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Numerical Methods of Option Pricing for Two
Specific Models of Electricity Prices
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Abstract. [n this work, two models are proposed for electric-
ity prices as energy commodity prices which in addition to mean-
reverting properties have jumps and spikes, due to non-storability
of electricity. The models are simulated using an Fuler scheme,
and then the Monte-Carlo method is used to estimate the expecta-
tion of the discounted cash-flow under historical probability, which
is considered as the option price. A so called random variable sim-
ulation and a control variate method are then used to decrease,
the discretization error and the Monte-Carlo error, respectively.
As the option prices satisfy PDE’s associated with the models, by
solving these PDE’s, numerically, we can find the option prices by

a second method, thereby being able to make comparisons.

Keywords. Electricity prices; mean-reversion; spikes; Monte-
Carlo method.

1 Introduction

In this work, two models are proposed for electricity prices as energy com-
modity prices with mean reverting properties and with jumps and spikes. The
general forms of these models were introduced initially by Shijie Deng (2000),
in his paper entitled: Stochastic Models of Energy Commodity Prices and their
Applications: Mean-reversion with Jumps and Spikes, February 2000, in the se-
ries of POWER, PWP-073, see also Deng (2000). The models are proposed in
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such a way to express the mean-reverting property, and especially to mimic the
spikes present in the prices, so that some jump processes, and switching regime
are present in the models. Before Deng (2000), Kaminski (1997), and Barz,
and Johnson (1998) had also provide models for electricity prices. Kaminski
used jumps and stochastic volatility and Barz and Johnson (1998) suggested
a price model which combined a mean-reverting process with a single jump
process. Deng examined a broader class of stochastic models which can be
used to model behaviors in commodity prices including jumps and stochastic
volatility, as well as stochastic convenience yield. In 2005 Deng (2005) used
Levy processes in mean-reverting electricity price models (see Cont and Tankov
(2003) for a complete reference for Levy processes).

In this paper, we consider two of his three models in Deng (2000), i.e. mean-
reverting process with two types of jumps and mean-reverting regime-switching
process. The problem is finding the option prices on electricity, or assuming
that the option price is given by the expectation of the discounted cash-flow
under historical probability (assuming that the market is complete!), to calcu-
late this expectation. To this end we proceed in two ways. In the first one, we
simulate the processes whose dynamics are given by the models and then use
the Monte-Carlo method to find the desired price. In this procedure two types
of error, namely discretization error (in each simulation) and Monte-Carlo er-
ror (due to the number of simulations) are present. Using a so called random
variable simulation and a control variate method we will decrease these two
types of error respectively. In the second way we solve the fundamental par-
tial differential equation (PDE), which the price function satisfies numerically.
In this work, we focus rather on the first method and go through the second
one briefly, mainly to use its results as values which measure the accuracy of
the Monte-Carlo method in our special cases. The numerical results and com-
parisons are represented in tables. Complete tables could be find in Zamani
(2001).

2 The Models Studied and Their Simulations

In this section we introduce the various models for electricity prices we consider
and are going to simulate. Our discretization procedure for the simulation of
{X:}ogt<r is essentially based on Euler schemes. A complete reference for
simulation of stochastic processes is Ross (2002).
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2.1 Model 1, Mean-Reverting Process with Two Types of
Jumps

Let X; = InS; denote the logarithm of the electricity price, then Model 1
corresponds to the following Stochastic Differential Equation (SDE) under the
risk-neutral measure @ (see for example Bjork (1998))

2
dXy = a(B — Xy)dt + o1 dW(t) + > AZ], Xo=0, 0<t<T. (1)
=1

Here W, is a Fi-adapted standard Brownian motion under @ in R; Z7 is a
compound Poisson process in R with Poisson arrival intensity A;(7 = 1,2), and
the random jump size AZ' (resp. AZ?) is deterministic and equal to o5 (resp.
—02).

