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Abstract. In this paper, we obtain the Rényi entropy rate for irre-
ducible-aperiodic Markov chains with ‘countable state space, using the
theory of countable nonnegative matrices. We also obtain the bound for
the rate of Rényi entropy of an irreducible Markov chain. Finally, we
show that the bound for the Rényi entropy rate is the Shannon entropy
rate.

Keywords. Rényi entropy rate; Shannon entropy rate; Rényi entropy;
countable nonnegative matrices.

1 Introduction

By the introductionof entropy in the probability theory, entropy and stochas-
tic processes became linked, and the entropy rate was defined for stochas-
tic processes.when Shannon (1948) proved that for a stationary stochastic
process; with finite state space, the Shannon entropy rate exists. He also
obtained the entropy rate for an ergodic Markov chain in the form

Hy(X) ==Y m Y pilogpi (1)
i J

where p;;, 4,5 = 1,2,...,n are transition probabilities and II = (m;), i =
1,2,...,nis the stationary distribution of the chain, with II = IIP, P = (p;;)
and Y ;- m = 1.
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The existence of the Shannon entropy rate for an irreducible Markov chain
with countable state space was proved by Klimko and Sucheston (1968). It
can be shown that (1) is valid for the rate of Shannon entropy of an irreducible
Markov chain with countable state space.

For the first time, Rényi (1961) generalized Shannon entropy to the one-
parameter family of entropy, using the definition of the entropy of order «
which is called the Rényi entropy. The Rényi entropy rate was defined after
Nemetz (1974) defined Rényi’s a-divergence rate for Markov chainsyand then
Rached et al. (1999) obtained the Rényi entropy rate for anergodic Markov
chain with a finite state space.

Chen and Alajaji (2001) obtained an operational characteristic for the
Rényi entropy rate in coding theory, by showing the bound for the error
probability of information transmission for the source coding that is based
on discrete-time processes with finite state space. After them, Shimokawa
(2006) extended this result for a countable state space. Another application
in coding theory is given by Rached et al. (1999). Also the Rényi divergence
rate is related to the error probability in hypothesis testing between two
probability distributions associated with Markov chains (Alajaji et al., 2004).
The application of the Shannon entropy rate can be found in many areas such
as complex network (Gardenes and Latora, 2008) and in the analysis of voice
pathology evolution (Scalassara et al., 2008).

Among the family of stochastic processes, choosing the process with the
maximum entropy is equivalent to adding the least information possible for
the problem under consideration. Maximum entropy is widely used in the
study of stochastic.processes (see for instance, Girardin, 2004). Thus it is
necessary to obtain the entropy rate of stochastic processes.

This paper is organized as follows. We review some of fundamental con-
cepts and results for Markov chains and the theory of countable nonnegative
matrices in the section 2. In the section 3, we obtain the rate of Rényi en-
tropy for an irreducible-aperiodic Markov chain with countable state space
and also the bound for the rate of Rényi entropy of an irreducible Markov
chain. In the section 4, we show that the bound for the Rényi entropy rate
is simply the Shannon entropy rate.

2 Countable Non-negative Matrices
In this section, we introduce all of the definitions and theorems needed for

the next sections, and throughout this discussion countable means infinitely
countable.
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A matrix T = (t;5), i,j = 1,2,... is called countable nonnegative if
all its entries are nonnegative. A countable nonnegative matrix T is called
stochastic if Zj t;j = 1 for all .. We note that the transition matrix of a
Markov chain is a stochastic matrix and it is usually denoted by P = (p;;).

A criterion for the classification of states of matrices is in terms of the
generating functions that we introduce in the following.

For a matrix T', the generating function is

Ty(2) =Y ) 2" (2)
k=0

with the convergence radius R;; = supg>o{s : Ztg-c)sk < oo}y =1,2,....
When the matrix T 1is irreducible and each entry< of the matrix
TF = <t£§c)>, i,7 = 1,2,...,k > 1 is finite, then by the theorem 1 of the
chapter 6 of Seneta’s book (Seneta, 1981, p::200), the matrix T has a com-
mon convergence radius R, where 0 < R < oo. In the following we deal
only with irreducible matrices T', with finite entries for T* = (tg-c)), which
by the aforementioned theorem have finite common convergence radius R,
assuming R > 0.
The other generating function is

o0

Fi(z)=Y W z* (3)

k=0

where the gquantities fl-(f), k>0,1,7=12,... are defined by

1 k+1 k
=

where fl.(;)) = 0 (in the Markov chain framework, fi(f) is the probability of
going from ¢ to j in k-steps without visiting j in between).

