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Abstract. In this paper, we determine the symmetrised density
of a nonsingular doubly noncentral matrix variate beta type I and
II distributions under different definitions.
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1 TIntroduction

In the univariate case, the doubly non-central beta type II distribution (also
termed doubly non-central F distribution) has been studied by Searle (1971)
and Tiku (1965). This distribution has been utilized to find power functions
for the analysis of variance tests in the presence of an interaction for the two-
way model layout with one observation per cell (see Bulgren, 1971). It has
also been used in engineering problems in the context of information theory to
calculate the error probability for a particular binary signalling system in which
the receiver tries to learn the state of a multiple parallel link noise perturbed
channel (see Price, 1962). Doubly non-central distributions have also been
applied to problems in communications, in signals captured through radar, and
pattern recognition where quadratic forms on Normal data are involved (see, for
example, (Turin, 1959), Kailath (1961), Sebestyen (1961) and Wishner (1962)).
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192 Symmetrised Doubly Non Central,. . .

In the multivariate case, the matrix variate beta type I and II distributions
for the central, non-central and doubly non-central cases have been studied by
different authors from diverse approaches, see Olkin and Rubin (1964), Kha-
tri (1970), Chikuse (1980), Muirhead (1982), Cadet (1996), Gupta and Nagar
(2000) and Dfaz-Garcia and Gutiérrez-Jdimez (2001), among many others. In
particular, doubly non-central distributions play a very important role in test-
ing the power of hypotheses in the context of multivariate analysis, such as
canonical correlation analysis and general linear hypothesis in MANOVA, see
Muirhead (1982) and Srivastava (1968). Moreover, the univariate problems
mentioned above in the context of the theory of information and communica-
tion have recently been studied in the multivariate case, and doubly non-central
matrix variate distributions have again been featured in these studies, see Ting,
et al. (2004), Ratnarajah and Vaillancourt (2005), among others.

In general, the use of non-central, doubly non-central and, especially, beta-
type distributions has not been developed as much as could be desired, due
particularly to the fact that these distributions depend on hypergeometric
functions with matrix argument, zonal or invariant polynomials. Until very
recently, such functions were quite complicated to evaluate. Studies have re-
cently appeared describing algorithms that are very efficient for the calcula-
tions, involving both of zonal polynomials and of hypergeometric functions
with a matrix argument. These algorithms enable a broader and more efficient
use of non-central distributions in general, see Gutiérrez, et al. (2000), Sdez
(2004), Demmel and Koev (2006), Koev (2004), Koev and Edelman (2006) and
Dimitria, et al. (2005).

In statistical literature, as well as in classification of the beta distribution
as beta type I and type II (see Gupta and Nagar, 2000 and Srivastava and
Khatri, 1979), two alternative definitions have been proposed for each of the
latter. Initially, let us consider to the beta type I distribution. If A and B
have a central Wishart distribution, i.e., 4 ~ W,,(r,I) and B ~ W,,(s,T)
independently, then the beta matrix U can be defined as

U — (A—%—B)_EA((A—%—B)_‘)/, Definition 1 or, (1)
AT(A+ B) l(Az), Definition 2,
where C1/2(C'/2?) = (C is a reasonable non-singular factorisation of C, see

Gupta and Nagar (2000), Sirvastava and Khatri (1979) and Muirhead (1982).
It is apparent that under Definitions 1 and 2, its density function is given by

r s I r—m— 1 111 1
Bl (U=, =) = —F——=I|U IL,-U 2
(vi5:3) =gVl -0 2)

with 0 < U < I,,,, and is denoted as U ~ Bl,, (r/2,s/2), where r > m and
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s = m; and B, [r/2,s/2] denotes the multivariate beta function defined by

a— (m+1) b— (m+1) m[a]I‘m[b]
Bm b, a :/ S I (dS) = ———"——=,
[0, d] 0<S<[m’| = ST Tola )

where 1", [a] denotes the multivariate gamma function and is defined as

a— (7n+ )

T[a] = /R R (dR),

Re(a) > (m —1)/2, etr(-) = exp(tr(-)) and (dR) denote the exterior product of
the m(m + 1)/2 distinct differentials (dr;,) of matriz dR, see Muirhead (1982).

