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Abstract. This paper address the problem of Bayesian estimation
of the parameters, reliability and hazard function in the context
of record statistics values from the two-parameter Lomax distri-
bution. The ML and the Bayes estimates based on records are
derived for the two unknown parametesr and the survival time pa-
rameters, reliability and hazard functions. The Bayes estimates are
obtained based on conjugate prior for the scale parameter and dis-
crete prior for the shape parameter of this model. This is done with
respect to both symmetric loss function (squared error loss), and
asymmetric loss function (linear-exponential (LINEX)) loss func-
tion. The maximum likelihood and the different Bayes estimates
are compared via Monte Carlo simulation study. A practical ex-
ample consisting of real record values including in the data from
an accelerated test on insulating fluid reported by Nelson was used
for illustration and comparison. Finally, Bayesian predictive den-
sity function, which is necessary to obtain bounds for predictive
interval of future record is derived and discussed using a numerical

example.
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1 Introduction

Record values and the associated statistics are of interest and importance in
many areas of real life applications involving data relating to meteorology,
sport, economics and lifetesting. Many authors have studied records and asso-
ciated statistics. Among them are Resnick (1987), Nagaraja (1988), Ahsanullah
(1993, 1995), Arnold et al. (1992, 1998), Ragab and Ahsanullah (2001), and
Ragab (2002).

The Lomax distribution can be considered as a mixture of the exponential-
gamma distribution. Lomax (1954) used this distribution in the analysis of
business failure data. Balkema and De Haan (1974) showed that this distri-
bution arises as a limit distribution of residual lifetime at great age. Lomax
distribution includes increasing and decreasing hazard rates as well. Lomax
distribution has been shown to be useful for modelling and analizing the life
time data in medical and biological sciences, engineering, etc. So, it has been
received the greatest attention from theoretical and applied statisticians pri-
marily due to its use in reliability and lifetesting studies. Many statistical
methods have been developed for this distribution, for a review of Lomax distri-
bution see Habibullah and Ahsanullah (2000), Upadhyay and Peshwani (2003)
and Abd Ellah (2003) and the references of them. A great deal of research has
been done on estimating the parameters of a Lomax using both classical and
Bayesian techniques, and a very good summary of this works can be found in
Johnson et al. (1994).

Let X1, X5, X3,... be asequence of independent and identically distributed
random variables with cdf F(z) and pdf f(z). Set Y, = max(Xy, Xs, X3, ...
Xn), n 2 1, X; is said to be an upper record and is denoted by Xy ;) if
YV;>Y;1,7> 1

Let Xy1y, Xu(2), Xu(s), - - Xu(n) be the first n upper record values arising
from a sequence {X,} of i.i.d Lomax variables with pdf

f@)=aB*(x+6)""", 220, a,B>0, (1)

and distribution function

Fa)=1-8"w+8) ", 230, a,f>0, )

Where 3 is the scale parameter and « is the shape parameter. This version
of the Lomax distribution “separates” the two parameters and often simplifies
the algebra in the subsequent Bayesian manipulations.

The reliability function R(¢), and the hazard (instantaneous failure rate)
function H(t) at mission time ¢ for the Lomax distribution are respectively:

R(t) =31+ /)7, t>0, (3)
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and

Ht)=at+p)~" t>0. (4)

For most statisticians, mainly interested in controlling the amount of vari-
ability, it has become standard practice to use the squared error loss function
(s.e.l) (symmetric). The symmetric nature of this function gives equal weight
to overestimation and underestimation, while in the estimation of parameters
of life time model, overestimation may be more serious than underestimation
or vice-versa. For example, in the estimation of reliability and failure rate
functions, an overestimate is usually much more serious than underestimate,
in this case the use of symmetric loss function may be inappropriate as it has
been recognized by Basu and Ebrahimi (1992). This leads to the idea that an
asymmetrical loss function may be more appropriate.

