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Abstract. Principal components analysis is a well-known statistical method
in dealing with large dependent data sets. It is also used in functional data
for both purposes of data reduction as well as variation representation. On
the other hand “handwriting” is one of the objects, studied in various sta-
tistical fields like pattern recognition and shape analysis. Considering time
as the argument, the handwriting would be an infinite dimensional data; a
functional object. In this paper we try to use the functional principal compo-
nents analysis (FPCA) to the Persian handwriting data, analyzing the word
Mehr which is the Persian term for Love.

Keywords. Principal components analysis; functional data analysis; B-
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1 Introduction
Handwriting is not a new topic in statistical literature. There are various
attempts to analyze handwriting in order to signature verification (see for
example Plamond and Lorette, 1989) or biometric identification (see for ex-
ample Soldek, et al., 1997) or other psychological purposes. These works
are mostly zoomed on off-line handwriting. All the information needed in
off-line studies is the final pattern of written items. For a detailed example
of off-line studies see McKeague (2004). Progress in technology has been
fascinating for researchers to work with on-line data; consisting the velocity
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142 Persian Handwriting Analysis Using Functional Principal Components

and pen position information. Ramsay and Silverman (1997) applied func-
tional methods for an example of on-line handwriting data. Such data has
been studied in similar way also by Hasti et al. (1991) and Kashi et al.
(1997). Also Plamondo and Srihari (2000), Dolfing, et al. (1998), Nelson, et
al. (1994) and Jain, et al. (2002) give examples of both methods. In this
paper, we continue Ramsey and Silverman’s line of work and investigate the
variational structure of a set of Persian on-line handwriting data by the help
of functional principal components.

Persian, the literary language of Iran and much of Afghanistan, Tajikistan
and Pakistan, is written in a version of the Arabic script called Persian or
Farsi. Persian handwriting has been considered as an art for a long period
and Persian calligraphy is an art in which laws of mathematics and nature
are obeyed. It has a mysterious power that enables the artist to create
beautiful pieces of calligraphy by using several forms of the same letter,
or by employing various forms of the words and using them in different
compositions. But, there has been not much study on statistical analysis of
Persian handwriting. An off-line recognition system for Persian handwriting,
using hidden Markov models is presented in Haji (2005). Khorsheed (2000),
after transforming Arabic off-line handwriting into a normalized polar map
applies 2D Fourier transform to extract features of the handwriting. Trenkle,
et al. (1995) have used neural network for Arabic, off-line word recognition.
Al-Yousefi and Upda (1992) used a quadratic Bayesian classifier to recognize
Arabic characters. To the best of our knowledge there has been no study on
online analysis of Persian handwriting.

The paper is organized as follows. Section 2 introduces the handwriting
as a set of vector valued functions or curves. A quick review of bivariate
functional principal components and some preliminaries are given in Sec-
tion 3. Section 4 contains the detailed results of applying FPCA to Persian
handwriting data.

2 Persian Handwriting and FDA Methods
Persian or Farsi, descended from Ancient Persian, the literary language of
the Persian Empire and one of the great classical languages, is a member
of the Iranian branch of Indo-European languages and the main language of
Iran and some other neighbor countries. Modern Persian appeared during
the 9th century and under Mongolian and Turkish rulers was adopted as
the language of government in Turkey, central Asia and India, where it was
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used for centuries, and until after 1900 in Kashmir. This language has been
written with a number of different scripts, including old Persian cuneiform,
Pahlavi, Aramaic, and Avestan. Today, this language is written in a version
of the Arabic script in which four extra letters are added to the original
Arabic script in order to write several pronunciations of a class of Asian
languages including Persian, Urdu, Pashto, Kashmiri and Sindhi. Under the
Ottoman Empire (before 1920), Turkish was also written in this script.

The Persian script is written from right to left in horizontal lines and
most letters are connected to the base line. Unlike English, there is no
upper and lower case for letters. But, every letter can have up to four
different shapes, depending on the location of the letter within a word and
some other different shapes depending on the style of handwriting. The
most distinguishing feature of the Persian script is that the words, whether
machine-printed or handwritten, are cursive and letters belonging to the
same word get connected whenever possible.