For |Z| < R, the generating functions (2) and (3) are related by
Ti(Z) = (1= Fu(Z2))™, Ty(Z) = Fy(2)T;(2), i#]

and for 0 < s < R, Fy(s) =1—[Ty(s)] "' <1and for s - R~, F(R™) < 1.
Now by the last inequality we have the following definition for the states
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of a matrix.

Definition 1 For the matrix T a state i is R-recurrent if Fj;(R~) = 1 and
is R-transient if Fj;(R~) < 1. A R-recurrent state ¢ is said to be R-positive
or Renull if i (R) < o0, (ji(R) = RF}(R) = S, kf{ R¥) or pi(R) = oo,
respectively (Seneta, 1981, p. 202).

Remark 1 For a stochastic matrix P, with the generating function P (Z) =
>k pg?)Zk, a state ¢ is recurrent if Fj;(17) = 1, and is transient if #p(17) < 1.
For this matrix a recurrent state ¢ is positive-recurrent if F/;(1) < oo and is
null-recurrent if F/;(1) = oco.

The notion of invariant measure and vector play an important role in the
recurrent theory of Markov chains, where these notions are extended to the
theory of R-positive matrices.

Definition 2 For a nonnegative matrix T, a row vector =’ > 0/, (£ ()
satisfying Rx’T = x’ is called an R-invariant measure and a column vector
y = 0,(# 0), satisfying RTy = y is called an R-invariant vector (Seneta,
1081, p. 203).

Theorem 7 Suppose ' = (x;) is‘an R-invariant measure and y = (y;) is
an R-invariant vector of T. Thens T tis R-positive if and only if 'y =
doxiy; < oo (Seneta, 1981, p. 200).

Theorem 8 IfT is an irreducible-aperiodic R-positive matriz, then as k —
> (k)
k
RFt;) — >0 (4)
where ' andy are R-invariant measure and vector of T, respectively (Seneta,
1981, p. 207).

3 The Rate of Rényi Entropy

Let (X,)n>1 be an irreducible Markov chain with the state space E =
{1,2,...}, and a probability transition matrix P = (p;;), 4,5 € E, where
pij = P(Xy41 = j|X, =) with the initial distribution p; = P(X; = i)
where ¢ =1,2,... .

The random vector (X7, ..., X,) has the probability distribution

p(il, ooy ’Ln) =: P(Xl = ’il, . ,Xn = Zn) = pilpiliQ .. 'pin—lin' (5)

where i, € E,k=1,2,...,n.
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For a Markov chain (X,,),>1, the Rényi entropy of order a(a > 0, #
1) at time n is defined as the entropy of the random vector (Xi,...,X,),
namely

1 . .
Ha(Xla"'aXn) = l—alog Z pa(Zl,...,Zn) (6)
i...in€E

and the Rényi entropy rate is

Hy(X) = lim lHa(Xl, ey Xn). (7)

n—oo n

To obtain the rate of Rényi entropy, we first obtain the entropy for the
random vector (Xi,...,X,). Then, by combining (5)"and (6) we have

1
Ho(X1,.o X)) = ———1log > (piuivis - - - Pinirin)"

11—« &
i1...in€E

1
1 a log Z j o Z Diviy - Do i

eR i, in €L

Let ¢; = pi* and ¢;; = pj;. 1, j € E, then by defining a row vector g = (i), a
column vector 1 and a new matrix 1" = (p%), we have

1 _
Ho(Xy, .- Xy) = 7——log qT" 1. (8)

Theorem 9 If the irreducible-aperiodic matriz T with countable state space
is R-positive, then the Rényi entropy rate is

1
Ho(X) = 7—log R!

—

where R is the convergence radius of matriz T.

Proof. Since the matrix T' is R-positive, then the R-invariant measure x’
and the R-invariant vector y exist (see chapter 6 of Seneta’s book, p. 205)
(Seneta, 1981) and by the Theorem 1, 'y < oo and by the Theorem 2,
R™T™ — (x]yl/z x,yz) > 0.