Discretization procedure for {X:}ogi<r: To simulate the trajectories of the
process X; satisfying equation (1), we use the Fuler Scheme combined with a
Bernoulli approximation for the Poisson process. Thus, we rewrite the equation
in the form of the following difference equation:

AXy, = B — Xo, )AL + 1 AW, + AZ] + AZ7,

where
AXy, =Xy, — Xy,
T
At, =t —t_1 = —,
n
AWt, = Wt,; - Wti—l’
and
1 _ gz W.D. )\1Ati 2 —03 W.D. )\QAti

So we simulate X, as the following random variable,

Xt,-, = Xt;_1 + a(ﬂ — Xt,-,_1 )Atz + o1V AtZ/\/(O, 1)

+ Liutena 102 — Lizoa,a¢,02, (2)

where \/A(2;)N(0,1) is used to simulate the Brownian increments AW;,, while

for AZ] , we use the random variables uf , which are independent and uniformly
distributed on [0, 1].
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2.2 Model 2, Mean-reverting Regime-Switching Process

In this model the logarithm of electricity price satisfies the following SDE under
the risk-neutral measure

dX; = Q’(B — Xt)dt + o1dW; + U(Ut—)th, Xo=0, 0<tgT. (3)

As before W, is a F;-adapted standard Brownian motion under ) in R, and
the size of the random jumps in state variables when regime-switching occurs
is assumed to be constant n(0) = n(1) = o3, N,@ is a poisson process with
parameter A(z) (z = 0,1), and 6(0) = —4(1) = 1. Here M; is a continuous-time
Markov chain related to the continuous-time two-state Markov chain

AU, = 1y, —oy6(U )N + 14, _36(U,)aN,
The Markov chain M; could be considered non-compensated:
dM; = dU,
or compensated:

th - —/\(Ut_)é(Ut_ )dt + dUt

We are going to study the model in these two cases separately.

Actually, the difference between the compensated model and the non-
compensated model is rather linked to a model choice. Tf we think of the
evolution X; as “signal + centered noise” as usual, the choice of M; as a com-
pensated process (with zero mean) may be more coherent.

2.2.1 Model 2.1, Mean-Reverting with Non-Compensated Regime-
Switching Process

The dynamics of X; = In S; is described by the following SDE:

dX; = a(B = X)dt + 01dW (D)
+o3(1iy, 01 dN —1gy, —13dNY),  Xo=0, 0<t<T. (4)

Discretization procedure of {X¢}ocig¢r: By Fuler scheme we consider the
following difference equation to simulate X;,

AXt, = Oé(ﬂ — Xt,;_l)Ati + UIAWt,;

+ 03 (1{U,,.,_1 =0} L{u,<x(0)at,} — L{u,,_, 1 lu<x(n)at})
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or

Xt,; = Xti,—l + Oé(ﬂ — Xt,;_l)Ati -+ O'IAWt,;
+ 03(1{Ufi_1:0}1{ul<A(O)Atl} - 1{U”_1:l}1{u;</\(1)At,-})7 (5)

where u;’s are uniform random variables on [0, 1] as before.

2.2.2 Model 2.2, Mean-Reverting with Compensated Regime-
Switching Process

The dynamics of X; = In S; is described by the following SDE:

dX; = a(B — X;)dt + o1dW (1) + o5 (10, _—oydN "
— 1y, =1y dN — NUL)6(U_)dt), Xo=0, 0<t<T. (6)

Discretization procedure of { X, Yo<igr: The difference equation correspond-
ing to (4) is the following,

X, = Xi, + B — X, ) At + 010 AWy, + 03(1qp,, =01l {u,<x(0)an}
- 1{Ut;_1 :1}1{u;</\(1)At,-} - )\(Uii—l)é(Uti—l)Ati)? (7)

or

Xti, = Xti,—l + a(ﬁ - th:—l)Ati + UIAWH + 031{Ut;_1 =0}
X (Luenany — MOYAL) —osliy,  —13(1juw<amany — A(D)AL),

with «;’s uniformly distributed on [0, 1J.
In Models 2.1 and 2.2, the simulations suit the expected behavior (with
spikes) of the electricity spot price better than in Model 1.

3 The Monte-Carlo Method

Tn this section we are going to use the Monte-Carlo (MC) method to calculate
the expectation Eglexp{—rT}(exp{Xr} — K)4] (4; = max(4,0)) for all of
the models presented before, and for various values of the strikes K. If X
is a random variable with values in R, then by Monte-Carlo method we can
estimate E(f(X)) for each function f on X by

Bf(X) ~ 2 3 f(X), (%)

J. Statist. Res. Iran 3 (2006): 203-221
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where X3, Xs,..., Xy are independent simulations of X. According to the
strong law of large numbers the summation converges almost surely to E(f(X))
as M increases. In our case, the random variable we are interested in is
Xr, the final value of the stochastic process {X;}oci<r satisfying equations
(2) or (5) or (7). So to apply Monte-Carlo method in order to calculate
Ef(X) = Elexp{—rT}(exp{ X7} — K),] we need as many as possible indepen-
dent simulations of X7. To this purpose we perform many times the simulation
program of the process {X; }ocigT, satisfying equations (2), (5) and (7).