Figure 1. All possible shapes of letters in Mehr. a) Five possible shapes of the first letter. b)
Five possible shapes of the second letter. c) Two possible shapes of the last letter. Two first
shapes from right in (a) and (b) are used at the beginning of a word, and two middle ones
are used at the middle part of a word and the last one is used at the end of a word. The first
shape from right in (c) is used separately at the beginning and end of a word and the second
shape in (c) is used for the pronunciation of R when there is a connectable letter before it.
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To see the ability of functional principal component for analyzing Per-
sian handwriting, a simple experiment is designed and 32 randomly chosen
university student were asked to write the word Mehr. This word, as the
first Persian sample to be analyzed by functional methods, is an old, deep
meaning word. In ancient time it was used by the meaning of sun and nowa-
days it means to have affection to someone or somebody. Mehr consists of
three letters. The first letter has the sound of M and can be written in five
different shapes. The Second letter with the sound of h has also five different
shapes. The third letter in Mehr pronounced like r and only has two differ-
ent shapes. All possible shapes of these letters, using simple calligraphy, are
illustrated in Figure 2. As it is seen from the figure, there would be different
combinations for writing the word Mehr. One of these combinations, in a
simple calligraphy, is displayed in Figure 2.

In off-line studies, “handwriting data” refers to the final result of writing.
It means that the statistical object in such studies is a shape or pattern.
Considering time as an influential factor results in alternative methods in
handwriting analysis, called online methods.

From this point of view, statistical object is the manner of hand’s move-
ments, consisting velocity, timing and shifts during the period of writing a
word. These information can be formulated by the help of couples: (x(t), y(t)).
Horizontal movements are introduced by the function x(t) and y(t) stands
for vertical movements where x and y are real functions defined on the inter-
val [a, b] which refers to the time period of writing. Figure 3 shows a sample
x(t) and y(t) which are combined to a “Mehr” curve.

Figure 2. Three proper choices are connected to form Mehr.
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3 Preliminaries

3.1 Registration and Smoothing

The most preliminary step in FDA is to produce a functional data set from
discrete observations. The basic thought in most FDA researches, as in this
work, is that the variables under study are smooth continuous functions. In
practice a first record of functional data observations is a group of function
snapshots on a finite set of argument values. Therefore the elementary ob-
servations have two undesired characteristics: discreteness and having some
observational noise. The first characteristics is dealt with smoothing meth-
ods and the second one is captured by registration techniques. The most
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Figure 3. The conversion of simultaneous functions of time to a written word.
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commonly used smoothing method in FDA context is representing the ob-
served function z(t) as a linear combination of a finite number of known basis
functions ϕ1, . . . , ϕK . Basis functions can be fourier series, polynomials, re-
gression splines, wavelet basis, etc. The method is to find the coefficient ck
in the expansion ẑ(t) =

∑K
k=1 ckϕk(t) such that the least square criterion:

J∑
j=1

[
z(tj)−

K∑
k=1

ckϕk(t)

]2

is minimized simultaneously for all observations (J in this formula is the
number of discrete observations). The basis {ϕk} should be chosen as to have
features matching those known to belong to the functions being estimated.
In handwriting data the best choice for couples of curves (x, y) are B-splines
basis functions.

Other important preliminary task is the registration of smoothed ob-
served functions. In most functional data studies noise is a part of data.
The term noise here means the type of variation among recorded data that
is not of our interest and can frustrate even the simplest analysis of repli-
cated functional data set. For example in some cases the domain varies from
one individual to another and makes it impossible to compare special charac-
teristics of observed functions. Undesired variation can have more complex
effects that should be considered in the choice of applied registration method.
Different registration methods as listed in Ramsay and Silverman (1997) are:
shift, feature or landmarks and more general transformations. In shift reg-
istration method the domain of observed functions are shifted to a standard
domain (for example in curve registration the domains are shifted to a stan-
dard interval). The method of feature or landmark registration requires a
suitable transformation hi applied to the domain of the ith observation in
order to find registered function x∗i (t) = xi(hi(t)) such that x∗i has more or
less identical argument values for any given landmark. Landmarks are some
characteristic that one can associate with a specific argument value t. The
third method, more general transformations, consists of applying a strictly
increasing or monotonic function hi to transform the argument values and
satisfy some criterion such as having aligned local feature or minimizing a
known measure. For more details on this see Ramsay and Silverman (1997).
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3.2 Bivariate Functional Principal Components
Principal components analysis is a technique to produce weight functions ξi
called eigenfunctions to clarify different types of variations and provide an
optimum basis set to reproduce original data. Expansion of each observation
in terms of these basis functions approximates original function as closely as
possible. This is an important practical matter in FDA, specially in huge
data sets and complex computations.

Principal components analysis for bivariate functional data is based on
decomposing the covariance function to its eigenfunctions. In the bivariate
functional data set {(xi(t), yi(t)); i : 1, . . . , n} covariance is defined as

V =

[
vx vxy
vyx vy

]
where:

vx(s, t) =
1

n

n∑
i=1

[xi(t)− x̄(t)][xi(s)− x̄(s)],

vxy(s, t) = vyx(t, s) =
1

n

n∑
i=1

[xi(t)− x̄(t)][yi(s)− ȳ(s)],

and x̄(t) = 1
n

∑n
i=1 xi(t), ȳ(t) = 1

n

∑n
i=1 yi(t). Eigenfunctions of covariance

function, classify the variation among observations in corresponding data
set. These functions are ordered descending according to the magnitude of
corresponding eigenvalues. The dominant modes of variation are detected
by the first eigenfunctions.

