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Abstract. Bivariate semi-logistic and Marshall-Olkin bivariate
semi-logistic distributions are introduced. Some properties of these
distributions are studied. First order autoregressive processes with
bivariate semi-logistic and Marshall-Olkin bivariate semi-logistic
distributions as marginals are introduced and studied.
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1 Introduction

Logistic distribution has attracted the attention of many researchers due to the
application of this distribution in various fields. Balakrishnan (1992) discussed
the application of logistic distribution in population growth, medical diagnosis
and public health. A few more interesting use of logistic distribution are in
the analysis of survival data. Balakrishnan (1992) discussed the analysis of
bioavailability data when successive samples are from logistic distribution.

Univariate logistic distribution in its reduced form is defined by the expres-
sions

- 1

F(l’):m, —0<r <X (1)
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160 Bivariate Semi-Logistic Distribution and Processes

and

fla) = &“"}2.
(1 +exp{z})
This distribution is symmetric about zero and resembles closely to the normal
distribution.

Although multivariate data sets with logistic like marginals have always
been around, it was not until 1961 that a bivariate logistic model was proposed.
Gumbel (1961) actually provided three bivariate logistic models, one of which
has cumulative distribution function

I
F(x,y) = [y S ——_ o0 < z,y < 00. (2)
Location and scale parameters can be introduced to generalize this expression.
Gumbel in his paper studied the regression properties and verified that the
correlation coefficient is % A multivariate extension of the Gumbel’s bivariate
logistic is proposed by Malik and Abraham (1973). For applications of the
logistic distribution see Balakrishnan (1992) and Kotz et al.(2000).
The study on minification processes began with the work of Tavares (1980).
In his work, the observations are generated by the equation

X, =kmin(X,_1,e,), n>l1 (3)

where £ > 1 is a constant and {¢,} is an innovation process of independent
and identically distributed random variables chosen to ensure that {X,} is a
stationary Markov process with a given marginal distribution. Because of the
structure of (3), the process { X, } is called minification process. Sim (1986) de-
veloped a first order autoregressive Weibull process and studied its properties.
Arnold (1993) developed a logistic process involving Markovian minimization.
Giving slight modifications to (3), several other minification models have
been constructed so far. Yeh et al. (1988) considered a first order autore-
gressive minification process having Pareto marginal distribution. Arnold and
Robertson (1989) developed a minification process having logistic marginal dis-
tribution. Such minification processes in general have the structure given by

X, = , O0<p<l,

kX, _1 w.p. p
kmin(X,_1,e,) wp. 1-—p

where ‘w.p.” stands for ‘with probability’. Pillai, Jose and Jayakumar (1995)
introduced another minification process having the form

Xn:{gn WP , O<p<l.

kmin(X,_1,e,) wp. 1-—p
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Thomas Mathew and K. Jayakumar 161

Lewis and McKenzie (1991) obtained necessary and sufficient conditions on the
hazard rate of the marginal distributions for a minification process to exist.
Jayakumar and Thomas Mathew (2005) defined semi-logistic distribution
and studied first order autoregressive semi-logistic process.
We say that a random variable X defined on R = (—00, 00) has semi logistic

distribution and write X = L (o) if its survival function is
_ 1

F B — 4
=13 n(x) )
where n(z) satisfies the functional equation
1 1
U($)=§n<alnp+x>, a>0,0<p<l. (5)

It can be shown that n(z) = exp{az}h(z) where h(z) is periodic in x with
period élnp. For proof, see Kagan, Linnik and Rao (1973). For example,
if A{z) = exp{fBcos(ax)}, it satisfies (5) with p = exp{—2x} and 5(z) is
monotone increasing with 0 < 3 < 1.

In Section 2, we introduce bivariate semi-logistic distribution and study
properties of it. Characterizations of bivariate semi-logistic distribution are
obtained. Marshall-Olkin bivariate semi-logistic distribution is developed and
as a special case Marshall-Olkin bivariate logistic distribution is studied in
Section 3. In Section 4, first order autoregressive process having bivariate
semi-logistic distribution as marginal is constructed and some properties of
first order autoregressive bivariate logistic processes are studied. Section 5
is devoted to first order autoregressive Marshall-Olkin bivariate semi-logistic
process.