It is well known that this approach leads to two types of errors: first, a
discretization error because of the time discretization scheme; second, a Monte-
Carlo error due to the number of trajectories. Our objective is to make these
errors as small as possible and the two next paragraphs are devoted to this
goal.

3.1 The Discretization Error

Here, we focus our attention on Model 2 with spikes, which raises unusual issues
for the simulation.

An Exact Simulation Procedure

To test the accuracy of our method, we can compare our algorithm with a
random variable simulation (RVS) procedure, which is available only in the
special case of Models with linear drift coefficients, the other coefficients being

The following algorithm is also interesting by itself, since it is easy and
quick to implement. In this algorithm we simulate only

{X7177X717X7277X7'27 '"7XT1,,*7X7"~ }7

where {7,732, ..., T, } are the jump times of the Poisson processes Nfo) and Nfl)
in Models 2.1 and 2.2.
Remember that for Models 2, X, is given by the following SDE

dXt :Oz(ﬂ—Xt)dt-*-O'lth+77(Ut_)th, Xo :O, OStST,

where in Model 2.1
th - dUt,

and in Model 2.2
th - —/\(Ut_)é(Ut_)dt + dUt,
with
AU, = 1y, —oy6(U )N + 14, _36(U,)aN,
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Now suppose that Uy = 0, and let 7 be the time at which the first jump of the
Poisson process NP takes place. This jump time 7y could be simulated as

1
A0

where u; is a uniform random variable on [0,1]. Then on [0, 71) in Model 2.1

dX, = a(B — X,)dt + a1 dW (1),

T ~ lnul,

and in Model 2.2
dX; = (a(B — X¢) — 03X(0))dt + 01dW (1).
So that X, is an Ornstein-Uhlenbeck (OU) process on [0, 77). Set

g - g Model 2.1
f— 2% \odel 2.2

Then V; = X; — ' satisfies
dVy = —aVidt + o1dWy,

and
ai

Vi~ N (Vo exp{—at}, %(1 - exp{—2at})> .

Hence

2
X~ N (6/ + (X — f') exp{—at}, ;—;(1 - exp{—2at})> = N(pe, Va),

and X, _ and X, could be simulated as
XTl— = Hr + V VTlN(O7 1)
)(-,—1 = Xﬁ_ + J3.
This step will be repeated switching to U,, = 1, and thereby taking the first

jump time for the Poisson process Nt(l), and so on. Finally we will reach to a
jump time 7,1, for which 7, <T < 7,11, ot T = 7,11, in which cases

Xr=pr—r, ++/Vr—-,N(0,1),

Xr_ = pr +/VrN(0,1),
Xr = Xp_ +o03,

respectively.

By this, we reach to the simulated values of X7 without going along the
procedure of time discretization. So that this method of simulating X7, takes
much shorter time compared to the simulation of the whole process {X;}.

J. Statist. Res. Iran 3 (2006): 203-221
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Empirical Analysis of the Discretization Error

As we mentioned before, when representing MC results, there is an important
quantity which should be also taken into consideration, namely the Monte-
Carlo error, the amount by which the empirical mean (8) differs from the
true mean E(f(X)). Set V = Var(f(X)) for the variance of f(X), we know
that, E(f(X)) lies asymptotically in the following confidence interval with

probability 95%:
— B — |V
Ef(X)—1.96 M,Ef(X)+1.96 M] .

In the following tables we represent the Monte-Carlo results for EJexp{—r1"}
{exp{XT} — K)4] obtained for the process simulation (PS), and also the value
obtained by the random variable simulation (RVS) for 108 simulations, for
which there is no discretization error.

Monte-Carlo for PS and RVS of Model 2.1 and 2.2

In the following tables the values are obtained for {X;} in Model 2.1 and 2.2,
satisfying equations (5) and (7) with the following parameters:

T=1, a=10, 3=0, 01 = 0.25, 03 = 2 and \(0) = 2, \(1) = 50.

The MC error 1.96./% is also represented (V' is also evaluated by MC,

using the same simulations as for E(f(X))).

The option strikes below have been chosen close to the forward electricity
spot price E(exp{—rT}exp{Xr}) = 1.0565, in Model 2.1 and E(exp{—rT}
exp{X7}) = 3.8880 in Model 2.2. For the sake of briefness here and in all the
coming tables, in addition to results for Elexp{—rT}exp{Xr}] we represent,
the call option price Elexp{—rT }Hexp{Xr} — K )] only for three values of K
among the five values we have investigated.