Eigenvalues and eigenfunctions in a bivariate functional data set {zi =
(xi(t), yi(t)); i : 1, . . . , n, t ∈ [0, 1]} have the form of {(λk, ξk)}∞k=1 where
ξk = (ξxk , ξ

y
k) is the solutions of integral equation:

∫
vx(s, t)ξx(s)ds+

∫
vxy(s, t)ξy(s)ds = λξx(t)

∫
vyx(t, s)ξx(s)ds+

∫
vy(s, t)ξy(s)ds = λξy(t).

(1)

As an approximation to these equations, (1) can be converted to a matrix
version V ξ = λξ. In this notation the matrix V is defined as:

V =

[
Vx Vxy

Vyx Vy

]
,
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where Vx = [vx(ti, tj)]
K
i,j=1 and other covariances Vy and Vxy are defined in a

similar manner. For more details see Ramsay and Silverman (1997).

4 Analysis of Handwriting Data

In this section bivariate FPCA method is applied to the Persian handwriting
data. This method has two exploratory advantages. The first advantage is to
understand the nature of variation in the handwriting of a group of people.
The whole information contained in second moment can be classified, saved
and interpreted through eigenfunctions. The second one is to produce an
empirical orthonormal basis that can be used in future computations.
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Figure 4. Non-registered data.
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4.1 Row Data and Registration
In our experiment 32 college students were asked to write the form of the
term Mehr as in 2 on a draw-pad using a special pen while the pen position
was recorded 40 times per second. As it is clear from Figure 2 the curvature
of this term is not too high so the frequency of 40 times per second seems
quite enough to reconstruct the written word efficiently. Resulting data
are 32 three column matrices; consisting of (tij , xij , yij); j = 1, . . . , Ji and
i = 1, . . . , 32 where tij is the jth recorded time for ith observation and
(xij , yij), respectively, show the horizontal and vertical position of the pen
at time tij . B-spline basis functions are used to smooth these observations.

The row curves in Figure 4 suggest that a common pattern of handwriting
exist for all individuals, but it is also shown in this figure that what we call
common pattern can not be presented by the mean functions (x̄(t), ȳ(t)). This
comes from the fact that differences among these row curves are caused by
a combination of linear and nonlinear variations. Linear part is the one that
we are interesting to explore. In other words the main question in this study
is that how the total time is distributed in the writing period. Nonlinear
variation or noise will be removed by applying landmark registration method.
Four landmarks are defined as follows (illustrated in Figure 5):
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Figure 5. Landmarks in the first observation.

J. Statist. Res. Iran 6 (2009): 141–160
www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID
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t∗1 the starting time

t∗2 the time of writing the lowest part of the middle letter

t∗3 the time of passing the connection of the middle and the last letter

t∗4 the ending time

Landmark vector ( l.di = (t∗i1, t
∗
i2, t

∗
i3, t

∗
i4) ) for the ith subject obtained

and the means of ti2 and ti3 are computed as follows: t̄∗2 = 0.3 , t̄∗3 = 0.7. The
values of t∗1 and t∗4 was decided to be 0 and 1 before. Linear transformations:

s = hi(t) =



0.3
t∗i2−t∗i1
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t ∈ [t∗i1, t
∗
i2]

0.4
t∗i3−t∗i2

t+
0.3t∗i1−0.7t∗i2

t∗i3−t∗i2
t ∈ [t∗i2, t

∗
i3]

0.3
t∗i4−t∗i3

t+
0.7t∗i4−t∗i3
t∗i4−t∗i3

t ∈ [t∗i4, t
∗
i3]

Time

S
m

oo
th

ed
 X

s

0 0.3 0.5 0.7

200

300

400

Time

S
m

oo
th

ed
 Y

s

0 0.3 0.5 0.7

200

300

400

⇓

Xs

Y
s

300

200

200 300 400

Figure 6. Registered and Smoothed Data.
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are applied on the domains of each observed set (xi(t), yi(t)) pushing the
second and third landmarks to be on the mean position computed before
and transferring the starting and ending points to 0 and 1. Therefore the
domain of all registered data are converted from [ti1, tiJi ] to standard interval
[0, 1].

4.2 Summary Statistics After Registration

To explore the handwriting data, we start with elementary statistics; mean
and covariance functions. The mean functions x̄(t) and ȳ(t) along with the
mean curve (x̄(t), ȳ(t)) for the data are computed and shown in Figure 7. As
it is clear from the figure, because of registration, the mean curve resembles
and preserves the common features of the observations. This is the center
that we are going to study the linear variation about. The whole information
about this variation is found in covariance functions or equivalently corre-
lation functions (standardized covariance at times s and t), illustrated in
Figure 7.

