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Evaluation and Application of the
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Extended Abstract. Air pollution is one of the major problems of Tehran
metropolis. Regarding the fact that Tehran is surrounded by Alborz Moun-
tains from three sides, the pollution due to the cars traffic and other pollut-
ing means causes the pollutants to be trapped in the city and have no exit
without appropriate wind guff. Carbon monoxide (CO) is one of the most
important sources of pollution in Tehran air. The concentration of carbon
monoxide increases remarkably at the city regions with heavy traffic. Due
to the negative effects of this gas on breathing metabolism and people brain
activities, the modeling and classifying of the CO amounts in order to control
and reduceit, is very noteworthy. For this reason Rivaz et al. (2007) using a
Gaussian model presented the space-time analysis of the Tehran air pollution
based on the observations from 11 stations for measuring the air pollution.
Although assuming the Gaussian observations causes the simplicity of the
inferences such as prediction, but often this assumption is not true in real-
ity. Onme of the outrage factors from normality assumption is the outlying
observations. For example in Tehran air pollution issue, the Sorkhe Hesar
station indicates very low pollution compare to the other stations due to
locating in a forest region. Therefore this observation could be considered as
an outlying observation. Whereas the presence of such data causes the thick-
ening of distribution tails and increasing the kurtosis coefficient, therefore in
this situation normal distribution which has a narrower tails can not be used.
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Generally identifying and modeling the outlying observations is one of the
main issues that statistician have been faced with since long time ago and
many different solutions have been presented so far to overcome the problems
arising from such observations. Amongst all these solutions, robust meth-
ods can be mentioned (Militino et al., 2006, and Cerioli and Riani, 1999). In
these methods with normality observations assumption, the aim is to present
a robust analysis. But there might be an outlying observation which belongs
to the same pattern of other data. In this case applying those distributions
with thicker tails compare to the normal distribution could be useful. This
matter was evaluated by Jeffreys (1961) for the first time.  Maronna (1976)
and Lang et al. (1989) evaluated the verifying maximum likelihood estima-
tion for the model in which the errors imitating the student-t distribution.
West (1984) also used the scale mixture of nermal distribution families for
modeling the outlying observations. Fernandezand Steel (2000) also evalu-
ated the existence of posterior distribution and its moments by introducing
the improper prior distributions for West model. In the field of geostatistical
data, Palacios and Steel (2006) introduced the extended Gaussian model as
below by considering the errors distribution from the scale mixture of normal
distributions family:
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in which mean surface is assumed to be a linear function of f'(x) = (f(z1),...,
f(zy)) with unknewn regression coefficients vector (. Further () is a
second-order stationary error process with mean 0 and unit variance and
a correlation function-depending only on the distance between points,

corr{e(z;),e(w;)} = Cy (||zi — x;5]]) = Cp (||R]]) -

Also the A(-) random field is considered independent from p(-) and ¢(-) fields.
In addition to that it is assumed that the In A(-) random field is a Gaussian
with finite-dimensional distributions:

In(\) = (InA,...,In\,) ~ N, (—g;, ycg) :
in which 1 is the units vector and the matrix Cy = (Cy(||z; — z;||)). They

also considered the correlation function of Cy(-) as the Matren flexible class,
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Co (I[n]]) = m(%)e%eg(@z),
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where 6 = (01,02) with 6; > 0 the range parameter and 5 the smoothness
parameter and where kg, is the modified Bessel function of third kind of
order 6 (Stein, 1999). Also p(-) denotes an uncorrelated Gaussian process
with mean 0 and unitary variance, which is used for modeling the measure-
ment errors and small-scale variation or the so-called “nugget effect”. It is
noteworthy that in this model p(-) and ¢(-) random fields are considered in-
dependent from each other. The o and 7 parameters are positive and the
ratio of w? = ;—2 indicates the relative importance of the nugget effect.
Based on this model, the likelihood function will be as follows:

L(,B,UZ,TZ,G;?:):f(zlﬁ,UQ,TQ,H):/.../f(z|ﬁ,02,7'2,9,A) dPy, ...dPy,,
Rt Rt

in which:
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X = (f(z1),..., f(zn)) and A =.diag(A1y<.., \p). Therefore due to the
frequency method problems in analysis of the model such as maximizing the
above likelihood function, the Bayesian approach has been used for inference
and prediction.

For Bayesian analysis firstly it is necessary to determine the prior dis-
tributions of the model parameters. Since each of the model parameters
controls a specific characteristic of the field, therefore it is assumed that all
parameters are independent from each other and thus the prior distribution
could be written as follows:

(B, 0%, w? v, 0) = 7(B)m(c?) (W) w (V)7 (6).

Bergeret al. (2001) indicated that posterior distributions corresponding to
the improper priors such as Jefferys’ prior might become improper. Therefore
to make sure that the posterior is proper, proper priors were considered for
each of the model parameters.