Table 1. Mc for PS and RVS of Model 2.1 (Non-Compensated Regime-Switching)

Elexp{—rT}exp{Xt}] PS, n = 250 PS, n = 500 PS, n = 1000
MC, 10* sim. 1.5025 + 0.0551 1.5092 + 0.0485 1.5359 + 0.0501
MC, 10% sim. 1.5409 + 0.0223 1.5257 + 0.0246 1.5186 +0.0193

MC for RVS, 10° sim. 1.0565 + 0.0002
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Elexp{—rT}(exp{Xr} —1);] PS,n=250 PS,n =500 PS,n=1000

0.1761 £ 0.0170 0.1767 £0.0169 0.1686 & 0.0160
0.1810 +0.0054 0.1749 £0.0052 0.1667 & 0.0050
0.1680 £+ 0.0002

MC, 10% sim.
MC, 10° sim.
MC for RVS, 108 sim.

Elexp{—rT}(exp{Xr} —1.05);] PS,n=250 PS,n =500 PS,n = 1000

MC, 10% sim. 0.1685 £ 0.0195 0.1595 £0.0160 0.1729 £ 0.0167
MC, 10° sim. 0.1666 &= 0.0053 0.1594 £ 0.0051 0.1586 =+ 0.0051
0.1562 £+ 0.0002

MC for RVS, 10% sim.

Elexp{—rT}(exp{Xr} —1.1)4] PS,n =250 PS,n =500 PS,n=1000

MC, 10* sim. 0.1647 £ 0.0169 0.1540 £0.0160 0.1503 £ 0.0157
0.1629 £ 0.0053 0.1502 £ 0.0050 0.1531 =+ 0.0050
0.1515 4+ 0.0002

MC, 105 sim.
MC for RVS, 10® sim.

For Model 2.1, take n = 500, as the number of time discretization steps is
enough to get to an error of order 2.5%.

Table 2. MC for PS and RVS of Model 2.2 (Compensated Regime-Switching)

Elexp{—rT}exp{Xr}] PS, n = 250 PS, n = 500 PS, n = 1000

MC, 10* sim. 3.6614 + 0.9336 3.8867 + 0.8654 3.7825 + 0.9137

MC, 10% sim. 3.0037 +£0.1873 3.4159 £+ 0.2340 3.6586 +0.2313
3.8880 + 0.0091

MC for RVS, 10° sim.

Elexp{—rT}(exp{Xrt} —3.75)4y] PS,n =250 PS,n =500 PS,n = 1000

MC, 10% sim. 3.2762 + 0.5940 3.2862 £+ 0.4850 3.6423 £ 0.6720
MC, 10° sim. 3.2045 £+ 0.2335 3.6846 + 0.2786 3.6997 £ 0.2786
2.8621 £ 0.0091

MC for RVS, 10% sim.

Elexp{—rT}(exp{X7r} —3.9)1] PS,n =250 PS,n=>500 PS,n=1000

MC, 10* sim. 4.2374 +£1.7530 4.1040 £+ 1.2310 3.5513 £ 0.7584
3.2298 +0.2318 3.5104 +£0.2574 3.6091 £ 0.2188
2.8637 £ 0.0091

MC, 10° sim.
basic MC, 10° sim.
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Efexp{—»T}(exp{XT} — 4.05)4] PS,n =250 PS,n =500 PS,n = 1000

MC, 10* sim. 3.8249 4+ 1.3599 4.0678 £+ 0.9443 3.5865 £ 0.6678
MC, 10° sim. 3.1136 +0.1828 3.7886 + 0.2988 3.6287 £ 0.2425
MC for RVS, 108 sim. 2.8365 £+ 0.0090

At least a number of 1000 time discretization steps is necessary to get an
acceptable error, which is much worse than it is in the case of Model 2.1. This
comes form the compensation drift A(U;_)6(U;—) in M;. Indeed, this term
could be equal to 50 (in our tests) and this leads to a dramatic increase in the
discretization error.

3.2 The Monte-Carlo Error
As we mentioned before, taking V = Var(f(X)), E(f(X)) lies in the confidence

interval:
Ef(X) - 1.96\/%, Ef(X) + 1.96\/%] ,

with probability 95%. That means that Ef(X) — Ef(X) is of order \/%, SO
that in order to decrease the precision by 10 times, we should decrease M by
100 times, that is to do the simulations 100 times longer. An alternative way

for obtaining a more precise value by Monte-Carlo method is to reduce the
variance V.

