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Abstract. In this paper the regression problem for random sets of
the Boolean model type is developed, where the corresponding Pois-
son process of the model is related to some explanatory variables and
the random grains are not affected by these variables. A model we
call propagation model, is presented and some methods for fitting this
model are introduced. Propagation model is applied in a simulation
study.

Keywords. Random closed set; hitting functional; Boolean model;
propagation 1model; generalized linear model.

1 Introduction

Random set theory was developed by Kendall (1974) and independently by
Matheron (1975) based on Choquet’s work on capacity functionals. In theory
of Matheron (1975) random closed sets (RACS’s) in R are random elements
on the space of closed subsets of R which are endowed with hit-or-miss
topology. The mathematical foundation of random closed sets is essentially
based on Choquet’s (capacity) theorem. This theorem characterizes prob-
ability distribution of a RACS as a set function called hitting functional.
Hitting functional plays the similar role as that of distribution function for
random variables and for a RACS Y defined as:

Ty(K) = Py (YN K #10),
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where K is a compact subset in R%.

In this way, probability models were extended for describing the behavior
of random phenomena whose outcomes are subsets of R?. Examples of these
Phenomena are shape of a tumor or region affected by cancer in medicine,
the area hitted by a meteorite or a bomb, the region covered by some plant or
fire in a jungle, the activated region of brain by some stimulant and red blood
cells in viewing field of a microscope. Boolean model is a parametric model
which can generate such random sets. Many characteristics of these models
and their statistical analysis can be found in Molchanov (1997), Stoyan et.
al. (1995) and Cressie (1993). In section 2 we introduce the Boolean model,
its hitting function, some of its related parameters and estimators of these
parameters. The regression problem, that is relating the behaviour of the
Boolean random sets to some explanatory variables considered in Khazaee
and Shafie (2006). They classify these regressions according to the type
of explanatory variables as propagation, growth and propagation—growth
models. In section 2 we also introduce propagation models for the modelling
of the effects of explanatory variable on Boolean random sets. Some methods
to fitting propagation models when grains are circles with known radii are
presented in Khazaee and Shafie (2006). In this paper we extend the previous
work to the case which grains are random radii circles. And in section 3, we
present some ideas and methods for fitting this propagation model. In this
section we supposed that the grains are random circles with radii having
unknown uniform distributions. However, other distributions for radii, e.g.
distributions which can be specified with the first two moments, can also be
used. This method will be applied in a simulated example in section 4.

2 ‘Boolean Model and Propagation Model

The idea that a random set can be a combination of some simple random
sets, has been used in structure of different models of random sets. One of
these models which has many abilities in description of behavior of random
sets and also modelling the random sets is Boolean model (see Matheron,
1975). A Boolean model is formed by placing random closed sets at the
points of a homogeneous Poisson point process (D) and taking the union of
these sets. In fact, a Boolean model Y is defined as

diED
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where Z;,7 = 1,2,... are independent copies of random closed set Z; and
are independent of D. Also Z & d = {z+d :z € Z} is Minkowski sum of
Z and d . The points of the Poisson process are called the germs and the
associated random sets the grains. It can be shown (Stoyan et al., 1995) that
the hitting functional of a Boolean model is:

Ty (K) = 1 —exp {~AE [v4(Zo @ K)]}

where K = {~k:k € K}, Zy ® K = Ugex (Z0 ® (—k)), v4 is'the Lebesgue
measure and A is the intensity of the Poisson process D. For ‘a Boolean model
with convex grains in R?, it can be shown (see Matheron, 1975) that:

() =1 - exp { -2 | Ela()] + - EIU o)) b )

where U denotes the perimeter. When Y is observed within a window W,
an unbiased estimator of Ty (K) is obtained by:

Ty () = v(WoeK)n (Y e K))
VAT va(W 5 K)

, (2)

where W 6 K = e W & (—Kk).

The point process of tangent points associated with a Boolean model are
used in constructing estimator of A (see Molchanov, 1995). Let assume that
the typical grain Zg is almost surely convex. If a direction u in R is fixed,
then the tangent point of each grain Z; is defined to be the lexicographical
minimum among all points at which a hyperplane orthogonal to uw which
moves in the direction of u first touches Z;. Some of these tangent points
are covered by other grains while other points are visible. These exposed, or
observabley tangent points form a point process N (u) with intensity A(1—p),
where pis the volume fraction of Y (see bellow). If u is directed upwards,
then N (u) is called a lower positive tangent point process. If n't is the
number of lower positive tangent points in window W then an estimator of
A (see Molchanov and Stoyan, 1994) is:

N n+
A L @

where p is in 5.