A number of asymmetric loss functions are proposed. One of the most
popular is linear-exponential loss function (LINEX) which was introduced by
Varian (1975) and many other authors including Basu and Ebrahimi (1992),
Pandey (1997), Soliman (2000, 2002) and Soliman et al. (2006) who have
used this loss function in different estimation problems. This function rises
approximately exponentially on one side of zero and approximately linearly on

the other side. Under the assumption that the minimal loss occurs at ¢ = ¢,
the LINEX loss function for ¢ = ¢(a, §) can be expressed as:

L{A) xxexp{cA} —cA - 1; c#0, (5)

where A = (¢ — ¢) and ¢ is an estimate of ¢. The sign and magnitude of the
shape parameter ¢ represents the direction and degree of symmetry respectively
(If ¢ > 0, the overestimation is more serious than underestimation, and vice-
versa). For ¢ closed to zero, the LINEX loss is approximately squared error
loss and therefore it is almost symmetric.

The posterior expectation of the LINEX loss function (5) is

E4[L(6 — 9)] o exp{ed} Eglexp{—cd}] — c(¢ — E4(9)) — 1 (6)
where E,(-) denotes the posterior expectation with respect to the posterior

density of ¢. The Bayes estimator of ¢, denoted by ;5,;,/ under the LINEX loss

function is the value ¢ which minimizes (6), it is

b1 = — < W[y {exp(~co))] 7)

provided that the expectation Eg{exp(—c¢)} exists and is finite (Calabria and

Pulcini, 1996).
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The objective of this paper is to obtain and compare several types of esti-
mation based on record statistics for the two unknown parameter of the Lomax
distribution, and the survival time parameters, namely the hazard and Reli-
ability functions. A discussion of the maximum likelihood estimators is also
included in section (2). In section (3), the Bayes estimators of the parameters
of the model as well as the reliability and hazard functions, are derived based
on upper record values using the conjugate prior on the shape parameter and
discretizing the scale parameter to a finite number of values. The estimates are
obtained using both the symmetric loss function (s.e.l.) and the asymmetric
loss function (varian’s linear-exponential (LINEX)). The maximum likelihood
and Bayes estimates are compared via Monte Carlo simulation study. The last
section provides Bayes prediction for future record with applied example.

2 Maximum Likelihood Estimation

The joint density function of the first n upper record values x = (21, Ty(2),
-y Ty(n)) is given by
n—1

Jr2.n(Fa(), Tu2)s Tu@)s - - Tu(n) = F(@u(n) 1;[1 1— Flrum)

=00 < Ty(1) < By(2) < - < Ty(n) < 00,

oy

= aﬁa(xu(n) + 6)70{71 X anil H(xu(z) + 5)71
=1

f=aB* (@) +8)7 1H

= anﬁa(xu(n) + B)iau (8)

where f(-), and F(-) are given, respectively, by (1) and (2) after replacing = by

Tu(i), and w = [T, (wy@ + B) "
The Likelihood function (8) reduce to

e(a7ﬂ | X) = anu(xu(n) + B)_a (9)

n

where u = [] (z4z;) + 8)~". The log-likelihood function is

=1

Lo, B | x) =Inf = nln(a) — aln(zym) + B8) — Zln(mu(i) +3) (10)
=1
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Assuming that the scale parameter 3 is known, using equation (10) the maxi-
mum likelihood estimator (MLE), &z, of the shape parameter « can be shown

to be
n

If both of the parameters o and 3 are unknown, their MLE’s &, and BML
can be obtained by solving the following likelihood equations:

oL _ oL _
da ap

By eliminating S between the two equation of (12) we obtain

0, 0 (12)

n n zn: 1 —0

Bln(@yny +8) —In B} (Tun) + A (2un) + B8) —In B} Z 20y +8

(13)

which maybe solved using for example, Newton-Raphson iteration scheme.

This yields the maximum likelihood estimate 35, of 3. With S, now known,
a is estimated from the second equation as follows

T

yr = (14)

In(24(n) + Bur) —InBurr

The corresponding MLE’s Rys1.(t), and Hyp(t) of R(t) and H(t) are given
respectively by replacing o and 8 by éasr and &g in equations (3) and (4).

3 Bayes Estimation

3.1 Known Scale Parameter 3

Under the assumption that the scale parameter 3 is known, we assume a gamima.
~(a,b) conjugate prior for a as:
bra~ 1 exp{—b
r(a) = o xp{—ba}
I'(a)

a>0, a,b>0. (15)

Combining the likelihood function (9) and the prior density (15), we obtain
the posterior density of « in the form:

v(rFtaarta=1) expl —au}
T(n+a)

(o] x) = (16)

where v = b+ In{x,(,,) + 5}
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Bayes estimator based on squared error loss function

Under a squared error loss function, the Bayes estimator ¢z¢ of a function
¢(a) is the posterior mean.