An alternative definition for the beta type I matrix was proposed by Sri-
vastava and Khatri (1979), Srivastava (1968), Muirhead (1982) and Gupta and
Nagar (2000); it is formulated as follows:

Let B ~ W,,(s,I) and let us state A = Y'Y where Y ~ N, ym(0, 1. ® I,,,),
m > r, independently of B, then, letting U = Y(Y'Y + B)™1Y' = Y(4 +
BYY' U~ BI.(m/2,(s+1—m)/2).

On the other hand, observe that if A has a noncentral Wishart distribution
with matrix of noncentrality parameters Qp, i.e., A ~ W, (r,I,Q;) (or under
the alternative definition, ¥ ~ N.xm(p, I ® I,,) with ; = p'p/2), then U
has a noncentral matrix variate beta type I(B) distribution. Similarly, when
B ~ W,(s,1,95), then U has a noncentral matrix variate beta type I{A)
distribution, see Greenacre (1973) and Gupta and Nagar (2000).

Note that in the central and non-central cases, the density, the properties
and the associated distributions can be obtained from the definitions in (1) by
replacing m by r, v by m and s by s + 7 — m, 1.e., by making the substitutions

m-—r, T—m, S§—S+r—m, (3)

see Srivastava and Khatri (1979) or Muirhead (1982). For this reason, we shall
focus our attention on the definitions stated in (1).

In an analogous way for the beta type II distributions, the following defini-
tions have been proposed:

B~7A(B~z), Definition 1,
V =< A2 B7'(Az), Definition 2, (4)
Y:B-lY', Definition 3.

The distribution is denoted by V' ~ BIL,(r/2,5/2). In a similar way to the case
of the beta type I distribution, the results under Definition 3 can be obtained

from the resulis of Definition 2 and applying the transforms (3), see James
(1964) and Muirhead (1982).
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In this case, the central beta type II density under Definitions 1 and 2 is
denoted and defined as

r s 1 r—m—1 — ()
Bl (Vi5,5) = 14 I+V , vV >0.
( 2 2) g[g,§| 2| I+V| e >

In a similar way to the matrix variate beta type I distribution, if A ~
W, (r, I,) (or under the alternative definition, Y ~ N,y (p, I ® I,,,) with
Qy = p'11/2), then U has a noncentral matrix variate beta type II1(B) distribu-
tion. And, if B ~ W,,(s,1,9Q2), then U has a noncentral matrix variate beta
type ITI1(A) distribution, see Greenacre (1973), Gupta and Nagar (2000).

When these ideas are extended to the doubly non-central case, i.e. when
A~ Wi(r, I,Q) and B ~ W,,(s,1,Qs), strictly speaking, we have not found
the densities of the matrix variate beta types I and II distributions under
Definitions 1 or 2. Rather, for the case of the beta type II distribution, Davis
(1980) found the distribution of V = B~'/2A(B~1/2)" where A = H'AH and
B = HBH, H € O(m), with O(m) = {H € R""""[HH = H'H = I,,}. It
is straightforward to show that the procedure proposed by Chikuse (1980) is
equivalent to finding the symmetrised density defined by Greenacre (1973), see
also Roux (1975).

In this paper, we obtain the symmetrised density function of the doubly non-
central matrix variate beta types I and II under the three definition proposed
in the literature. Moreover, we determine the densities corresponding to the
eigenvalues of the beta distribution types I and II. Clearly, the central and
non-central distributions are obtained as particular cases of the distributions
being studied. We propose this as a solution to the problem of determining the
non-central beta densities, as described by Constantine (1963), Khatri (1970)
and reconsidered in Farrell (1985) and Gupta and Nagar (2000), see also Diaz-
Garcia and Gutiérrez-Jdimez (2006).