7

Furthermore, from (8) we have
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1 _
H,(X1,...,X,) = T log qT™ 1

1
Rn—l '

1
= loggR" ‘T 11
11—«

Therefore, we have:

lo !
n(l —a) & Rt

1 1
“Hy(X1,...,Xn) = ————logqR" T 11 +
n n(l—a)

and as n — 0o, we get Hq(X) = 1-log R™'.

Theorem 10 If the irreducible matriz T with countable state space is R-
positive, then the bound for the Rényi entropy.rate is Hg(X) > ﬁ log R~!
fora <1 andis Hy(X) < ﬁ log R~! for ae>'1, where R is the convergence
radius of matrixz T .

Proof. Since the matrix T is R-positive, then the positive R-invariant vector
y exists, with 0 < y; < 00, >, ¥ < 00 (see Chapter 6 of Seneta’s book)
(Seneta, 1981), and we have
y = RTy
and
y = RnflTnfly

where ith element is given by: y; = R" ! Zj tl(?_l)yj.

Let ys = sup;~ys, so that 0 < y; < ys < oo; then we have:

0<y = R’“Zt"” R’“Zt"” Us. (9)

On the other hand, gT"'1 = >t Z] b, Thus, for (9) we have:
0<Y qui <R™ yquz — R" 'y,qT" 1. (10)
i
So we have, %ﬂfzz qT" '1 and 1 - log ]%:n qul <5 L1og qT™ 1, and there-
fore . .
log 2269% =L 1 < Liggqrtnny,
Ys n
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Thus, taking the limit as n — oo, we have:

1 gy n—1
lim — log 2 4 + 2 log R~}
n

1
< lim —logqT™ 1
n—oo N Ys n—oo N

and

1
10g R_l gn—)oo - log an_l]-'
n

Now, multiplying both sides of the relation through ﬁ (for @« <1) and
considering the relations (7) and (8), we have:

log R~ < H,(X).

—

Repeating the same steps for the case a > 1, we get

1
11—«

log R > Hy(X).

4 Bounds for the Rényi. Entropy Rate

Remark 1 Rényi entropy H,(X), forall («), is a non-negative decreasing
function of a, i.e. for ap < a@gy Hoy(X) < Hq, (X) for all X, with the equality
holding if and only if X is a uniform random variable.

Using this fact, we have the following inequalities:

1= Fora<l, Hi(X)<H(X) (11)
2— Fora>1 Hy(X)<H(X) (12)

where Hi is'the Shannon entropy.
Now, we obtain the bounds for the Rényi entropy rate of an irreducible-

aperiodic Markov chain by using (11) and (12).
For a random vector (X7,..., X,), the inequality (11) becomes:

H](X],. . ,Xn) < Ha(Xl,...,Xn)

and ) .
EHl(Xl, e Xn) < EHa(le cey X))

Thus, taking the limit of the entropy as n — oo and considering that the
rate of Rényi entropy (Theorem 3) and the rate of Shannon entropy (Klimko
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and Sucheston, 1968) for an irreducible Markov chain exist, then

and we have:

> mipijlogpiy < Ha(X). (13)
i?j

In a similar way, we get for the inequality (12):
Ho(X) < Hi(X)

and we have:
Ho(X) <) mipijlog pij. (14)
0.
Now we illustrate the relations (13) and (14) by the following example. (here
all logarithms are taken in the base e).
Example 1 Let (X,,),>1 be an ergodic'Markov chain with the transition
matrix P = (p;;), where pjip1 = p =1 — p;, for 1,5 € {1,2,...}, 0 <
p <1, q=1—p, then the matrix T"= (p%) is an irreducible-aperiodic and

ff) (p®)*~1¢* and the generating functions Fy; and T}, are Fi(Z) =

Yo (@ Ve-lgezk = 13252 and T11(%) = %, and the convergence
radius of Tn( )is R = “iq .wHence F11(R) = 1 and for 0 < z < a+qa7

Fli(z) = g p (=2rE implies that F'(R) < oo. Thus, T is R-positive, and in
this case we can use Theorem 3 to calculate the Rényi entropy rate. This
turns out to be given by

1
Ha(X) = 7 log(p" + ¢°)

and using (1) the Shannon entropy rate is
H\(X) = —(qlog q + plog p).

Let p = 0. 3, then the Rényi entropy rate is equal to 0.66 for a = 0.5 and is
equal to 0.54 for & = 2. For this matrix, the Shannon entropy rate is equal
to 0.61.
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