The Bayes estimator agg of « is then given by

aBS:E(a|x):/ ar*(a | x) da = 212 (17)
0
Similarly, the Bayes estimator for the reliability function R(#) is
~ In(1+ %) ~(nte)
RBs(t) =<1+ T (18)
The Bayes estimator for the hazard function H(t) follows as
~ n+a
Hps(t) = ——— 19
Bs(t) 1B (19)

Bayes estimator based on LINEX loss function
Under the LINEX loss function the Bayes estimator a gy, for a, using (7) is

o=~ | [ {expl-callat(a |0 dof (20)

Using (16), this simplifies to

5BL:n+aln(1+£> (21)
C v

The Bayes estimators for R(t) and H(t) are given by

= = (—¢)’ iln(1+ )] "
RBL(t)Z—%ln Z( Z_,) {1+¥} (22)
i=0
and ~ +
Hpr(t) = . ln{1+m} (23)

3.2 Unknown Scale and Shape Parameters 8 and «

It is well-known that, for Bayes estimators, the performance depends on the
form of the assumed prior distribution and the loss function. Under the as-
sumption that both the parameters o and § are unknown no analogous re-
duction via sufficiency is possible for the likelihood corresponding to a sample
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of record from the Lomax density (1). Also, specifying a general joint prior
for o and § leads to computational complexities. In trying to solve this prob-
lem and simplifing the Bayesian analysis we use the Soland’s method. Soland
(1969) considered a family of joint prior distributions that places continuous
distributions on the shape parameter and discrete distributions on the scale
parameter.

We assume that the scale parameter § is restricted to a finite number of
values 81, fs, ..., B with respective prior probabilities 11,72,..., 7 such that
0 <mn <1, and 21;2177]- = 1. [t.e.Pr(f = B;) = n;]. Further, suppose
that conditional upon 8 = f3,, o has natural conjugate prior with distribution
gamma (a,,b;) with density

aj -
J a;—1

J
(84 = ) = ——
ﬂ—( | ﬁ 6]) F(a7)
Where a; and b; are chosen so as to reflect prior beliefs on a given that g = 3;.
Then given the set of the first n upper record values x, the conditional
posterior pdf of « is

exp{—b;a}; a;,b;; o> 0. (24)

A5 Aj-1

' v
™(a|8=8;,x%)= ]1"(TJ)

which is a gamma (A;, B,), where

exp{—v;a}; Aj v 0 >0, (25)

Aj = aj +n, Bj = bj + ln(xu(n) + ﬂ]) —1In Bj- (26)

On applying the discrete version of Bayes’ theorem the marginal posterior prob-
ability distribution of 5; is

P =Pi(B =5, %)

aj an-l—aj—lu .

_ o 77jbj J

— A ——————exp[—a{b; +In(zy,) + 5;)} —1nF;] da
0 ['(aj)

_ b w(4)

Aj
v; I'(a;)

(27)

where A is a normalized constant given by

k
ATt =N

=1

;b5 u;T(Ay)

Aj
v’ T(ay)

and u; = H?:l(l“u(i) +8)7"
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Estimators Based on Squared Error Loss Function

The Bayes estimators apg, 35¢ of the parameters a and 3, under the (s.e.l.)
function are obtained using the posterior pdf’s (25) and (27). The Bayes esti-
mator for the shape parameter « is

~ %
Gps= [ Y. Par(als=px) da
o o

Using (25) this simplifies to

E
~ P A;
fps =3 DA (28)
= Y
The Bayes estimator of 3 is given by

k
Bps =y PiB; (29}

=1

Similarly, the Bayes estimators ;%(t) Bs and H (t) gsof the reliability and hazard
functions R(f) and H(t) are given respectively by

o k
R(t)Bsz/O ZPjexp{—aln <l—l—%>}ﬂ'*(a|6:6j,x) do
j=1 J

i —4;
=3p {1+—ln(1:_ A } (30)

j=1

and

where A; and B; are as given in (26).