2 Preliminary Results

In multivariate analysis we find several unsolved integrals which are involved
in some noncentral and doubly noncentral distributions. One attempt for solv-
ing this problem is given by Greenacre (1973), who proposes a certain class of
distributions called symmetrised distributions. The symmetrised distributions
have some special properties which can solve most of the integrations in the
cited distributions. In particular, the distributions of the eigenvalues in the
nonsymmetrised and symmetrised cases coincide. This implies that any func-
tion of the eigenvalues, as the trace, the determinant, etc., can be determined
from the symmetrised distribution. The approach of Greenacre is based on the
following idea:
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Given a function f(X), X : m x m, X > 0, Greenacre (1973) (see also
Roux, 1975) proposes the following definition:

fo(X) = /O . JHXH)@H), H e 0(m) (5)

where O(m) = {H € R™"*™|HH' = H'H = I,,} and (dH) denotes the nor-
malised invariant measure on O(m) Muirhead (1982). This function f(X)
is termed the symmetrised function. We adopt the approach developed by
Greenacre (1973) to determine te densities of the symmetrised doubly non-
central beta distributions. To do so, let us consider the following:

Theorem 1 Let X > 0, E > 0 be m x m matrices, a = (m — 1)/2, b >

m—1)/2 and
)}

vl

o) = [ I e couE) C {eE%R(m (&

% C» (EEéS(X) (E)) (dE)

where Q(X) > 0, R(X) > 0 and S(X) > 0 are m X m matriz functions of
the matriz X such that, QCUHXH') = HQ(X)YH', H € O(m), with the same
property for R(X) and S(X); C(M) is the zonal polynomial of M correspond-
ing to the partition k = (k1,..., k) of k with >_""  k; = k and C\(N) is the
zonal polynomial of N corresponding to the partition X = (I, ..., 1,) of [ with
S li=1. Then

- Cofa+b)(a+ k), CpNO,E)CEMR(X)Q(X) T, S(X)Q(X) '}
#0= 2 “enr o (1) :

YER-A

where Q(X) ™! denotes the inverse of matriz Q(X) (not the inverse function of
Q()), C() is the invariant polynomial with two matriz arguments, (t), is
the generalised hypergeometric coefficient or product of Poch_ hammer symbols.

))

Proof: We have

=

o) = [ B e —enme, (eE%Rm (

x Oy (EE%S(X) (E)) (dE).

Consider the symmetrised function g and the transform £ = HEH'. Noting
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that (dE) = (dHEH'), one has

atb—(m+1)

0= [ P e () ) /

- C. <®HE2R(X) <E’> H’)

x Oy (EHE%S(X) (E)H) (dH)(dE),

from Davis (1980) (see also Chikuse, 1980) and thus

atb—(m+1)
(X)) =Y / B etr(~Q(X)E)
pemy JE>0

CEN(,E)CEA (R(X)E, S(X)E)
" . () (4E).

Now, from Davis (1980),

3 Tl(a+0),¢lm C3*(0,2)CHMR(X)QX)™, S(X)QX)™
|Q(X )|+t c,(I) ’

9s(X) =

©ERA

where I,y [(a + b), ¢] = (a + b),L'n[(a + b)], see Constantine (1963).

3 Doubly Noncentral Beta Type I Distribution

Theorem 2 Suppose that U has a doubly non-central matriz variate beta type
I under the definition 1, which is denoted as U ~ Bly,,(r/2,5/2,Q1,80). Then,
using the notation for the operator sum as in Davis (1980), we have that its
symmetrised density function is

JoU) = Bl (Us 5,5 ) etr (= 1@ + 22))

< (5r+s),  CAEo, i)CEN U (I - U))

X . , O<U<I.
2 W), G4 &
Proof: By independence, the joint density of A and B is
fap(A,B) = A5 “etr (—1(A+ B))
< oF1 (57“% ZQlA) o1 (351U B), (6)
where
etr (—% (Q] + QQ))
= PTEES) 1 (7)
T [5] T [5]

