mation in data about the exponential parameter J(0©]Y ), which is free of
t.

For the exponential model, as an item gets older, observation of its lifetime
becomes less informative about the failure rate and more informative about
the mean lifetime. For ¢t = 0 and y = ¢*, (28) and (29) give the information
provided by observing a failure at y =~ t* about the exponential failure rate and
mean studied by Abel and Singpurwalla (1994).

More insights about the information functions can be gained by considering
the family of gamma priors that have a given mean, say Fy(©) = 1 implying
o = (3. In this family, the prior entropy is concave in « with maximum at
a = 1, i.e., when the prior is exponential, but the prior variance is convex
and decreasing in «. Figure 2a shows plots of the entropy and variance of this
family as functions of «.

It can be shown that the information about the failure rate 9(O|r;, ) is
concave in o and the information about the mean ¥(©~!|r;, a) is convex and
decreasing in «. Figure 2b shows examples of information functions for the
exponential model when r;, = 1,3. The graph illustrates the pattern of infor-
mation about the failure rate (dotted lines) is similar to the pattern of prior
entropy and the pattern of information about the mean (dashed lines) is similar
to the pattern of prior variance. The graph also illustrates that the informa-
tion about the failure rate (mean) increases (decreases) with ;. The expected
information is also shown which is the average of information about the failure
rate and the mean. The expected information is decreasing in a.

For the Weibull model, the information about # is in the same form as (28)
where y and t are replaced with y© and ¢°.

yi —t°

(Oly:;t) = log (1 + ) +1(a) — loga

= A(B,y;,1%) + Ba(@). (30)

As seen in Table 1, the failure rate is a linear function of 8. Hence, the dynamic
information about the failure rate is 9(O]y;;¢). The mean is a scalar multiple
of #~1/¢, which has an inverted generalized gamma distribution. Applications
of (18) on the prior and posterior entropies of # gives

9 (e—%|yt;t> = —élog (1 + %) + () — loga + (1 + %) é
:A}Lc(ﬂ7yt7t)+BNc(a)' (31)
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Figure 2. Entropy and variance of gamma prior with parameters a = [ and informa-

tion function about the exponential failure rate (dotied), mean (dashed), and the expected

information.
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The following points are noteworthy.

(a) As functions of «, 8, y;, and ¢, the dynamic behaviors of the information
measures for the Weibull parameter, failure rate, and mean are similar
to those for the exponential model.

(b) Forry =y —t, A, (B,y5,t°) = Ay (B,7:) if and only if ¢ = 1; i.e. the
model is exponential.

(c) As a functions of ¢, the information measures (30) and (31) are dynamic.
With y; = ¢ + r; these information measures are functions of the residual

life r; and ¢ and are memoryless if and only if ¢ = 1; i.e. the model is
exponential.

(dy A, .(B,y5,t) = —A\(B,y7,t°) if and only if ¢ = 1; i.e. the model is
exponential.

1\ 1
(e) B..(a)=1¢(a)—loga + (1 + E) o> 0; the function is decreasing for

all o with a Iower bound zero.

(f) The average of (30) and (31) is less than ¥(©|Y) for ¢ < 1 when the
failure rate is decreasing; it is greater than #(0O[Y) for ¢ > 1 when the
failure rate is increasing; and equal to the expected information J(O[Y)
for ¢ = 1 when failure rate is constant (the model is exponential). In
general, the average is a function of ¢.

Figure 3 shows examples of information functions for the Weibull model
when ¢ = 2 based on the family of gamma priors with parameters a = [.
The plots are for ¢ = 1,3 and r, = 1. The graph illustrates the information
about the failure rate (dotted lines) follows similar pattern as the prior entropy
and the information about the mean (dashed lines) follows similar pattern as
the prior variance. The graph also illustrates that the information about the
failure rate (mean) increases (decreases) with ¢. The expected information
is also shown which in this case is not the average of information about the
failure rate and the mean. The dashed-dotted lines show plots of averages of
information measures for the failure rate and the mean which depend on ¢; on
average, the information decreases as f increases.