For a Boolean model volume fraction p, which is defined as the mean
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fraction of volume occupied by Y in a region of unit volume, is:

p =1 — exp{—\Elva(Z)]}. (4)
When Y is observed within a window W, an unbiased estimator of p is:

L Ud(Y N W)
D= (5)

For this and other estimators of p see Stoyan et al. (1995).

Now we consider a situation similar to Figure 1 in which each image is a
realization of a Boolean model with a corresponding value for the explanatory
variable. The problem is to determine and fit a model for the relationship
between the Boolean model and the explanatory variables. In other word, we
wish to present a model that is able to generate sets similar to Figure 1 and
one can use it for predicting its image by values of an explanatory variable.
In this paper we consider the case that the distribution of Zj is independent
of explanatory variables and in the next section we shall give a method to
fit such a model.

x=1.03 x=1.12 r=1.18

r=1.23 r=1.37 r=1.47 r=1.68

Figure 4. Realizations of the Boolean models with 8 values of propagation variable x, where
the grains are random circles.
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Let X = (z1,29,...,2;) be a vector of explanatory variables which we
want to use in modelling its relation with the Boolean random set Y and to
evaluate its effect on Y. In this paper we suppose that X only has some effects
on D. We shall call such explanatory variables the propagation variables and
define a propagation model as:

diGDX

Ax = f(X,8) >0, (6)

Z!s are i.i.d. copies of Zj and are independent of Dx.

where f determines the relation between X and A (the only parameter
of D) and 3 is the parameter for this relationship.

3 Fitting Methods

In this section, we present an approach to fit the propagation model (6).
For simplicity we suppose f(X,B3) = h(X'B), where h is a differentiable
monotone positive function and [ Zy-is a circle with radius R where R is
uniformly distributed on (a,b). This approach can be also extended for any
distribution of R whichds characterized with first two moments. Under these
conditions propagation model (6) has the following form:

4

d;eDx

Mx = f(X, 8) = h(X'B), -

Zy = B(o, R), where R ~ uniform(a,b),
and is independent of Dy.

Figure 1 shows a realization of this propagation model with 8 values of
propagation variable x where x is the only explanatory variable and for
i = 1,2,...,8, f(x;,8) = exp(Bo + Bix;) = exp(7.1 — 3x;) and R; ~
uni form(0.05,0.15).

In the following we shall estimate the 3, a and b i.e., parameters of the
propagation model (7).

Estimation of 3: When R is constant three methods for estimating of 3 are
given in Khazaee and Shafie (2006). All of these methods can also be applied
for our case. In this paper, we used method I. Let n; be the number of points
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in D, in a window W;. We know that n; follows a Poisson distribution with
the mean A\, = f(X;,8) = h(X]B). Now, we can say that the problem
of estimating 3 is a problem of estimating the parameters of a generalized
linear model with Poisson family, where the link function is g(-) = h~1(-).
The maximum likelihood estimate for 3 can be computed using iterative
reweighted least squares algorithm for fitting a linear regression model, z; =
X!B + €;, where
zi = g(Ni) + (ni — Mi)g' (M),

and the weights are w; = [var(z;)] ™! = [var(n;)]~![¢'(\i)]~2(for more expla-

nation about this algorithm and its convergence see McCullagh and Nelder,
(0)

1989). To implement this algorithm, we use 5\1 ’s asinitial estimates for

Ai’s (usually 5\50) = n;). Then, the values of dependent variable and weights

can be computed by z,fo) = 9(5\50)) + (ni — 5\50))9’(;\50)) and wl(()) = 1/{5\50)}
[g’(sz(-o))]_2, respectively. Let Z(0) = (zfo), .\ .,zﬁlo)), w@ Dbe a diagonal ma-
trix with the diagonal elements of wZ(O) and-X be the observed matrix of the

Aoa(1
explanatory vector X. The first approximation of 3, ﬁ( ), will be obtained

by solving the following equation:

@ X0 7(0).