2 Bivariate Semi-logistic Distribution

A random vector (X,Y) defined on R? is said to have bivariate semi-logistic

distribution with parameters «;,as and p and we denote it by (X,Y) <
BSL(ay, as,p) if its survival function is of the form

Flz,y)) =P(X >z,Y >y) = (6)

1+ n(z,y)

where n(z,y) satisfies the functional equation

1 1 1
n(z,y)=-n{z+—Inp, y+ —1Inp
p aq Q2

0<p<l, a,a>0 —-oo<z,y<oco. (7)
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162 Bivariate Semi-Logistic Distribution and Processes

Lemma 1 The solution of the functional equation (7) is given by

n(z,y) = exp{arzthy(z) + exp{anytha(y) (8)

where hi(x) and ha(y) are periodic functions in x and y with period ail lnp and
0%2 In p respectively.

Proof: For proof see Kagan Linnik and Rao (1973).
For example if h;(z) = exp{Bcos(a;z)}, i = 1, 2, it satisfies (7) with
p = exp{—2n} and n(x,y) is monotone increasing in x and y with 0 < 8 < 1.
Figure 1 presents the probability density function of bivariate semi-logistic
distribution for h;(z) = exp{Scos(a;z)} and for various values of a;, as and

3.
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Figure 1. Density plot of bivariate semi-logistic distribution.
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1 +exp{az} + exp{asy}

F(z,y)

Gumbel (1961) proved that the bivariate logistic distribution having distri-
bution function (2) is asymmetric. Surface plot of the bivariate logistic distri-

Now we study some characterizing properties of BSL

In particular if we choose hy(x) = ha(y)
via geometric minimization.

a bivariate logistic distribution with survival function
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Figure 2. Density plot of bivariate semi-logistic distribution.
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164 Bivariate Semi-Logistic Distribution and Processes

Let {(X;,Y;),1 > 1} be a sequence of independent and identically distributed
bivariate random vectors following BSL(ay, az,p) distribution and N be a ge-
ometric random variable with parameter p and

P(N =n) =pg" 1, n=12,.., O<p<l,g=1—p (10)
and N is independent of (X;,Y;), 7> 1
Define
Uy = min(X,, Xs,...Xy) and Vy =min(¥7,Ys,..YN). (11)

Theorem 1 Let {(X;,Y;),i > 1} be a sequence of independent and identically
distributed bivariate random vectors with common survival function F{z,y) and
N be a geometric random variable as in (10), which is independent of (X;,Y;)

for all i > 1. Then the random wectors (Uy — L 1lnp, Vy — L1np) and
a1l Q2

(X1,Y1) are identically distributed if and only if (X1,Y1) have the
BSL{an,as,p) distribution.

Proof: Let
H(x,y) = (UN——lnp>:L’ VN——lnp>y>
=P (UN >+ —lnp,VN >y + —lnp)
= Z [ <x+ —lap,y+ —lnpﬂ pg" L.
n=1 a1 &2
That is,
B pF(:v-i—a%lnp,y—i—ilnp)
H(z,y) = - (12)

1—gF (:v + Llnp,y+ L1np>
Q1 a2
Now if F(xz,y) is as in (6) and (7), the equation (12) becomes

1

H@y) = 15

= F(z,y)

This proves the sufficiency part of the theorem.
Conversely assume that H(z,y) = F(z,y). Note that any survival function
can be represented as
1

Py = TGy

(13)
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where ¢(z,y) is a monotonically increasing function in both z and y. Using
the representation (13) in (12) with H(xz,y) = F(xz,y), we get the equation,

1 1 1
Hz,y) = —¢ (9: +—lInp, y+ —lnp>
p a1 (6]

This is the functional equation (7) satisfied by BSL{ay, as, p). Hence the proof
is complete.

Let {N,k > 1} be a sequence of geometric random variables with param-
eters pg,0 < pi < 1. Define

Fo(2,y) =P (Un,_, >2,VN,_, > ¥), k=23, ..

o D4 Fk—l(a:ay)
1- (1 _pg;_l)Fk—l(a:?y)

(14)

Here we refer F}, as the survival function of the geometric (p,_,) minimum

of independent and identically distributed random vectors with Fj_; as the
common survival function.

Theorem 2 Let {(X;,Y;),1 > 1} be a sequence of independent and identi-
cally distributed random vectors with common survival function F(z,y). Define
Fy = F and Fy, as the survival function of the geometric (p,_, ) minimum of

independent and identically distributed random vectors with common survival
Junction Fr,_1,k=2,3,.... Then

k—
Fk T+
7

1 1 k—1 1
—lap,,y+ —lap. | =F z, 15
o ey ;OQ », (z,y) (15)

if and only if (X1,Y1) have BSL(ay, az,p) distribution.

