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Abstract. In this paper, we study the estimation problems for the
Burr type III distribution based on a complete sample. The maximum
likelihood method is used to derive the point estimators of the parame-
ters. An exact confidence interval and an exact joint confidence region
for the parameters are constructed. Two numerical examples with real
data set and simulated data, are presented to illustrate the methods
proposed here.
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1 Introduection

Burr (1942)/introduced 12 different forms of cumulative distribution func-
tions for modeling lifetime data or survival data. Two members of the family,
the Burr types III and XII are important because they are inherently more
flexible than the Weibull. Both the Burr types III and XII cover a much
larger area of the skewness kurtosis plane than the Weibull (Rodriguez, 1977;
Tadikamalla, 1980; Fry, 1993; Lindsay et al., 1996), with the type III being
the most flexible of the three. In this paper, we therefore restrict attention
to the type III Burr. The Burr type III distribution has been introduced to
forestry by Lindsay et al. (1996). This distribution has been used in other
fields and goes by various synonyms. For example, in economics it is known
as the Dagum distribution (Dagum, 1977), and McDonald (1984) noted that
it was related to the generalized beta of the second kind. Mielke (1973) and
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222 Point and Interval Estimation for the Burr Type III Distribution

Mielke and Johnson (1974) have used this distribution in meteorology and
water resources applications and shown it to be a special case of their Kappa
distribution (Mielke and Johnson, 1973; Tadikamalla, 1980).

The probability density function (pdf) and cumulative distribution func-
tion (cdf) of the two-parameter Burr type III distribution are given, respec-
tively, by

F(z;0,¢)= 142"  2>0,0>0, ¢>0, (1)
and

Fla:0,¢) = Oex™ T (1 4 27¢)~(0+D) x> 0;0 >0, c>0. (2)

The joint confidence regions based on ecomplete and censored samples
have discussed for a wide array of distributions by many authors, including
Chen (1996, 1998), Kus and Kaya (2007), Wu et al. (2007), and Wu (2008).
The main purpose of this paper is to construct the exact confidence interval
and exact joint confidence region for the two parameters ¢ and 6 of the Burr
type III distribution. We obtain the maximum likelihood estimators of the
parameters in section 2. In section 3, we derive an exact confidence interval
for the parameter ¢ and an exact joint confidence region for the parameters
c and #. Two numerical examples are presented to illustrate the methods
proposed in section 4.

2 Point Estimation

In this section, the maximum likelihood estimators (MLEs) of the parameters
of the Burr type III distribution are obtained.

Suppose that X1,...,X,, be a sample of size n from the Burr type III
distribution in (1). The likelihood function is given by

n

10,0 = [[£Gi0.0) = oy [[ 7“0+ 00 (3
i=1

i=1

The log-likelihood function can be written as

n

InL(0,c) =nlnd+nlnc— (c+ 1)zn:lnxi —(0+ 1)Zln(1 +279, (4)

i=1 i=1
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and hence we derive the likelihood equations for # and ¢ as

In (60
‘9“7‘::7—§ In(1+ ;%) =0, (5)
and
8lnL 0,c) x: “lnx;
= Ny L - 6
§:nx D v (6)

From (5), we obtain the MLE of 6 as a function of ¢, say 6(e), as

n

S n(l+ ;)
Substituting 6(c) in (4), we obtain the profile log-likelihood of ¢ as
g(c) = L{h(c), c}

=K+nlne—(c+ 1)Zlna:i —Zln(l—kxi_c)
i=1 i=1

—nln [Zn: In(I'+z, 9], (8)

i=1

0(c) =

where K is a constant. Therefore, the MLE of ¢, say ¢y/1.g, can be obtained
by maximizing (8) with respect to c. It can be shown that the maximum of
(8) can be obtained as a fixed point solution of the following equation

h(c) = ¢, (9)

wherey h(c) is given by

We apply iterative procedure to find the solution of (9). Once ¢y g is ob-
tained, the MLE of 6, say 6prp, can be obtained from (7) as

Ovire = 0(érLe).
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3 Interval Estimation

In this section, an exact confidence interval for ¢ and an exact joint confidence
region for ¢ and 6 are constructed.