(X'w " X)B
Then for : = 1,2,...,n; 5\1(-1) = h(X{B(l)) are calculated and the second
iteration can be followed in a similar manner. The procedure will be con-
tinued until the convergence to 3 occurs. It can be shown (see McCullagh
and Nelder, 1989) that if w is the weights matrix in the last step, then the
approximate. distribution for ,3 is,

N(B, (X'wX)™"). (8)

There is no observable n; for the overlapped grains, but instead it we
used a suitable estimate in computational algorithm, for example, by using

(5):

h; = [02(Wi)j\i} = [ n } ; (9)

1 —pi
where n:“ is the number of lower positive tangent points in the window W,
and p; is an estimate of volume fraction for ith Boolean model obtained from

(5)-

Estimation of a and b: In order to estimate a and b we use intensity
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(or moment) method. In this method the relation between parameters will
be used. The estimates of parameters, which can be directly calculated
by available realizations, will be substituted in these equations. Then the
given equations will be solved for other parameter estimates. Here, as R ~
uni form(a,b) then these equation are:

a = B(R) - V3(E(R?) — E(R)*)'/?

b= E(R) + V3(E(R?) — E(R)?)Y/2.
So if E/(}?) and /(-1?) are suitable estimators of E(R?) and E(R), then the
intensity method estimators of a and b are:

(10)

Our approach for estimation of E(R?) s using equation (4) with E[vy(Zp)]
= 7E(R?). From this equation we have

(1l -p)

E(R2) . TA

(11)
For ¢« = 1,2,...,n we substitute p; and 5\, in above equation to find an
estimator of E(R?) for each realization. We show these estimators with
E;(R?) and use the mean of these estimators for estimation of E(R?), i.e:

E(RQ) — lzn:ﬁ(RQ) :_liw (12)
n &' n 4 o
i=1 i=1 4
In order to estimate E(R) we use the equation (1). When the grains are
random circles and we choose K; as a circle with radius ¢ and center origin,

this equation changes to the following form

Qv (Ki) =1 — Ty (K;) = exp {—\ [E(R?) + 2ntE(R) + wt] } .

From this equation moment method estimator of E;(R) is

~ 1 | In Qv. (K1)

Ei(R) = 5~ - TE{(R?) — mt?| . (13)
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We use the mean of these estimators for estimating of E(R), i.e,:

1 | InQy (K ~
ZE _@vB) B Ry e ()
27Ttn — i

where for i =1,2,...,n, @yl (Ky)=1- fyl(Kt) can be calculated from (2).

4 Application and Simulation Studies

For a better explanation of this we fit the following model to simulate obser-
vations in Figure 1.

Yx= |J (Ziod),
dieDX

where D, is a Poisson point process with intensity A = exp(8y+f12) and Z;’s
are i.i.d copies of a random circle where its radius is distributed uniformly

n (a,b).

Estimation of 3: For estimation of 8 we computed the statistics in Table 1
by using (5) and (9). Using methed I described in previous section, estimates
of By, B1 and their standard errors are given in Table 2

Estimation of @ and b: In our example values of E; (R?) have been obtained
by substituting p; and \; from Table 1 in (11) and are given in Table 2, thus
from (12) we have B(R?) = 0.0116.

Figure 2 illustrates the way Qy7(Kt) is calculated. Table 3 shows the
values of Q\yl (K}), calculated from each realizations in Figure 1 for ¢ = 0. 01,
and values of E;(R) obtained from (13). From (14), E(R) = 0.1034. Finally
put E(R) = 0.1034 and E(R?) = 0.0116 in (10) we get a = 0.052 and
b = 0.156. Therefore the fitted model to the observations in Figure 1 is

dieﬁz

where ﬁx is a Poisson point process with intensity A= exp(7.31—3.27x) and
Z;’s are i.i.d copies of a random circle with a radius is distributed uniformly
n (0.052,0.156).
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Table 1.statistics obtained from Figure 1

i 1 2 3 4 5 [ 7 8
T 095 1.03 1.12 118 1.23 1.37 147 1.68
n' 9 11 11 9 8 12 7 6
D 0.87 079 0.73 0.73 057 046 039 0.28
n=2A 69 52 40 33 19 22 11 6

Table 2. Estimates of parameters and their standard errors.

i Bi s.e(Bi)
0 7.312 0.8442
1 -3.274 0.5625

Table 3. Estimates of Qy (Ko.o1), E(R?) and E(R) for ith realization in Figure 1.

i 1 2 3 4 5 6 7 8

Qv (Koon) 0.08  0.14. 022 023 036 047 058  0.75
Ei(R?) 0.0094 0.0096 0.0104 0.0126 0.0141 0.0089 0.0143  0.0132
Ei(R) 0108 _0.119. 0077 0.116  0.144  0.096  0.068  0.099

W o Ky

Figure 5. An illustration of the way @Y7 (Ko.01) is computed. The black region is Y & Koo
and TyT(KU_m) =1- Qy‘.(KU_m) is proportion of this region in window W & K.
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Table 4. mean and standard deviation of the simulation estimates