Proof: By definition the survival function F}, satisfies equation (14). As in
(13) we can write

_ 1
F = — =1,2,3,..
k(x7y) 1+¢k($,y), k ? 737

Substituting this in (14), we get

1

Pk—1

¢k(l’, y) =

¢]€71(l‘7y)7 k:2,3,...
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166 Bivariate Semi-Logistic Distribution and Processes

Recursively using this relation, we have

1
oz, y) = m%(%y),

since Fy = F implies ¢; = ¢. This implies

= Ly
i —lap,y+S —Inp
bx x+;al np,,y ;042 np,

:k 1 x—f—Z—lnpj,y—f—Z—lnpj (16)
Hp7

This gives us (15) if we replace ¢, by 1, and if we assume that nsatisfies (7).
Conversely assume that (15) is true. By the hypothesis of the theorem we
have (16). Thus (15) and (16) together leads to the equation,

1

= Fleg) =
1+ - -1 J¢l ($+Z] 1o lnpj,y—f—z] 125 ]np) 1—*—77(1‘7?!)
This implies that
1 k-1 1 k—1 1
¢(:r,y):m¢ fv+jz:;a—llnp,7y+j;a—21np,

which is same as (7).
Hence the proof is complete.

Lemma 2 We say that a random vector (X,Y) on R? has bivariate semi
extreme value distribution if its survival function is

Flz,y) = exp{—n{z,y)}

where n(x,y) satisfies the functional equation (7).

The following theorem establishes the relationship between bivariate semi-
logistic distribution and bivariate semi-extreme value distribution.
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Theorem 3 If {(X;,Y;),i > 1} are independent and identically distributed
BSL(ay, asz,p) random vectors then

1 1 1 1 1 1
(Z,,W,) = {min (Xl —— - Xo——In—, .., X,— —1In —) ,
aq n a n aq n

1 1 1 1 1 1
min (Yl ——In— Y- —In—,.. Y, — —ln—>} :
Qg n [65) n [65) n

a,ae > 0n>1T,n>a,n > ar

18 asymptotically distributed as bivariate semi-extreme value.

Proof: If the random vector (X,Y) is distributed as BSL(a1,az,p) then
F(z,y) = where 7(z,y) satisfies (7)

1
1+n(z,y)?

1 1 1 1 1 1
G(x,y) :P{min (Xl —— -, Xo——In—, ..., X, — —ln—> >z,
1 n [65] n (87

1 1 1 1 1 1
min (Yl - —Iln—Ys——In-, .Y, - —1n—> > y}
(853 (2 Q9 n Q9 n

_ 1.1 1. 1\]"
= [F (x—{——ln—,y—i——ln—)}
[65] n (65) n

where the minimum is taken in component wise

_ 1 "
G($7y) = (—1 + n(x’y)> .

Taking limit when n— oo, we get

G(z,y) = exp{—n(z,y)}

3 Marshall-Olkin Bivariate Semi Logistic
Distribution

By various methods new parameters can be introduced to expand families of
distributions. Introduction of a scale parameter leads to accelerate life model
and taking powers of a survival function introduces a parameter that leads
to proportional hazards model. Marshall and Olkin (1997) introduced a new
method of adding a parameter to expand families of distribution. Let (X,Y)
be a random vector with joint survival function F(z,y) Then

- - 0F (z,y)
Glay) = |1 (1-86)F(z,y)]’

—o <L,y <co,0<s<o (17)
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168 Bivariate Semi-Logistic Distribution and Processes

is a proper bivariate survival function (see Marshall and Olkin, 1997). The
family of distributions of the form (17) shall be called Marshall-Olkin bivariate
family of distributions.

From (17), We define Marshall-Olkin bivariate semi-logistic
(MOBSL(ai,as,6,p)) distribution with survival function

_ 1
G(IIZ,y) —P(X >xz,Y >y) = m

where n(z,y) satisfies the functional equation (7). The density plot of
MOBSL(aq,as,6,p) distribution for h;(z) = exp{fcos(a;z)} ¢ = 1,2 and
for various values of a;,aq, 5 and § with p = exp{—27} is presented in Figure
3.

(18)

£ %
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i

Figure 3. Density plot of Marshall-Olkin bivariate semi-logistic distribution.
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Theorem 4 Let N be a geometric random variable with parameter p such that
P(N=n)=p¢" Y, n=12,...,0<p<1,qg=1—p. Consider a sequence
{{X:, Y:),1 2 1} of independent and identically distributed random vectors with
common survival function F(x,y). Assume that N and (X;,Y;) are independent
fori > 1. Let Uy = min(Xy, Xo,..., Xy) and Vy = min(Y7,Ys,...,Yn). The
random vectors (Un,VN) are distributed as
MOBSL(ay,as,6,p) if and only if (X;,Y;) have bivariate semi-logistic dis-
tribution.