3.1 Confidence Interval for ¢

Let X1, Xo,..., X, be a sample of size n from a two-parameter Burr type
III distribution, and X1y < X9y < -+ < X,y be the corresponding order
statistics. Further, let Y(;y = —In F[X(;] = 0 1In[1 + X(_i)c], i=1,...,n. It
can be seen that Y(,) < Y,_1) < -+ < Y{y) is the order statistics from
the standard exponential distribution. Now let us consider the following
transformation:

S1 = 1Y)
Sy = (TL - 1)(1/(71—1) o Yv(n))
Sz = (n = 2)(Yin9) =Y0-1) (11)

Sn =Yy =¥

It is easy to show that the spacing S1, S, ..., Sy, as defined in (11), are
independent and identically distributed as a standard exponential distribu-
tion. Hence,

V =281 = 2nY(,),

has a chi-square distribution with 2 degrees of freedom and

U:2ZH:SZ~ =2 (iY@ —nY<n)> :
=2 =1

has a chi-square distribution with 2n — 2 degrees of freedom. It is also clear
that U and V are independent random variables. Let

U/(2n —2) U _ XY — Y

T = =
! V/2 (n—1)V n(n—1)Y,,

(12)

and .
T,=U+V=2) Y. (13)
i=1

It is easy to show that 7T} has an F' distribution with 2n — 2 and 2 degrees
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of freedom and T3 has a chi-square distribution with 2n degrees of freedom.
Furthermore, 77 and T3 are independent, see Johnson et al. (1994, P. 350).

To derive the exact confidence interval for ¢ and the exact joint confidence
region for ¢ and €, we need the following lemma.

Lemma 4 Based on the observed order statistics x(1y < -+ < Z(y), suppose
that

Dy ln{l —l—ﬂs(;)c} - nln{l —l—x(;f)}
Tl(C) == — .
n(n — 1)1n(1+x(nc))

Then

(1)  Ti(c) is strictly increasing in ¢ for any ¢ > 0.,

(2)  For xpy = 1 and any t > 0, the equation Ti(c) =t has a unique
solution for any c > 0.

n—1 Inzg 1 .
2 Tz the equation

(3)  Forxzpy <1 and any 0 <t < *—n(nlfl) >

Ti(c) =t has a unique solution for some ¢ > 0.

Proof. (1) The function 71(c) can be written as

N Aoy ) 1

n(n —1) i=1 ln{l +9[:(775)} !

By using Lemma-1 from Wu et al. (2007), In{1 + x&)c}/ln{l + :B(_nc)} is a
strictly increasing funetion of ¢ for any z(;) < z(,); ¢ =1,2,...,n— 1, hence
T (c) is strictly inereasing in c.

(2) For g, > 1, note that the function Ti(c) is strictly increasing in ¢
that

lim 77 (c) =0,

c—0

and that
lim T7(c) = oc.

Cc— 00

Thus, if t > 0, T1(c) = t has a unique solution for any ¢ > 0.
(3) For z(,y < 1, note that the function Ti(c) is strictly increasing in ¢
that

lm Ty (c) =0 ,

c—0
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and that

n—1

1 lnx(l) 1
lim T; = - —.
oo () n(n —1) ; Inzy) n

11 ; . .
Then, for 0 < t < %Zn P22 L the solution of the equation

(n—1) £=i=1 Inz(,) n’
Ti(c) =t has a unique solution for some ¢ > 0.

Let Flo)(v1,00) De the percentile of F' distribution with right-tail probabil-
ity o and v, and vy degrees of freedom. An exact confidence interval for the
parameter c is given in the following theorem.