6.3 Information Difference Measure

For the exponential parameter §, the posterior (15) is Gam(a, 4+ t). The
information about # provided by observing the survival event Y > ¢ is
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K>
L

Infortpation function
-

o=p

Figure 3. Dynamic information function about the Weibull (¢ = 2) failure rate (dotted),
mean (dashed), their average (dotted-dashed) and the expected information when prior pa-

rameters are a = f.

9(O|S; = 1) = log (1 + %) .

This gives the information about the exponential failure rate provided by ob-
serving a survival at ¢ = t*, which is studied by Abel and Singpurwalla (1994).

The information difference between observing the survival event Y > ¢ and
observing an actual failure y; > ¢ is given by

AQ?(@LS} = 1,8|yt) = ﬁ(@tl’l})

=log (1 + #) + ¥(a) —log o

= 9(O|y:; ).

The information difference is nonnegative only when ﬂ:t_ " > aexp{—¢(a)}-1.

For the Weibull parameter 8, the posterior (15) is Gam{(a, 8 +t°). The
information about # provided by observing the survival event Y > { is

9(O|S; = 1) = log (1 + %) .
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The information difference between observing the survival event ¥ > { and
observing an actual failure y; > { is given by

ﬂ‘l‘ (’I“t +t)c

AD(B]S; = 1,0Jy:) = D(O]r:) = log 5" 2

+ ¢¥(a) — loga.

In this case, the information difference is an increasing function of r; and de-
creasing functions of a and 5.

6.4 Predictive Information

The dynamic predictive information is obtained by using (27) in (25) and eval-
uating Ep[[(Y]0;t)]. Since (27) is free of ¢, the dynamic of the predictive
information is induced by the likelihood function. Thus, I(Y;t) is free of ¢ for
exponential, but not for Weibull. For the exponential model, the predictive
density is Pareto over (8,00) and I(Y;t) = —H(a) — log 8, where

1
H(a)zl—l—a—logoz

is the entropy of Pareto distribution with parameter . For Weibull, the pre-
dictive entropy is given by I(Y;¢) = —H(a)+ A(a, B,¢,t) where A(a, B,c,t) is
increasing in ¢ for ¢ > 1 and decreasing when ¢ < 1.

6.5 MDIP Criterion

Tt is easily seen that Z(0©;t) is free of t if and only if the lifetime is exponentially
distributed. For the Weibull case, it can be shown that Z(©;t) is an increasing
function of ¢ for ¢ < 1 (the decreasing failure rate case) and is a decreasing
function of ¢ for ¢ > 1 (the increasing failure rate case). If we wish to develop
priors based on MDIP, the priors for 6§ will be improper for all three cases.

7 Concluding Remarks

We have introduced the concept of Bayesian dynamic information. Four mea-
sures that combine prior and residual life data are introduced: dynamic Lind-
ley’s expected information in an experiment about a parameter, dynamic in-
formation in observed data about a parameter, dynamic information in the
predictive distribution, and dynamic Zellner’s information in the data about
the parameter. These measures are applied to examine information provided
by the data beyond an age about the mean and hazard function under the
exponential and Weibull models for the lifetime variable, and the respective
predictive distributions.

J. Statist. Res. Iran 3 (2006): 113-137



134 Dynamic Bayesian Information Measures

The entropy, discrimination information function, and mutual information
for the past lifetime (or down time) of a system are defined similarly and provide
dynamic information measures; see Di Crescenzo and Longobardi (2002, 2004).
All the dynamic Bayesian measures presented in this paper can simply be
adapted using the past lifetime information measures.

Another well-known measure of uncertainty of a distribution is the entropy
of order o, (Rényi 1961), which generalizes Shannon entropy. The information
divergence of order o (Rényi 1961) generalizes the Kullback-Leibler informa-
tion. Asadi et al. (2005) and Abraham and Sankaran (2006) have developed
dynamic versions of Rényi entropy and information divergence, and Nanda and
Paul (2006) have studied other generalization in the dynamic context. These
measures can be used in the context of Bayesian information, as well. The
choice of an uncertainty function is up to the researcher, taking into consider-
ation the properties and suitability of the measure for a particular study. An
advantage of Shannon entropy is its additive decomposition property, which
impies the equalities (8)-(11). Use of Rényi entropy and information diver-
gence in (8)-(11) provides four different measures of dependence. The Bayesian
interpretation of of Kullback-Leibler information (5) and entropy is another ad-
vantage for their applications in the context of Bayesian information analysis.