Proof: Consider

G(z,y)=PUn >z, VN > ¥)

Z (=, )" pg" ",

__ pF@y)
1—(1-p)F(z,y)

Let F(2,y) = 17757 Which is the survival function of BSL(ay,az,p).
Substituting this in the above equation, we have G(z,y) =
is the survival function of MOBSL(a1,as,6,p) with 6 = p.

Conversely suppose that

—ern}gx’y) , which

5 p
Gloy) = p+n(z,y)
pl+n%w,y)
S 1- (1- P)m’
S LS B—
1= (1 =p)F(z,y)
Therefore - I
Py =Ty

Hence the proof is complete.

As a special case of (17) and (18) we have the Marshall-Olkin bivariate
logistic (MOBL(ay,as,8)) distribution, defined by the survival function

- I
G €, = y a1,02,0< 6<1
@) =17 F(explone} +explazy})’ 1

The bivariate density function is given by
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170 Bivariate Semi-Logistic Distribution and Processes

_ 20 g exp{arz}exp{agy}
62 {1 + %(exp{alx} + exp{agy})}?’,

f(z,y)

—oo <2,y < 00,01,09,0 <6< 1.

A plot of the MOBL(ay, as,6) distribution for various values of a;,as and 6

is presented in Figure 4.

Figure 4. Density plot of the Marshall-Olkin bivariate logistic distribution.
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The marginal distributions are

a1 exp{aiz}

fi(z) = T 3 —co <z <oo,a1 >0,0<6<1
§ (1 + = exp{alx})
fa(y) = a2pr{a2y} 5 —o<y<oo,ar >0,0<6<1
§ (1 + = exp{agy})
2
2a exp{aixz} (1 4+ Lex [
flzly) = 1:1){ }( 5 expi y})37 —co < x,y <oo,ar,a2 >0,0<6<1
§ (1 + s(exp{arz} + exp{agy})
2
2a0 exp{as l—l—lex oz
flylz) = p y}( 5 P };3, —co < x,y <oo,ar,a2 >0,0<6<1

§(1+ %(exp{awﬁ} + exp{a2y}

The conditional generating function

H(t1]y) = (6 + exp{asy}) ™ T (2 - a_1> r (1 + _>

Hts|z) = (6 + exp{alx})% r (2 - 2—2> T (1 + t—2>
E(X|Y) = - In (5 + explaay}) - -

1 1
EY|X) = . In (6 4+ exp{anz}) — .

1
an
l
E(Y)= (@)
(5]
5y 2T(2r +1) 1
E(X —-E(X))" = e 1-— 531 ¢(2r), r=1,2,...
oy 20(2r + 1) 1
E(Y - E(Y))” = o7 - Sa ¢(2r), r=1,2,...
where ((s) =} °_,j ° is Raiman zeta function. The bivariate moment

generating function

H(ty, t) = 655 o311 (1 + t—1> r (1 + t—2> r (1 _h t—2> (19)

G (5]

For the bivariate logistic distribution defined in Gumbel (1961) having distri-
bution function (2), the coeflicient of correlation p has a fixed value % Using
the bivariate moment generating function (19) we can find the correlation co-
efficient between X and Y for the MOBSL(a1,as,6) distribution and it is

observed that the value is not restricted to %
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172 Bivariate Semi-Logistic Distribution and Processes

4  First Order Autoregressive Bivariate Semi-

Logistic (BSLAR/(1)) Process

The BSLAR(1) minification process {(X,,Y,),n > 0} is defined as follows:
Let {{(en,vn),n = 1} be a sequence of independent and identically dis-
tributed bivariate real random vectors.
Define

1
X,, =min (Xn—l — — Inp, 5n>
G

1
Y,, = min (Yn_l——lnp,zxn>, nz2l,0<p<,aq,a0 > 0. (20)
Q2

Assume that (Xg, Yy) is independent of {(¢,,,v,)}. Then it follows that
{(X,,Y,),n > 0} is a bivariate Markov sequence. As ¢, and v,, are real random
variables assume that either both are oo with probability p or both are finite
with probability 1 — p and hence we can represent them as

(eny ) = (—o00,00) with probability p
U N (wns ) with probability 1 — p.

Theorem 5 Assume that (Xy,Yy) L (w1, 7). The process defined by (20)
is stationary if and only if has BSL{an,asq,p) distribution.