Estimators Based on LINEX Loss Function

Under the LINEX loss function (5), the Bayes estimator ¢5; of a function
¢(a, B) is given by equation (7), the Bayes estimator for the scale parameter a
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k
1 o .
apr = —Zln / ZPj exp{—ac}r*(a| B = B;,%x) da
[0 =t

7A]

k
1 c
=——1 E P14+ — 32

The Bayes estimators for 3 is

N k
Brr = —%ln ZP]- exp{—cp,} (33)
i—1

Similarly, the Bayes estimator for the reliability function R(t) follows as

C

~ oo k
Rt)sr = —21n / " Pyexp{—cR(t)}r*(a | f = B;,x) da
o i

where R(f) as given in (3). By using the exponential series, after some simpli-
fication we obtain

~ X ()i in(14 £)) =%
R(t)BL:—éln ;;Pj( Z_!C) {1+%} (34)
The Bayes estimator for the hazard function H(t) is obtained as
~ 7AJ
H(t)sy :——ln ZP {1+ t+BJ)} (35)

To implement the calculations in this section, it is necessary to elicit the
values of (5;,n;) and the hyperparameters (a,;,b;) in the conjugate prior (24),
for y = 1,2,...,k. The former pairs of values are fairly straight forward to
specify, but for (a;,b;) it is necessary to condition prior beliefs about a on
each f3; in turn, and this can be difficult in practice. An alternative method
for obtaining the values (a;,b;) can be based on the expected value of the
reliability function R(t) conditional on # = §;, which is given using (24) by

¢ b%aai—l
Eols [R(O15 = ) = [ exp {—aln (1 T E) } D exp{-aby} da

:{1+Z—j}% (36)
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Now, suppose that prior beliefs about the lifetime distribution enable one
to specify two values (R(t1),%1), (R(t2),t2). Thus, for these two prior values
R(t = t1) and R(f = t2), the values of a; and b; for each value §3;, can be
obtained numerically from (36). If there is no prior beliefs, a nonparametric
procedure can be used to estimate the corresponding two different values of
R(t), see Martz and Waller (1982-pp 105).

4 Simulation Study and Comparisons

The expressions of the various estimators show that an analytical comparison
of these estimators is not possible. So, in order to assess the performances of
the estimators, a Monte Carlo simulation study was used.

4.1 The Case of Known g3

Random samples of upper record of different sizes are generated and the es-

timates obtained in the previous sections are computed and compared in the
following steps:

1. For given values (a = 2, b = 2) generate a = 3.004 from the prior pdf
(15).

2. Using the value a = 3.004 from step 1., with g = 1.007 (Known),
we generate n = 3,5,7. Upper record values from the Lomax (o =
3.004, B = 1.007) with pdf (1).

3. The ML estimate app of a is computed using equation (11), and
the corresponding ML estimates R ML and H m 1 of the reliability and
hazard functions at some ¢ (chosen here as t = 0.75) are obtained as
described in section (2).

4. The different Bayes estimates of o, R(t), and H(#) are computed
using equations (17), (18), (19), (21), (22), and (23).

5. Steps 1-4 are repeated 10000 times, and the estimated variance (EV)
is computed. The computation results are displayed in table (1).
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Table 1. EV of the estimates of a, R(t), and H(t) with (¢t = 0.75).

n  EV(ami) EV(éss) EV(esL)

c=0.5 c=1 c=5

3 0.2076 0.1764 0.1663 0.1582 0.1269

5 0.1603 0.1452 0.1413 0.1379 0.1219

7 0.1305 0.1286 0.1269 0.1253 0.1169
EV(Ry1) EV(Rps) EV(Rgpy)

3 0.1134 0.1076 0.1096 0.1091 0.1090

5 0.1058 0.1044 0.1045  0.1046  0.1053

7 0.1034 0.1031 0.1031 0.1032 0.1035
EV(Hyp) EV(Hgs) EV(Hgs)

3 0.6627 0.3177 0.3723 0.3409 0.30482

5 0.3717 0.3288 0.3109 0.2968 0.20435

7 0.2868 0.2814 0.2735 0.2669 0.20362

4.2 The Case of Unknown o and 3

As indicated in section (3.2), specifying a general joint prior for «« and f leads to
computational complexities. Soland’s methods provides a simpler alternative
which can serve to give good approximations to the corresponding more general
case of assuming continuous priors for a and for a given 3. To illustrate the
application of the results using this method we consider the following example:

Example 1. Let us consider the first seven upper record values simulated from
a two-parameter Lomax distribution (1) with shape parameter o = 3, and scale
parameter 3 = 3, they are as follows:

0.418225, 0.95362, 1.57713, 2.76785, 3.12518, 3.354, 4.25777.