Control Variate Method

The method of conirol variatesis a classical method of variance reduction which
is adapted to the SDE problem. A control variate is a secondary variate which
is simulated along with the primary variate of the Monte-Carlo method (here
F(X)). The secondary variate should be positively correlated with the P.V.
and its mean should be known. By subtracting it from the primary variate one
obtains a new variate which has a lower variance than f(X), and whose mean
differs from that of f(X) by a known amount, see El Karoui et al., (2000).

Control Variate in Model 1

To use the control variate method, we need to know the exact value of E(exp{
—rT}exp{X7}). In Model 1, E{exp{—71} exp{Xr}) can be computed using
an analytical expression. Indeed, it can be driven explicitly by solving the
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corresponding PDE to the model, See Oksendal (1998), pp 153-158 for different
versions of Girsanov Theorem.

] 9? 9
e R L R Ny R N EY )
F(T,2) = h().

where

Alf(t,x) = f(t,l’-*— 02) - f(t,l’),
Ao f(t,x) = f(t,z — 09) — f(t,x).

For h(z) = exp{z}, f(t,z) = Elexp{—r(T — t)} exp{Xr}|X: = z], is given
explicitly by:

T
f{t,z) =exp (/t {aﬁ exp{—a(T — s)} + %Jf exp{—2a(T — s)} —r

+ A (Hi(s) — 1) + Ao (Ha(s) — 1)}ds + exp{—Ipha(T — t)}a:), (10)
where

T T
Hi(t)= /t exp(ogexp{—au}l)du and Hs(t)= /t exp(—oq exp{—au})du.

Note that however Hy(t) and H2(t) could not be calculated analytically, but
numerically. The coefficients of equation (2) are taken as

T=1, a=10, 3=0, 0, =025, 03 =2Zand A\ = Az = 2.

For these parameters from (10) f(0,0) = E(exp{—rT} exp{ Xr}) is calculated
as

E(exp{—rT}exp{Xr}) =~ 1.5288,

where the integrals H; and H, has been calculated numerically using 107 time
steps. In the following tables the estimated values of Elexp{—rT }(exp{ X1} —
K)¢] for various strikes K, different meshes of time discretization for the SDE,
and different numbers of simulations are represented, by the basic method of
Monte-Carlo and the Monte-Carlo with control variate. The last two rows in
the first table represent the calculations we derived numerically in the end of
the previous section. The strike prices K are chosen close to the forward price
E(exp{—rT}exp{Xr}) to be more realistic. The confidence intervals derived
by these methods could be compared in the tables.
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Table 3. Basic MC, and MC with control variate for Model 1

Efexp{—rT}exp{XT}]

n = 250

n = 500

n = 1000

basic MC, 10% sim.
basic MC, 105 sim.

1.5025 £ 0.0551
1.5409 + 0.0223

1.5092 + 0.0485
1.5257 £ 0.0246

1.5359 + 0.0501
1.5186 4+ 0.0193

Ele~"T(eXT —1.5)4]

n = 250

n = 500

n = 1000

basic MC, 10* sim.

0.5741 £+ 0.0482

0.5653 £+ 0.0508

0.6696 + 0.1042

basic MC, 10° sim.
MC with CV, 10* sim.
MC with CV, 10° sim.

0.6054 £+ 0.0209
0.6030 £+ 0.0074
0.5990 £ 0.0028

0.6020 £+ 0.0196
0.5977 £+ 0.0075
0.5984 £ 0.0023

0.5843 + 0.0208
0.6053 + 0.0076
0.5973 £ 0.0025

Elexp{—rT}(exp{XT} — 1.55)]

n = 250

n = 500

n = 1000

basic MC, 10% sim.
basic MC, 10° sim.

0.6062 £+ 0.0567 0.5865 £+ 0.0628 0.6023 £ 0.0538
0.5738 +£0.0178 0.6096 £+ 0.0306 0.5903 £ 0.0208

MC with CV, 10% sim.

0.5826 £+ 0.0079 0.5886 £+ 0.0076 0.5901 + 0.0080

MC with CV, 10° sim.