The concepts and results developed in this paper provide some topics for
future research, including implications of the dynamic information about the
parameters and dynamic predictive information for system design, experimen-
tal design, sampling schemes, and minimal information priors. We explored
some properties of dynamic Bayesian information measures for the exponen-
tial and Weibull models. Establishing these types of properties for dynamic
Bayesian information measures in the context of some broader classes of dis-
tributions provides interesting and challenging research topics.

In another route, Mazzuchi et al. (2008) used the quantized entropy for de-
veloping a procedure for Bayesian inference about Shannon entropy when Fy g
is unknown and the Kullback-Leibler information index of fit of a model Fy,,.
The key elements of their procedure is a maximum entropy distribution F;;| g in
a moment class as the first guess in the Dirichlet process prior and estimating
the moments using the Dirichlet probabilities such that the Kullback-Leibler in-
formation can be estimated properly through difference between two entropies.
Extension of their procedure to the dynamic setting requires addressing a few
important issues such as what types of maximum entropy models may be con-
sidered: the traditional maximum entropy model in a moment class or the
maximum dynamic entropy models developed by Asadi et al. (2004)?

© 2006, SRTC Iran



Nader Ebrahimi, S. N. U. A. Kirmani, and E. S. Soofi 135

References

Abel, P.S.; Singpurwalla, N.D. (1994). To survive or to fail: that is the question. The
American Statistician. 48, 18-21.

Abraham B.; Sankaran, P.G. (2006). Rényi’s entropy for residual lifetime distribution. Sta-
tistical Papers. 47, 17-29.

Asadi, M.; Ebrahimi, N.; Soofi, E.S. (2005). Dynamic generalized information measures.
Statistics and Probability Letters. 71, 85-98.

Asadi, M.; Ebrahimi, N.; Hamedani, G.G.; Soofi, E.S. (2004). Maximum dynamic entropy
models. Journal of Applied Probability. 41, 379-390.

Asadi, M.; Ebrahimi, N.; Hamedani, G.G.; Soofi, E.S. (2005). Dynamic minimum discrimi-
nation information models. Journal of Applied Probability. 42, 643-660.

DeGroot, M.H. (1962). Uncertainty, information, and sequential experiments. Annals of
Mathematical Statistics. 33, 404-419.

Belzunce, F.; Navarro, J.; Ruiz, J.M. (2004). Some results on residual entropy functions.
Metrika. 59, 147-161.

Bernardo, J.M. (1979). Expected information as expected utility. The Annals of Statistics.
7, 686-690.

Di Crescenzo, A.; Longobardi, M. (2002). Entropy-based measure of uncertainty in past
lifetime distributions. Journal of Applied Probability. 39, 434-440.

Di Crescenzo, A.; Longobardi, M. (2004). A Measure of discrimination between past life-time
distributions. Statistics and Probability Letters. 67, 173-182.

Ebrahimi, N. (1996). How to measure uncertainty in the residual lifetime distributions.
Sankhya A. 58, 48-5T.

Ebrahimi, N.; Kirmani, S N.U.A. (1996 a). A Characterization of the proportional haz-
ards model through a measure of discrimination between two residual life distributions.
Biometrika. 83, 233-235.

Ebrahimi, N.; Kirmani, S.N.U.A. (1996 b). Some results on ordering of survival functions
through uncertainty. Statistics and Probability Letters. 29, 167-176.

Ebrahimi, N.; Kirmani, S.N.U.A.; Soofi, E.S. (2007). Dynamic multivariate information.
Journal of Multivariate Analysis. 98, 328-349.

Ebrahimi, N.; Maasoumi, E.; Soofi, E.S. (1999 a). Ordering univariate distributions by
entropy and variance. Journal of Econometrics. 90, 317-336.