Using this record values the different estimates of a, 8, R(t), and H(t) are
computed according to the following steps:

1. We approximate the prior for a over the interval (2.5,3.4) by the dis-
crete prior with 8 taking the ten values 2.5(0.1)3.4, each with proba-
bility 0.1. There is no further prior information about «. A nonpara-
metric procedure can be use to estimate any two different values of the
reliability function R(#1), and R(i2), see Martz and Waller (1982-pp

105).
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Substituting the values of (R(t1),#1), (R(f2),t2) obtained in step 1.
into equation (36), where a; and b; are obtained numerically for each
given 3;, 7 = 1,2,...,10. using the Newton-Raphson method. The
resulting values of the hyperparameters (a;,b;) in the gamma prior
are given in Table 2 as well as the posterior probabilities for each 3,
(see equation (27)).

The ML estimates (-)as7,, and the Bayes estimates ((*)ps, (*)51) of a,
B, R(t), and H(t), are computed using results in section (3.2). The
results are presented in Table 3.

Based on the sample of upper record of size n = 7, for (a = 3,8 =1)

the estimated reliability ]:BM 1, Rps and Rp; are plotted against ¢
with the true value (REX) of R(t) in Figure 1. Also, for the same
parameters , in Figure 2. the estimated failure rate Hy, L,I:I Bs, and
Hpg, with the true value (HEX) of H(t) are plotted.

0.5 I 1.5 z

R®

t

o.2z2 o.4a 0.E 0.0 1 H(t)

Figure 2. estimated failure function as compared with actual H(¢).
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Table 2. Prior information, Hyper parameter values of

the gamma and the posterior probabilities

] 1 2 3 4 5

B; 25 2.6 2.7 2.8 2.9

n; 0.1 0.1 0.1 0.1 0.1

a; 1.823 0.9855 0.8735 0.7646 0.6577
b; 1.873 0.8671 0.7532 0.6432 0.5357
u;  45.396 65.4596  77.2167 87.4141  95.5195
P; 014256 0.13345 0.12341 0.11318  0.10318
] 6 7 8 9 10

B; 30 3.1 3.2 3.3 3.4

n; 0.1 0.1 0.1 0.1 0.1

a; 0523 0.479 0.442 0.411 0.385
b; 0299 0.253 0.216 0.186 0.161
u;  104.506 142,427 154.662 174.239  189.453
P; 009362 0.08462 0.07623 0.06845 0.06130

Table 3. Estimates and the true value of «, 3, R(t) and H(t) with (¢ = 0.75)

True value  ()amL ()Bs QL2

c=0.7 c=1 c=3

B 2.0 2.118 2.0671 2.083 1.9786 1.967
c=-3 c=—1 c=1

o3 4.0 3.7928 3.8741 3.9931 3.9140 3.8367
c= -2 c=—1 c=1

R(t) 0.16558 0.1619 0.1635 0.1649 0.1642 0.1626
c=10.3 c=0.4 c=1

H(t) 1.758 1.8171 1.761 1.7079 1.6857 1.573

Example 2. As another example we choose the real data set which was also
used in Lawless (1982-pp 185).

These data are from Nelson (1982) concerning the data on time to break-

down of an insulating fluid between electrodes at a voltage of 34 k.V. (minutes).