0.5904 £ 0.0031 0.5904 £ 0.0028 0.5889 =+ 0.0042

Control Variate in Model 2.1

For Model 2.1, the derived values of EJexp{—rT }{(exp{X7r} — K)] for various
strikes K, different meshes n of time discretization for the SDE, and different

number of simulations, by the basic method of Monte-Carlo and the Monte-

Carlo with control variate are represented in the following tables. As before the
strike prices K take values close to E(exp{—rT}exp{Xr}). For this model,

E{exp{—rT} exp{X7}) in the representation of C; is derived by applying basic
Monte-Carlo to the exact simulation of X7, which was described in the previous
section, for 10% simulations. The derived value is

E(exp{—rT}exp{Xr}) = 1.0566 &+ 0.0002.

The coefficients in equation (5) are taken as

T=1a=10, =0, oy =0.25, g3 = 2 and A(0) = 2, A(1) = 50.
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Table 4. Basic MC, and MC with control variate for Model 2.1

Elexp{—rT} exp{Xr}] n

= 250

n = 500

n = 1000

basic MC, 10% sim. 1.062

basic MC, 105 sim.

1.0659 £ 0.055

94 0.0170

1.0606 + 0.0168
1.0570 + 0.0052

1.0621 + 0.0167
1.0566 + 0.0052

Elexp{—rT}(exp{Xr1} — 1)4]

n = 250

n = 500

n = 1000

basic MC, 10% sim.
basic MC, 10° sim.
MC with CV, 10? sim.

0.1761 + 0.0170
0.1810 4+ 0.0054
0.1706 & 0.0020

0.1767 + 0.0169
0.1749 £+ 0.0052
0.1679 £ 0.0019

0.1686 + 0.0160
0.1667 + 0.0050
0.1689 4 0.0019

MC with CV, 10° sim.

0.1702 £ 0.0006

0.1689 =+ 0.0006

0.1686 & 0.0005

Efexp{—rT}(exp{ X7} — 1.05)4]

n = 250

n = 500

n = 1000

basic MC, 10% sim.
basic MC, 10° sim.
MC with CV, 10? sim.

0.1685 + 0.0195
0.1666 + 0.0053
0.1605 & 0.0021

0.1595 + 0.0160
0.1594 4+ 0.0051
0.1592 4 0.0021

0.1729 + 0.0167
0.1586 + 0.0051
0.1586 & 0.0021

MC with CV, 10° sim.

0.1589 4 0.0006

0.1569 & 0.0006

0.1570 & 0.0007

Efexp{—rT}(exp{XT} — 1.1)4]

n = 250

n = 500

n = 1000

basic MC, 10% sim.

0.1647 + 0.0169

0.1540 £+ 0.0160

0.1503 + 0.0157

basic MC, 10° sim.
MC with CV, 10% sim.

0.1629 4 0.0053
0.1538 & 0.0021

0.1502 £ 0.0050
0.1521 £ 0.0021

0.1531 4 0.0050
0.1508 & 0.0021

MC with CV, 10° sim.

0.1543 4 0.0007

0.1529 £ 0.0007

0.1520 & 0.0006

Control Variate in Model 2.2

Finally for the same series of parameters of Model 2.1, the same values are
compared in the tables below. As in Model 2.1, E(exp{—rT} exp{X7}) in C;
is derived by applying basic Monte-Carlo to the direct simulation of X; for 10®
simulations. It is equal to

E(exp{—rT}exp{Xr}) =~ 3.8920 & 0.0091.

Table 5. Basic MC, and MC with control variate for Model 2.2

n = 1000
3.7825 +£0.9137
3.6586 +0.2313

n = 250
3.6614 4+ 0.9336
3.0037 £0.1873

n = 500
3.8867 4+ 0.8654
3.4159 £ 0.2340

Elexp{—rT}exp{Xr}]
basic MC, 10% sim.
basic MC, 105 sim.
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Elexp{—rT}(exp{X1} — 3.75) 4]

n = 250

n = 500

n = 1000

basic MC, 10* sim.
basic MC, 10° sim.

3.2762 £ 0.5940
3.2045 £+ 0.2335

3.2862 £ 0.4850
3.6846 £ 0.2786

3.6423 £ 0.6720
3.6997 £ 0.2786

MC with CV, 10% sim.

2.8589 £ 0.0204

2.8587 £ 0.0230

2.8555 + 0.0168

MC with CV, 10° sim.

2.8505 & 0.0050

2.8494 £ 0.0053

2.8505 &+ 0.0099

Elexp{—rT}(exp{Xr1} — 3.90)]

n = 250

n = 500

n = 1000

basic MC, 10% sim.
basic MC, 10° sim.