Theorem 13 Suppose that X;), i =1,2,...,n, areorder statistics from the
Burr type II1 distribution. Then, for any 0 < a < 1,

(<P (qu e aX<n>,F<1—%><2n—2,2)) ;P (qu - vX(nwF(%)(m—z?)))

is a 100(1 — )% confidence interval for ¢, where (X, ..., Xm),t) is the
solution of ¢ for the equation

S {1+ X hean {14+ x06)
n(n—l)ln{l—l—X(_ng} -

Proof. From (12), we know that the pivot

n(n — I)Y(n)

rn {1+ X5} - nin {1+ x55
N n(n—l)ln{l—&—X(;S} ’

T1 (C)

has an F distribution with 2n — 2 and 2 degrees of freedom. By Lemma 1,
T} is strictly increasing in ¢ and hence Ti(c) = t has a unique solution for
any ¢ > 0. Therefore, for 0 < a < 1, the event

S {1+ X} -nin {1+ x5
n(n — 1)ln{1+X(;§}

Fu—g)@n—22) < } < Flo)@en—22)
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is equivalent to the event
P <X(1)7 e aX(n)aF(l—%)(2n—2,2)) <c<p (X(1), . aX(n)’F(%)(Qn—2,2)> :

It should be mentioned here that we can also use T1(c) to test null hy-
pothesis Hy : ¢ = ¢g.

3.2 Joint Confidence Region for (c, 0)

Let us now discuss the joint confidence region for the parameters c'and 6.
Let X%a,v) denote the percentile of y? distribution with right-tail probability
a and v degrees of freedom. An exact joint confidence region for (c,0) is

given in the following theorem.

Theorem 14 Suppose that X ;), i =1,2,...,n, are order statistics from the
Burr type III distribution. Then, a 100(L="a)% joint confidence region for
c and 0 is determined by the following inequalities:

¢ <X(1>’ s Xy B (1+«ﬁ)(zn_z,z)) g

2

c<y (Xu), e >X(n),F<1m>(2n272)) ;

X2(1+\/2m72n> o X2(17F,2n)
250 ned v+ X ) 250 {1+ X5}

where 0 < < 1, and (X1, - .., X(n),t) is the solution of c for the equation

Z?len{l +X(;)C} —nln{l —I-X(;‘;}

n(n—1)1n{1+X(;5} -

Proof. From (13), we know that

T, = gf:n =2 ef:ln(l + Xy )
i=1 i=1

has a x? distribution with 2n degrees of freedom, and it is independent of
T1. Hence, for 0 < o < 1, we have
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2

P[F<1+\/ﬁ>(2n_272) << F(péﬁ)@n_m)] =Vl—-aq,

and

P [XQ(HFM) <Th < X2<1\/2ﬁ72n>:| =V1l-o

From these relationships, we conclude that

P |:F(1+\/2ﬁ)(2n—2,2) <Th < F(lfém)@n_zz)a

X

1+\/ﬂ,2n) <Tr < Xz(l_\(zmgn)]

M~

1—«

or equivalently

P

2 (Xu)v SREROF F(—Hm)@n—m))

2

<c<yp (X(l)v e 7X(n)’F<1* 10‘)(2712,2)) ’

2
<0< X%@Qn) ]
25" 1n{1+X(;)C} 22?:11n{1+X(Zf}

=1-—o

N

This_completes the proof.

4 TIllustrative Example

In this section, we consider the two following examples to illustrate the use
of the estimation methods proposed in this paper.

4.1 Example 1. (Real life data)

In this example we consider one real life data set to illustrate the proposed
methods of estimation. These data are taken from Badar and Priest (1982),
and have been used earlier by Alkasasbeh and Ragab (2009). The data given
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represent the strength measured in GPA for single carbon fibers of 10 mm
in gauge lengths with sample size 63 and they are as follows:

1.901 2.132 2203 2.228 2.257 2350 2361 2.396 2.397 2445 2.454
2474 2518 2522 2525 2532 2575 2614 2616 2.618 2624 2.659
2,675 2738 2.740 2.856 2917 2928 2937 2937 2977 2996 3.030
3.125  3.139  3.145  3.220  3.223  3.235 3.243 3.264 3.272 3.294 3.332
3.346  3.377  3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628  3.852
3.871  3.886 3.971 4.024 4.027 4.225 4.395 5.020.