2
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By performing the transformation C = A + B with (dA4) A (dB) = (dA) A
(dC) and then the transformation A = C/2U (C'/2)" with (dA) A (dC) =
|C|(+1/2(dC) A (dU), we find that the joint density of C' and U is given by
T 7n T m T Fre—m—1
2

fou(CU) = U I -U=2—|C| etr (—5C)

X oy (% L, C* U(c )) oF) (; Lo,cH(1 - 1) (c))

From which, by expanding the hypergeometric functions in infinite series of
zonal polynomials and integrating with respect to C, the desired result now
follows with the assistance of Theorem 1. Note that in this case Q(-) = %I,
R(Y=U and S(:) = (I — U) in Theorem 1.

Similarly, under Definition 2, we have:

Theorem 3 Suppose that U has a doubly non-central matrix variate beta type
I distribution under Definition 2, which shall be denoted as U ~
Blgm(Q, 2,91,02) Then, its symmetrised density function is the same as in
Theorem 2.

Proof: By independence, the joint density of A and B is given by (6). Let
C = A+ B with (dA) A (dB) = (dA) A (dC) and consider the transform
C = (A'2YUTAY? with (dA) A (dC) = |A|™FO2|U =D (dA) A (dU).
Then, the joint density of A and U is given by

Fav(AU) = U= I -U T2 AT 2 etr (—lAU—l)
% oFt (Iri 10, 4)) o (%5; Lo,k (1 — Uy )
The result follows from integrating with respect to A, taking Q(-) = 1U™!,

R()=Tand S(-)=(I - U)U~! and C = A4 in Theorem 2.

Corollary 1 Let U ~ BI;,,(8/2,7/2,,82), j = 1 or 2, then the joint den-
sity function of the eignvalues uy, ..., U, of U is

m

U u :7r2etr( 3+ Q) uT_?;'_ll—u.%
faneessun) = S g s 0w ™

X ﬁ(u._u,) i s(r+s),  CoME, 3W)CEMA (I - M)
2 7 ,
i<J K, ( ) ( ))\ k! C@(I)
where 1 > ug > -+ > Uy, > 0 and A = diag(ug, ..., un,).

Proof: The proof follows immediately by applying Theorem 3.2.17 in Muirhead
(1982) to the beta type I density in Theorem 2, using the Equation (3.12) in
Chikuse (1980).
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4 Doubly Noncentral Beta Type II Distribution

Theorem 4 Suppose that F > 0 has a doubly non-central matriz variate beta
type II distribution under Definition 1, denoted as

F ~ BIL,, (g%glsb)

Then, using the notation for the operator sum as in Davis (1980), we have that
1ts symmetrised density function is

9s(F) = BILy (F; 2,5 Jetr (= (01 + 22))
%7’+s)w O SN+ F) 'R+ F) )
8 Z (Ls) k0 Coll) '

KA 2

Proof: The joint density function of A and B is given by (6). Transforming
F = B~1/24(B~1/2)" and noting that (d4) A (dB) = |B|(™+V/2(dB) A (dF),
the joint density of B and F is

remel rte—m=1 1l 1\’
gr.5(F,B) = ¢|F| 18| etr (—1BY(I+F) (Bz)

1
9 (% Lo BiF (BY) >0F1 (1s;10,B),

From which, by expanding the hypergeometric functions in infinite series of

zonal polynomials and integrating with respect to B, and then taking Q(-) =

1/2(I+ F), R(:) = F and S(-) = I in Theorem 1, the result is obtained.
From Definition 2, we have:

Theorem 5 Suppose that F' has a doubly non-central matriz variate beta type
II  distribution wunder Definition 2, which shall be denoted as
F ~ B, (r/2,5/2,91,9Q2). Then, its symmetrised density function is the
same as in Theorem 4.

Proof: By independence the joint density function of A and B is given by
(6). Now, we make the change of variable F = (A'/2) B—! A'/? observing that
(dA) A (dB) = |A|(™ V2| F|=(m+D(dA) A (dF). The joint density of A, F is
then

ga.r(AF) = | F|” 55457 etr (- JAU + F71))
X 0F1 (%T, %QlA)/> 0F1 (% %Q A -1 (A§>,> .