In order to predict response variable in the new location, the predictive
distribution must be determined. For this objective, if Zy = Z(xg) corre-
sponds to the value of response variable in the location xg, then the Bayesian
predictive distribution is given by

f(20]2) = /f(ZOZ, A1, A0)T(Aolz, A, m) (A, mlz)dA dn dXo,
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in which n = (8,0%,w?,v,0) and )\ is mixing variable corresponds to the
location xg. Due to the field is conditionally Gaussian, we have

1 1
f(Zo, Z|)‘a 7, )\0) = Nn+1 <M*a UQA*2 CGA*Z + 7—QInJr1> 5

in which A = diag(\, A\¢) and in addition,

o (F(0)p (1
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where ry is the vector of elements (Cy(||zo — x5||)),j =1, .;,n. Asa result,
Zolz, A, n, Ao has normal distribution with mean and variance

_1 —1
E@M&xmxwzfﬂ@5+%24A%(A%quéﬂﬁg (» — XB),
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var(Zo|z, A, 1, \o) = o {)\01 +w? — )\alr'GA_% <A_%C'9A_% +w21) A_;T‘g} .

Also, because p(In Ag|A, z,m7) = p(n Ao|A;22), conditional distribution of
In \g|A, v is normal with mean and variance

mmmmm:«g+%q4@m+%g,

var(In X\, v) = v(1 — ryCy 'ry).

Since the analytical calculation of the Bayesian predictive distribution
and consequently the Bayesian spatial prediction is very difficult or even
impossible, using the Markov chain Monte Carlo methods, a drawing from
posterior. distribution of 7w(\,7|z) was conducted and then by replacing the
collected samples in the 7(A\g|z, A, ) and sampling from this distribution and
again replacing the collected samples in the f(z0|z, A, 1, A\g) and sampling
from this distribution, samples of Bayesian predictive distribution of f(zg|z)

in the form of {z(()k)}i::l could be generated. Therefore an approximation of
Bayesian spatial prediction and predicting variance will be as follows:

© 2009, SRTC Iran


www.sid.ir

H. Zareifard and M. Jafari Khaledi 145

But sampling of the posterior distribution of (A, 77|z) and consequently con-
ducting the above process is very difficult. Therefore to facilitate the sam-
pling, using the augmentation method, the vector ¢ was augmented to the
joint posterior and thus sampling is performed from posterior distribution
m(\e,n|2) where € = (e1,...,&,)". Therefore, if {A\?) @ n@}m are sam-
ples generated from 7(\,e,n|z) then {A) )} ™ are samples generated
from posterior distribution m(\,n|z).

In generalized inverse Gaussian (GIG) model, the observations with small
Ai’s tend to be away from the mean surface and to be considered outlier in
some ways. In other words, these observations belong to a region with larger
observational variance relative to the rest of the space. Therefore Palacios
and Steel (2006) tested the below hypothesis using the Bayesian factor to
identify the suspicious outlying observations.

HO : )\z =1

H1 . )\Z 75 1
But since calculating the Bayesian factor is very complex and time consum-
ing, in this paper applying the Highests Posterior Density (HPD) is recom-
mended to determine the outlying observations. Because in this situation
the posterior distribution does not have a closed form, and therefore Chen
and Shao algorithm (1998) can be used to determine this region. In this
algorithm if {\;; };‘:1 denote ergodic MCMC sample from the posterior dis-
tribution m(\;[z).and \;(;) is the jth ordered statistic, then an HPD region
will be obtained for A; as below:

Ri(n) = (N s A

B(k*)) i(k*ﬂ(l—a)nb)’

in which [(L— a)n] denotes the integer part of (1 — a)n and k* is selected in
a way that:

A A

min (A

1§k§n7[(1fa)n] Z(k+[(1—a)n]) z(k))

ik +{(1—a)n]) k) T
We also by using a simulation example evaluated the capability of the Gaussi-
an-Log-Gaussian model to determine the outlying observations. Based on
this example, it was observed that under Gaussian-Log-Gaussian model, de-
termining the outlying observations using an HPD region is desirably possible
and meanwhile the calculation time of the HPD region is remarkably and

noticeably reduced and it is easily determinable.
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In the sequel, also using the criteria the mean squared prediction error of
the predicting error and cross validation of the simulated data and Tehran
air pollution, the GIG model capability to robust Bayesian prediction was
evaluated and based on that the appropriate predicting performance of the
GIG model was observed compare to the Gaussian model. This could be due
to the undesirable effects of the outlying observations on the Gaussian model
results and also robustness of the GIG model to the presence of such data.

Keywords. Gaussian-log Gaussian spatial model; robust spatial prediction;
Bayesian approach; highest posterior density region; Markov chain’ Mont
Carlo methods; mean square prediction error.
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