4.2374 £ 1.7530
3.2298 + 0.2318

4.1040 £ 1.2310
3.5104 £ 0.2574

3.5513 £ 0.7584
3.6091 £+ 0.2188

MC with CV, 10% sim.

2.8322 £ 0.0168

2.8537 £ 0.0169

2.8395 + 0.0358

MC with CV, 10° sim.

2.8348 £+ 0.0062

2.8491 £ 0.0052

2.8502 £+ 0.0057

Elexp{—rT}(exp{XT} — 4.05) ]

n = 250

n = 500

n = 1000

basic MC, 10% sim.
basic MC, 10° sim.
MC with CV, 10* sim.

3.8249 + 1.3599
3.1136 + 0.1828
2.7956 + 0.0242

4.0678 £ 0.9443
3.7886 £ 0.2988
2.8418 £ 0.0211

3.5865 + 0.6678
3.6287 £ 0.2425
2.8190 £ 0.0211

MC with CV, 10° sim.

2.8251 £+ 0.0058

2.8290 £ 0.0092

2.8449 £ 0.0054

Conclusion

To evaluate E{exp{—rT }{exp{ X1} —K)) for the models studied, we have used
control variate method, this leads to highly significant reduction of variance.
Tt is often observed (especially for in the money options) that the confidence
interval is 10 times smaller; in other words, for a given accuracy level, the
method speeds up by a factor 100.

4 The PDE Equations

The PDE equations corresponding to the models we consider, are the PDE’s
which are satisfied by the functions of the form

ft,x) = Elexp{—r(T — 1) }h(X7)[X; = 2],

where h is a real function. For suitable choices of h like, h(z) = (exp{z}—K),,
K > 0, f(t,z) could be interpreted as the price of the call option on S; =
exp{ X:} with strike price K, at time ¢, so that the PDE’s are the equations
which the option price function on S; satisfies. In the following we represent
briefly the PDE’s associated with each model and the corresponding finite
difference (FD) equations. For associated PDE’s see Oksendal (1998), pp 153-
158 for different versions of Girsanov Theorem. Here we are not going through
technicalities.
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The PDE and FD for Model 1

As we mentioned before the PDE of Model 1, is given as

a 1,62 a
—f-l-—af—é—l—a(ﬂ—x)—f—Tf+)\1A1f—|—)\2A2f:0, z€eER 0<t<T,
at 2 " fx ox

AT, z) = h(z). (11)

where

Alf(t?x) = f(t,l’-*— 02) - f(t,l’)
Ao f(t,x) = f(t,x —a2) — f(t, ).

Now let us apply the change of variable t =T — ¢ to the PDE (13) and get
to the following PDE

af

of 1 ,0°f
e = 201 (‘9?{;2 +C¥(ﬂ—$)ax —Tf+/\1A1f+)\2A2f,
F(0,z) = h(z), T€R 0<t<T. (12)
or the following FD,
of
E:A]‘—I—Bf7 f(0,2) = h(z), zeER 0<t<T (13)
for 2
_ 1,97 of
Af= 5015 taB -5 —rf,
and

Bf=MA1f+ XA0f

In (13), the operator A is a classical partial differential operator in space
whereas B represents the jump terms. The time splitting algorithm will consist
of solving equation

Ju
— = Au,
at
by an implicit scheme (backward Euler scheme or sometimes a Crank-Nilcoson

scheme) over a time step 6t and then solving

by an explicit scheme.
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The PDE’s and FD’s for Model 2.1

In this model depending on whether the two-state Markov chain U; starts in
the position 0, that is Uy = 0, or it starts in 1, Uy = 1, two functions are
considered

Jo(t,z) = Elexp{—r(T — )} X7)|X; = z,U; = 0],

fult, z) = Elexp{—r(T' — )}M(X7)|X; = 2, U = 1]. (14)

These two functions satisly a coupled system of PDE’s.

% % afo ( )—_rfo_l_)\(O)AO(fO?fl):O’
%—I—% %aaxfz ‘I'O‘(ﬂ_l’)i—Tfl+)\(1)A1(f07f1):07 (15)

fo(T,z) = A1(T, z) = h(z).

where

Ao(fo, fi)(t,x) = fi(t,z + 02) — folt, z),
Ai(fo, f1)(t,x) = folt,x — 02) — fu(t, 2).