The 19 times to breakdown are:

0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91,
32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89.
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table 4. Prior information, Hyper parameter values of the gamma and the
posterior probabilities

7 1 2 3 1 5

B; 1.5 1.6 1.7 1.8 1.9

m 01 0.1 0.1 0.1 0.1

a; 2.826 2.558 2428 2.350 2.298
b; 4.943 3.184 2.95 2.822 2.485
u; 1 9.257 37147 244.930 1532.46
P; 0.566 0.247 0.109 0.048 0.021

7 6 7 8 9 10

B; 2 2.1 2.7 33 39

n; 0.1 0.1 0.1 0.1 0.1
fa; 2.260 2.165 2.124 2.099 2.084
b; 2.245 2.045 2.0397 2.0265 2.0184
uj 9588.22 9.2 x 107 8.8 x 1011 5.5 x 1014 4.1 x 1021
P; 0.0089 0.0001 0 0 0

Therefore, we observe the upper record values from the observed data as
follows:

0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89.

A model suggested by engineering considerations is that, for a fixed voltage
level, time to breakdown has a Lomax distribution.

Based on these seven upper record values, the illustration of the results
in this section is done for the conjugate prior on the scale parameter. The
hyperparameters of the gamma prior (24) are derived, using (36). From Table
1 in Zimmer et al. (1998), we assume that the reliability for times #;-0.96,
and t = 6.50 are respectively R(t;) = 0.85, and R(t5) = 0.50. As mention in
example 1, these two prior values are substituted into (36), where a; and b;
are solved numerically for each given 3;, 7 = 1,2,...,10, using the Newton-
Raphson method. Table 4 gives the values of the hyperparameters and the
posterior probabilities derived for each 3;. The ML estimates (-)p 1, and the
Bayes estimates ((\)gs,(-)gr) of a, B, R(t), and H(t), are computed and the
results are displayed in Table 5.
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Table 5. Estimates of a, 3, R(t) and H(t) with (¢ = 5)

()BL

(Imz ()Bs
c=—1 c=3 c=5
o 3.465 3.381 3.361  3.278 3.179
B 1,599 1748 1809  1.680 1.575
R(t) 2.451 2.6313 2.6571 2.428  2.325
H(t) 1.281 1.32897 1.3942 1.098 1.089

5 Prediction of the Future Record

In the context of prediction of the future record observations, the prediction
intervals provide bounds to contain the results of a future record, based upon
the results of the previous records observed from the same sample. This section
is devoted to drive the Bayes predictive density function, which is necessary to
obtain bounds for predictive interval of future record. Suppose that we observe
only the first n upper record observations x = (Zy(1), Tu(2), - - - » Lu(n)), and the
goal is to obtain the Bayes predictive interval for the s** future upper record,
where 1 <n <s. Let Y = Xy, be the st upper record value, the conditional
density function of Y for given x,, = Xy, is given, by Ahsanullah (1995)

{wly) —w(z.)} " fy)
I'(s—n) 1— F(z,)’

f(ylzn; 0) =

(37)

where w(-) = —In[1 — F(-)].
Using the Lomax distribution, with pdf given by (1), the conditional density
function (37) is

ot~ dn [ 42 st _o
Flasa, ) = F({:_(;)*Zl}m (ijg) . ()

The Bayes predictive density function of y given the observed record x is
given by

k
f61) = [ folai0.8) Y P (0l = 8,.%) do. (39)

Substituting from (38) and (25) into (39) we get

Fubo =3 ppun (25)}

j=1 Bet(n + a;, s —n) {'Uj +In (%) }Haj (y + B5)

J. Statist. Res. Iran 3 (2006): 139-158



154 Comparison of Estimates Using Record Statistics From Lomax Model ...

where A; and B; are as given by (26), Bet(.,.) is the beta function of the
second kind

oo tzl_l
Bet = —— di. 41
et(zn, ) /0 T (41)

It follows that the lower and upper 1007% prediction bounds for Y = X,
given the past record values x, can be derived using the predictive survival
function defined by

vz a0 = [ " fulx) dy
k

: P

= InBet 85— 10, 42

;Bet(n—*—aj,s—n) nBet(n +a;,s - n;6;) (42)

where §; = In <iigj) /v, and InBet(z1, 22, &) is the incomplete beta function
defined by InBet(z1,29,£) = ffoo 7L/ (1+ )22 dt.