Integrating with respect to A using Theorem 2 with Q(-) = 1/2(I + F~ 1),
R(:) =1 and S(-) = F~! gives the stated marginal density for F.
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Corollary 2 Let F ~ Bll;(s/2,7/2,01,05), 7 = 1 or 2, then the joint
density function of the eignvalues f1,..., fm of F s

5 etr (—L(Q 4+ Q) T (e otr
ooy = O ) gy

1
2
57“ [575] i=1

m - 5(r+8), CoMUI+71)7M, (I -T)71)
X (fi — f]) 1 1 ) ) :
Il 2 ), G, AT s (2. 200)] o)

where f1 > - > fir, >0 and ¥ = diag(f1, ..., fm)-

Proof: The proof follows immediately by applying Theorem 3.2.17 in Muirhead
(1982, p. 104) to the beta type II density in Theorem 4, using equation (3.12)
in Chikuse (1980).

Remark 1 Note that when ©; = 25 = 0 in Theorem 2, the central matrix
variate beta type I symmetrised or nonsymmetrised distribution is obtained (in
this case, the two coincide).

Similarly, note that when ©; = 0, we obtain the symmetrised noncentral
matrix variate beta type I(A) distribution, see Greenacre (1973) and Gupta
and Nagar (2000), given by

S

FoU) = Bl (Us 5,5 ) etr (~50) 1™ (30 + )i 35402, (1 = 1)) . (8)

However, from (8) it is possible to propose an expression for the nonsym-
metrised density of U; this is done by inversely applying the definition of sym-
metrised density given by Greenacre (1973). That is, observing that

/ JFy (M + 5); Ls L H(I — U)H') (dH)
HeO(m)

— 1F1(m) (5(r+3s); 5850, (I - U))

we obtain

T3

Jo(U) = BL (Us 5,2 Y etr (—302) 1y (30 + 9): 355 3021 - 0)) . (9)
Of course, densities (8) and (9) are still invariant under definitions 1 and 2.
Note, moreover, that from (9) we have indirectly obtained a solution to the
integral proposed by Constantine (1963), Khatri (1970) and reformulated by
Farrell (1985) and Gupta and Nagar (2000); see also Diaz-Garcia and Gutiérrez-

Jaimez (2006).
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Analogous particular results are straightforwardly obtained for the noncen-
tral matrix variate type I(B) distribution from Theorem 2 and for the non-
central mairix variate type II(A) and II(B) distributions from Theorem 4, see
Gupta and Nagar (2000) and Greenacre (1973). Finally, note that the densities
of the eigenvalues of the central and noncentral beta type I and 1T distributions
in all their variates are found as particular cases of Corollaries 1 and 2.

5 Conclusions

In this paper, we show that the densities of symmetrised doubly non-central
matrix variate beta type I distributions, obtained under Definitions 1 and 2,
coincide. An analogous result is obtained for the case of the symmetrised
doubly non-central beta type IT distribution, and therefore we need not concern
ourselves with which definition to adopt, as either will serve our purpose. Note,
furthermore, that both in the case of the beta type I distribution and in that
of type I, when we take 23 = Q5 = 0, the corresponding central distributions
are obtained (these being symmetrised or non-symmetrised, as in this case,
they coincide). In addition, when we assume Q; = 0, we obtain beta type
I(A) and II(A) non-central distributions (symmetrised and non-symmetrised),
see Gupta and Nagar (2000) or Greenacre (1973). Otherwise, if 5 = 0, the
distributions obtained are beta type I(B) and beta type II(B) symmetrised
and non-symmetrised, see Gupta and Nagar (2000) or Greenacre (1973). The
non-central distributions that were obtained intrinsically solve the problem
presented by Constantine (1963), Khatri (1970), Farrell (1985) and Gupta and
Nagar (2000), see also Diaz-Garcia and Gutiérrez-Jaimez (2006).
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