Again by applying the change of variable { = T — [, we are lead to the
following system of PDE’s

% = Afo + M0)Ao(fo, f1),
% = Afy + MDA (fo, f1),
Fo(0,2) = f1(0,z) = h(x),
where
Af_% 1‘32£+ (5—;0)%—7%

The novelty compared to Model 1 is the coupling of two partial differential
equations. The discretlzatlon scheme consists of a time splitting in the system.
First both equations 8tl Af;, i = 1,2 are solved independently by an implicit
scheme in time. Then the coupling terms corresponding to the jump terms
are solved by an explicit scheme in time. The spatial discretizations and the

truncature of the domain are identical to that of Model 1.
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The PDE’s and FD’s for Model 2.2

For this model, only the drift terms in the system (15) are changed. The
functions

folt,z) = Elexp{—r(T — 1)
filt,z) = Elexp{—-r(T — 1)

satisfy the following system

h(XT)lXt = .I',Ut = 0],
h(XT)lXt = .I',Ut = 1],

¥
¥

2
% 1, af0+{a( ) = 00} 20 gy 1 AO20(fo, ) = 0,
] 0
3T a0 AW P A ) =0, (16)

fO(T7 .Z') = fl(T?a:) = h(x)

where Ag and A, are defined as in (15).
By following the same arguments as before we rewrite the original backward
system (16) as the following forward system

% = Ao fo + MO)Ao(fo, 1),
% = AL fi + ADALfo, f1),

fo(O,J?) = fl(Owr) = ]’L(.Z'),

where

1 ,0°f af
Aof = —oi—=% —x)— =
of = 57+ {a(B — ) = A0y} gL ~ 1,
and o
1
A1f22 3{‘*‘{0&( —fIZ ‘|‘)\( 0'2}——7’f
Then using the centered scheme or the non-centered scheme to solve the PDE’s
ou ou
3f Aou E = Alu,

we get to the same equations, in which the term a(8 — z,,), is now replaced by
a(ﬂ - xn) - /\(0)027 CY(B —Tn) — )‘(O)U%

corresponding respectively to Ay and A;. The discretization scheme is very
similar to that of model 2.1: a time splitting of the coupled system, an implicit
scheme for the independent partial differential equations and an explicit scheme
for the coupling terms which correspond to jump terms as well.
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4.1 Comparing with the Monte-Carlo Results

Here we present only one table in each case comparing the Monte-Carlo and
the finite-difference results for the option prices. The result presented as the
Monte-Carlo result is the one with control variate, for 10° simulations, and
for 1000 step of time descritizations. To obtain the finite-difference results
we double the number of time desretizations systematically, finding the results
which are compatible with this rule we calculate the FD result by extrapolation.
Here we consider the two centered and (non-centered) Crank-Nicolson method
to the PDE’s.

e Model 2.1 K = 1.5, MC with CV, 10° simulations, n¢t = 1000: 0.5973 % 0.0025

E[e~"T(eXT — 1.5),] nt,nz = 250,450 500,700 1000,900 2000,1350 extrapolated

centered 0.6875 0.6420 0.6200 0.6092 0.5984
differences 0.0455 0.0220 0.0108

E[e=""(e®*T —1.5);] nt,nz = 250,120 500,250 1000,500 2000,1000 extrapolated

{non-centered) CN 0.7050 0.6490 0.6235 0.6110 0.5984
differences 0.0560 0.0267 0.0125

e Model 2.1 K = 1.05, MC with CV, 10° simulations, nt = 1000: 0.1570 £ 0.0007

E[e™"T(e*T —1.05),] mnt,nz = 250,450 500,700 1000,900 2000,1350 extrapolated

centered 0.1604 0.1586 0.1574 0.1568 0.1562
differences 0.0018 0.0012 0.0006

E[e™"T(e¥T —1.05),] mnt,nz = 250,120 500,250 1000,500 2000,1000 extrapolated

{(non-centered) CN 0.1669 0.1630 0.1593 0.1578
differences 0.0039 0.0037 0.0015

¢ Model 2.2 K = 3.9, MC with CV, 10° simulations, nt = 1000: 2.8502 & 0.0057

E[e=""(e®*T — 8.9);] nt,nz = 250,450 500,700 1000,900 2000,1350 extrapolated

centered 3.9188 3.3618 3.1019 2.9766 2.8513
differences 0.5573 0.2599 0.1253

E[e~"T(e¥T — 3.9),] nt,nz = 250,120 500,250 1000,500 2000,1000 extrapolated

(non-centered) CN 3.9615 3.3591 3.0983 2.9743 2.8503
differences 0.6024 0.2608 0.1240
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