Ebrahimi, N.; Maasoumi, E.; Soofi, E.S. (1999 b). Measuring informativeness of data by
entropy and variance. in Advances in Econometrics: Income Distribution and Method-

ology of Science, Essays in Honor of Camilo Dagum, D. Slottje, ed. Physica-Verlag,
New York.

J. Statist. Res. Iran 3 (2006): 113-137



136 Dynamic Bayesian Information Measures

Ebrahimi, N.; Soofi, E.S.; Soyer, R. (2008). Multivariate maximum entropy identification,
transformation, and dependence. Journal of Multivariate Analysits. 99, 1217-1231.

Goel, P.K.; DeGroot, M.H. (1981). Information about hyperparameters in hierarchical mod-
els. Journal of the American Statistical Association. 76, 140-147.

Kullback, S. (1959), Information Theory and Statistics. Wiley, New York.

Lindley, D.V. (1956). On a measure of information provided by an experiment. The Annals
of Math. Stal. 27, 986-1005.

Mazzuchi, T.A.; Soofi, E.S.; Soyer, R. (2008). Bayes estimate and inference for entropy and
information index of fit. Fconometric Reviews. 27, 428-456.

Nanda A.K.; Paul, P. (2006). Some results on generalized residual entropy. Information
Sciences. 176, 27-47.

Polson, N.G. (1992). On the expected amount of information from a nonlinear model. Journal
of the Royal Statistical Society B. 54, 889-895.

Press, S.J. (1996). The Definetti Transform. in Mezimum Entropy and Baeyesian Methods.
Kittanson and R. Silver, eds. Kluwer.

Rényi, A. (1961). On measures of entropy and information. Proceedings of the Fourth
Berkeley Symposium. 1, 547-561.

Retzer, J.J.; Soofi, E.S.; Soyer, R. (2008). Information importance of predictors: Con-
cepts, measures, Bayesian inference, and applications. Computational Statistics and
Data Analysis, in press.

Sebastiani, P.; Wynn, H.P. (2000). Maximum entropy sampling and optimal Bayesian exper-
imental design. Journal of the Royal Statistical Society, Ser. B. 62, 145-157.

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical
Journal 27, 379-423.

Singpurwalla, N.D. (1997). Entropy and information in reliability. in Bayesian Analysis of
Statistics and Economelrics: Essays in Honor of Arnold Zellner, D. Berry, K. Chaloner,
and J. Geweke, eds. Wiley, New York, pp. 459-469.

Soofi, E.S. (2000). Principal information theoretic approaches. Journal of the American
Statistical Association. 95, 1349-1353.

Soofi, E.S. (1994). Capturing the intangible concept of information. Journal of the American
Statistical Association. 89, 1243-1254.

Soofi, E.S.; Ebrahimi, N.; Habibullah, M. (1995). Information distinguishability with appli-
cation to analysis of failure data. Journal of the American Statistical Association. 90,
657-668.

Yuan, A.; Clarke, B. (1999). An information criterion for likelihood selection. [EEE Trans-
actions On Information Theory. ITT 45, 562-571.

Zellner, A. (1971). An Introduciion to Bayesian Inference in Econometrics, Wiley, New
York.

© 2006, SRTC Iran



Nader Ebrahimi, S. N. U. A. Kirmani, and E. S. Soofi 137

Zellner, A. (1977). Maximal data information prior distributions. in New Developmenis
in Applications of Bayesian Methods, A. Aykac and C, Brumat, eds. North Holland,
Amsterdam, pp. 211-232.

Zellner, A. (1997). Bayesian Analysis in Econometrics and Statistics: The Zellner View and
Papers, Cheltenham, UK & Lyme, US: Edward Elgar.

Nader Ebrahimi S. N. U. A. Kirmani
Division of Statistics, Department of Mathematics,
Northern Illinois University, University of Northern Iowa,
Dekalb, IL 60155. Cedar Falls, [A 50614.

e-mail: nader@math.niu.edu e-mail: kirmani@math.uni.edu

Fhsan 8. Soofi

Sheldon B. Lubar School of Business,
University of Wisconsin-Milwaukee,
P.O.Box 742, Milwaukee, WI 53201.
e-mail: esoofi@uwm.edu

J. Statist. Res. Iran 3 (2006): 113-137