Proof: From (20)
Guolz,y) = P(X, > 2,Y, >9y)

_ 1 1 _
=G <x+—lnp,y+—lnp> [p+(1-p)F(z,y)] (21)
1 (653

where F(z,y) is the survival function of (wy, 71 ).

Assume that {(X,,Y,),n > 0} is stationary and (Xo, ¥p) 2 (wi,71). Then
for n =1, (21) gives

~ 1 1 F(Jﬁ,y)
Golz+ —Inp,y+ —1In ): = 22
‘ ( a PTG T (=) F(a,y) (22)

If we write F(z,y) = the equation (22) leads to the relation

1
1+n(z,y)?

1 1 1
n(z,y)=-nlz+—Inp, y+ —1Inp]|.
p a1 (6]
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That is F(z,y) is of the form (7) and hence by (21), the random vector
(X1,Y1) is distributed as BSL(a1,as2,p). By induction we can prove that
{{(X,,Ys),n >0} is a BSL(a3, a2, p) Markov sequence.

Conversely assume that {(w,,7,),n > 0} is a sequence of independent and

identically distributed BSL{a1, as,p) random vectors and (X, Yp) A (wi,71)-
For n =1 from (21) we get

1 1 -
Gi(z,y)=F (9«“ + —Inp,y + —lnp> [p+(1—p)F(z,y)]
[65] (65)

If we write F(z,y) = m and applying (7), we get
= 1
Gr(z,y) = ———.
) =1 n(z,y)

That is, (X1,Y7) has BSL({a1, az) distribution. Now by (21) using the method
of induction we can prove that {{(X,,Y,)} is a a sequence of BSL{a,as,p)
random vectors. That is {(X,,Y,),n > 0} is a stationary BSL(aq, as,p) se-
quence.

Corrollary 1 Let be an arbitrary random vector with survival function Go(u,v)
and {(wn,Ta),n 2 0} is a sequence of independent and identically distributed
BSL(ay,as) random vectors. Then the bivariate sequence {(X,,Y,),n > 0}
defined by (20) converges in distribution to BSL{ay,as) as n — co.

Proof: The model defined by (20) and the relations (21), (6) and (7) together
imply that

1 1 1+p”77(:67y)]
Go(z,y)=Golz+ —lnp,y+ —1 TP RE )
=G o+ o ) [
I

I
1+n(z,y)

as n — oO.

Remark 1 Since the bivariate logistic distribution defined in (9) is is a special
case of BSL(ay,s), similar to BSLAR(1) process we can define first order
autoregressive bivariate logistic (BLAR(1)) process.

5 First Order Autoregressive Marshall-Olkin
Bivariate Semi-Logistic Model (MOBSLAR(1))

We consider the first order autoregressive time series model with Marshall-
Olkin bivariate semi-logistic distribution.
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174 Bivariate Semi-Logistic Distribution and Processes

Theorem 6 Consider the bivariate autoregressive minification process {(X,,
Y.)} having the structure

En w.p. P
X, = .
{mln(Xn_l,en) wp. 1—p

i w.p. p
Yn = 5 O<p<l1. 23
{min(Yn_l,un) wp. 1—p b (23)

where {(en, ttn)} s a sequence of independent and identically distributed inno-
vation random variables. Then {(X,,Y,)} is stationary with marginal distri-
bution Marshall-Olkin bivariate semi-logistic MOBSL{ax, as,6,p) if and only
if {{en, in)} is jointly distributed as bivariate semi-logistic (BSL{ay,as,p)).

Proof: From (23) we have

FXn,Yn, (%,y) = pé&n,#n (%,y) + (1 - p)FXn,—l,Yn,—l(x,y)ét‘n,#n (%,y)

Under stationarity, we have

= pée #(l’,y)
F r,y) = o .
xor(e) =97 (1= p)Geulz,y)
If we take G, ,(z,y) = m, then we get
= p
Fxy(z,y)= ———,
( p+n(z,y)

which is the survival function of MOBSL{ay,as,p).
Conversely, if we take

FX,Y ) = ———F—,
( p+n(z,y)
it can be shown that ,
Gep(@,y) = ———.
a 1+ n(x,y)

If we assume that {(X,,_1,Y,_1)} is distributed as MOBSL(ay,az,6,p) and
{(gn, ttn)} 18 BSL{aq, a2, p) then we can establish that

_ p
p+nlz,y)

FX” Yo (ﬁ, y)

Even if (Xy,Yy) is arbitrary, it is easy to establish that {(X,,Y,)} is asymp-
totically distributed as MOBSL{az,as, 6, p).
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