N — —

Bo B a b E(R)  E(R)

mean 6.84 -2.89  0.083 0.139  0.1111 0.0117
std.dev 0.935 0.742  0.0098 0.0178  0.0066 0.0018

For examining properties of estimators, ,[3, a and b results of a simulation
study are given in the following. For this we simulate 1000 times 8 realiza-
tions from model in example 1 and calculate Bg, Bl, a and b: Table 4 shows
the mean and standard deviation of these estimates. With cemparison of
mean(fy) = 6.84 and mean(3;) = —2.89 with their true values y'= 7 and
B1 = —3, percent of relative absolute value of bias of estimators BO and Bl
are respectively, %3.7 and %2.3. Due to the small sample size (n = 8), this
does not show considerable differences with-its asymptotic values given in
(8). To study the performance of the values of asymptotic standard error
of Bg and Bl these values are calculated from asymptotic distribution (8) in
each iteration. Mean of these values are respectively, mean(s.e(Bo)) =0.861
and mean (s.e(f31)) = 0.614. Difference of these values with std.dev(3;) and
std.dev(B;) given in the table 4 is"due to the small sample size. Further-
more, histograms and Q-Q plots of By and B are shown in Figure 3. These

g -.IIIII.— e
5 “ 3 2 K 2
~

B
g IIIII .

Bo

Figure 6. Histograms and Q-Q plots of Bg and Bl
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show that normal distributions are good approximations for distributions of
ﬁo and ,5'1. In general, above results show that asymptotic distribution (8)
provides a good approximate for distribution of B Regarding parameter
estimates of radius distribution i.e. a and b, bias values are unfortunately
considerable, especially for estimating parameter a. We think that these
biases come from the estimates used for E(R) and E(R?), especially estimate
used for F(R). Mean of estimates values of simulation for E(R) and E(R?)
are also calculated and are given in table 4. In comparison of these values
with the true values of E(R) = 0.1 and E(R?) = 0.0108, percents of relative
absolute values of bias are %11.1 and %8.3, respectively. There is another
problem with estimates (14) for E(R). Roughly in %7 of simulations values
of E(R)2 are greater than F(R?) and so estimations of a and b in (10) are
not possible. In this simulation study, we delete these cases. One possible
future research is to find better estimators for E(R).

5 Conclusion

This paper illustrated that propagation models which can be applied for
modelling the relationship between Boolean random sets and covariates. In
this paper, extracted statistics from realization of Boolean model, which
can be applied in fitting propagation models, were presented and a method
for fitting propagation model was introduced. Our study showed that the
presented estimation method is good to be used, but the need for finding
a better estimator for F(R) may be regarded as a new research. Also, on
selection and goedness of fit of the model more works need to be done.

References
Cressie, N. (1993). Statistics for Spatial Data. Wiley, New York.

Khazaee, M. and Shafie, K. (2006). Regression models for the Boolean random sets. J. Appl.
Stat. 33, 557-567.

Kendall, D.G. (1974). Foundations of a Theory of Random Sets. Stochastic Geometry, ed. E.
F. Harding and D. G. Kendall, 332-376, Wiley, Chichester.

Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York.
McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Model. Chapman & Hall, London.

Molchanov, I.S. and Stoyan, D. (1994). Asymptotic properties of estimators for parameters
of the Boolean model. Adv. Appl. Prob. 26, 301-323.

J. Statist. Res. Iran 5 (2008): 181-192


www.sid.ir

192 Fitting Propagation Models With Random Grains, Method and ...

Molchanov, 1.S. (1997). Statistics of the Boolean Model for Practitioners and Mathematicians.

Wiley, Chichester.

Stoyan, D.; Kendall, W.S. and Mecke, J. (1995). Stochastic Geometry and Its Applications.

Wiley, Chichester.

Mojtaba Khazaei

Department of Statistics,

Faculty of Mathematical Sciences,
Shahid Beheshti University,
Tehran, Iran.

e-mail: m_khazaei@sbu.ac.ir

Mojtaba Ganjali

Department of Statistics,

Faculty of Mathematical Sciences,
Shahid Beheshti University,
Tehran, Iran.

e-mail: m-ganjali@sbu.ac.ir

Khalil Shafie

Applied Statistics and Research Methods,
University of Northern Colorado,
Colorado, USA.

e-mail: khalil.shafie@unco.edu

© 2008, SRTC Iran


www.sid.ir