Iterative numerical methods are required to obtain the lower and upper
1007% prediction bounds for Y = Xy, by finding A from equation (42), using

Pr[LL(x) <Y <ULX)|=T7
where LL(x) and UL(x) are the lower and upper limits respectively, satisfying

PrlY > LL(x)|x] :@ PrlY > UL(x)|x] = “_TT) (43)

[i is often important to predict the first unobserved record value Xy (,1); the
predictive survival function for Y, 11 = Xy(n41) is given from (42) by setting

s=n+1as
k

fYair 2 M%) = 37 P14 6;) (e, (14)

=1
Iterative numerical methods are also required to obtain prediction bounds
for Y11

5.1 An Illustration Examples

Example 3. The above prediction procedure is demonstrated by using a sim-
ulated sets of record from the Lomax model (1). A samples of upper record
values of size n = 3,5,7 are simulated from the Lomax distribution with
(a,8) = (2,2), (3,4), (4,4), which include the exponential, Rayeligh, and
Weibull models, respectively. Using our results in equation (44), the lower and
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Table 6. The lower LL, the upper (UL) and the width of the 95% prediction intervals for
the future upper record Xy (n41), (n=3,5,7).

n (a,B) previous record values LL UL Width
3 (2,2) 0.1964, 2.2065, 6.2152 6.3529 673.39 667.04

340728 383727 5.62398, 7.2552, 7.46057 7.5766 121.70 114.12
7 .0489, 2.0905, 3.7928, 4.0789, 6.1966, 6.5367, 9.0686 9.1768 69.024 59.847
3 (3,4) .3323, 2.2286, 4.90786 5.0195 418.42 413.40
5 1.17076, 2.6028, 4.59304, 7.16314, 8.6684 8.806 155.24 146.43
7 1542, 3.2405, 5.9598, 7.6089, 10.8167, 10.9072, 12.579 12.74 110.25 97.51
3 (4,4) 21733, 4.57068, 4.74837 4.8562 392.04 387.18
5 9887, 3.01356, 7.90616, 8.9098, 9.72644 9.8835 187.13 177.25
7 .20008, 3.5655, 3.960, 5.3299, 8.8052, 9.292, 14.078 14.257 130.13 115.87

upper 95% prediction bounds for the next record values Xy, 1), for the three
cases (n = 3,5,7) are obtained and displayed in Table 6.

Example 4. Based on the seven record values from Example 2, with the
corresponding hyperparameter values obtained in the same example Table 4,
and using the results in (43) and (44), the lower and upper 95% prediction
bounds for the next record values Xy (g) are respectively 73.125 and 116.725.

6 Conclusion

Based on the set of the upper record values the present paper proposed classical
and Bayesian approaches to estimate the two unknown parameters as well as
the reliability and hazard functions for Lomax model. We also consider the
problem of predicting future record in a Bayesian setting. Bayes estimators
are obtained using both symmetric and asymmetric loss functions. It appears
to be clear from this study that the Bayes method of estimation based on
record statistics is superior to the ML method. Comparisons are made between
different estimators based on simulation study and practical example using a
set of real record values. The effect of symmetric and asymmetric loss functions
was examined and the following were observed:

1. Table 1 (the case of known 3) shows that the Bayes estimates re-
lated to LINEX loss function have the smallest (EV) as compared
with quadratic Bayes estimates or the MLE’s. This is valid for all
number of record values n, and the estimated variances decrease as n
ncreasing.
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2. For the case of unknown shape and scale parameters, the use of a

discrete distribution for the shape parameter resulted in closed form
expression for the posterior pdf. The equal probabilities chosen in
the discrete distributions caused an element of uncertainly, which can
be desirable in some cases. Table 3 shows that the Bayes estimates
based on symmetric and asymmetric loss functions are perform better
than the MLE’s, and the asymmetric Bayes estimates are sensitive
to the values of the shape parameter ¢ of the LINEX loss function.
The problem of choosing the value of the parameter ¢ is discussed in
Calabria and Pulcini (1996).

The analytical ease with which results can be obtained using asym-
metric loss functions makes them attractive to use in applied problems
and in assessing the effects of departures from assumed symmetric loss
functions.

Tt is clear that the variance of the Lomax (a, 3) distribution tends to
be zero as 3 tends to infinity. This implies that as 5 gets larger, the
observations concentrate on a shorter domain. Tt then follows that the
width of the predictive interval decrease as J increase, see Table 6.
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