Alkasasbeh and Ragab (2009) showed that the generalized logistic distri-
bution (GL) with cdf anf pdf given by

G(y;c,@):(1+e_cy)_6, —oco<y<oo, c>0,0>0,

g(y;e,0) =c O (1+ e_cy)_e_1 e Y, ~oo<y<oo, c>0,0>0,

provides a very good fit to the given data set.

We know that if Y has a GL distribution with parameters ¢ and 6, then
X = €Y has a Burr type III distribution with parameters ¢ and #. Hence,
our method of estimation can be applied to estimate the parameters of ¢
and 6 of the GL distribution. Now, we transform the above data to Burr
type III form by the transformation X = e¥. Thus, we have the following
observations from the Burr type III distribution:

6.693 8.432 9.052 9.281 9.554  10.486 10.602 10.979  10.990
11,531  11.635 11.870 12.404 12.453 12.491 12,579 13.131 13.654
13.681 «13.708 13.791 14.282 14.512 15.456 15487 17.392  18.486
18.690 18859 18.859 19.629 20.005 20.697 22.760 23.081  23.220
25.028 ..25.103 25.406 25.610 26.154 26.364 26.950 27.994  28.389
29.283 30.205 31.031 32.884 33.149 34.364 34.953 35.234  37.637
47.087  47.990 48.716 53.038 55.924 56.092 68.374 81.045 151.41.

Using the formula described in section 2, we obtain the MLEs of the
parameters ¢ and 6 to be ¢ = 1.956 and 6 = 225. 862, respectively. To find
a 95% confidence interval for ¢, we need the following percentiles:

Fo.025(124,2) = 39490, Fo.975(124,2) = 0. 263.

By Theorem 1 and using the S-PLUS package, the 95% confidence inter-
val for ¢ is (1.320,3.278).
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To obtain a 95% joint confidence region for ¢ and 6, we need the following
percentiles:

Fo.o127(124,2) = 78. 231, Fo.9873(124,2) = 0. 221,

and
X%.0127(126) = 164.113, X(2J.9873(126) = 93.208.

By Theorem 2 and using the S-PLUS package for solving nen-linear equa-
tion, the 95% joint confidence region for ¢ and 6 is determined by the follow-
ing inequalities:

1.252 < ¢ < 3.534,
93.208 164:113

<0< .
2% {1+ 27 2% i {1+ 23

Figure 1 shows the 95% joint confidence region for ¢ and 6.

12000

8000 7

4000

Figure 7. Joint confidence region for ¢ and 6 in Example 1.
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4.2 Example 2. (Simulated data)

In this example we consider a simulated sample of size n = 19 from the Burr
type III distribution in (1) with parameters ¢ = 1.00 and 6 = 1.50. The
simulated observations are as follows:

0.0533 0.3975 0.4059 0.5929  0.6592 0.7000 0.8860  0.9465
1.1085 1.2463 1.2975 2.6294  3.0943 54194 7.3911 11.2578
15.3966  18.2460  19.1422  25.2919

Using the formula described in section 2, we obtain the MLEs of the
parameters ¢ and 6 to be ¢ = 0.944 and 6 = 1. 588, respectively.<To find
a 95% confidence interval for ¢, and a joint confidence region, we need the
percentiles:

Fo025(38,2) = 39472, Fo 975(38,2) = 0. 247,

Fo.0127(33,2) = 78.213, Fo.9873(38,2) = 0.204,

and
X%.0127(40) = 62.591, X(2).9873(40) = 22.714.

2.7

227

0.7 7

02— T T T T T T T

Figure 8. Joint confidence region for ¢ and 6 in Example 2.
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By Theorem 1 and using the S-PLUS package for solving non-linear equa-
tion, the 95% confidence interval for ¢ is (0.676,2.093). By Theorem 2, the
95% joint confidence region for ¢ and 6 is determined by the following in-
equalities:

0.627 < c < 2.288,
22.714 <f< 62.591
2% {1+ 27 2% i {1+ 27} .

Figure 2 shows the 95% joint confidence region for ¢ and 6.
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