The figures represent unit correlation between functions at identical times
and the correlation falls down near the boundaries where the t and s argu-
ments are far from each other. Main similar fact about the two figures of
X-correlation and Y -correlation is that high correlation values can be found
on couples (s, t) in which the difference |s− t| is about 0.6. Another similar
fact is that when 0 < |s − t| < 0.6 the correlation values fall dramatically.
This fall is much more in Y -correlation function (Note that the whole period
is standardized to the [0, 1]).

In conclusion, although on the very far distances (|s − t| near to 1) the
correlation is too low but there are long intervals, for example the time of
writing the first and last letter of the word, that takes the biggest values of
correlation (except for the case t = s).

All these statistics together, can make an elementary concept of the struc-
ture of this set of handwriting records. They describe the mean structure
and the types of differences from this structure but because of the complex-
ity of functional data sets, this description is not clear especially in variation
explanation. More detailed and useful information will be represented by
principal components or equivalently eigenfunctions.
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Figure 7. Summary Statistics.
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4.3 Principal Components
As mentioned before, principal components are computed using eigenfunc-
tions which have some ideal properties. In this study the set of eigenfunctions
consists of vectors (ξxi , ξ

y
i ) in which ξxi and ξyi are real functions and the cou-

ples (ξxi , ξ
y
i ) are ordered according to the magnitude of their corresponding

eigenvalues {λi}∞i=1. In practice we compute only a finite number of eigen-
functions by solving the matrix equation V ξ = λξ where V is computed
from discrete data. The sum on all eigenvalues gives the total variation so
the proportion of each eigenvalue would be interpreted as the contribution
of corresponding eigenfunction from the total variation. Proportions of the
first four principal components in our data are:

λ1∑
λi

= 0.496,
λ2∑
λi

= 0.142,
λ3∑
λi

= 0.105,
λ4∑
λi

= 0.059. (2)

That is the first eigenfunction, interpreted as the dominant mode of vari-
ation, accounts for 49.6% of the variability, first and second eigenfunctions
simultaneously 63.8% of total variation and so forth.

On the other hand, since ∥ ξxi ∥2 + ∥ ξyi ∥2= 1 the value ∥ ξxi ∥2 (or
∥ ξyi ∥2) gives the proportion of variability in the ith principal component
accounted for by variation in the x (or y) functions. For example in the first
and second eigenfunctions we have:

∥ ξx1 ∥2= 0.82, ∥ ξy1 ∥2= 0.18,

∥ ξx2 ∥2= 0.27, ∥ ξy2 ∥2= 0.73.

These proportions clarify that in the first eigenfunction, ξx1 plays a more
important role (82% of total variability) and in the second one the ξx2 is
less important. In other words, the first mode of variation is due to the
differences between hand movements in horizontal direction and in second
mode, it happens along vertical axes. These facts are displayed in Figure 8.

Curves of the eigenfunctions track down the occurrence duration of cor-
responding variability. Figure 8(a) shows that the first mode of variation,
which is the most important one, is caused by the horizontal movements
in the ending part of the writing period. This comes from the fact that
in this part the absolute values goes far from the zero line. One can say
that the biggest cause of variability in this data set is the difference between
horizontal movements in writing the last letter.
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Figure 8. The first four eigenfunctions.
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Second eigenfunction, shown in Figure 8(b), takes it’s highest values on
two periods; [0.3, 0.5] and [0.8, 0.9]. These are the periods of starting to write
the middle letter and connecting the middle and last letters respectively. So
the second mode of variability is due to the vertical movements while writing
the connecting parts of letters.

In the third eigenfunction, ξx3 and ξy3 play identical role and the higher
values occur in the periods of writing the second parts of each letter. the last
considered eigenfunction, the fourth one, accounts for a small proportion of
the total variability since it is required to be orthogonal to the first three
ones. This component resembles a time distortion during the whole period
specially at the time of writing the ending parts of the word Mehr.

In conclusion, the dominant modes of variations are occurred at the mid-
dle and ending parts of writing period, and the curves show almost similar
structures at the starting part.

Up to now the variance partitioning made by the principal components
has been studied, but not the nature or quality of these modes. Variation can
be of two sorts. The first one is the temporal variation, caused by different
timings in each letter. For interpreting this type of variation it is needed to
plot the effects of eigenfunctions against time. The nature of second type of
variation in a sense is some changes in the shape of each letter. This kind
of effects can be illustrated by plotting x and y functions in the same plot,
where the features related to time will disappear.

A good method to virtually illustrate both types of variations, offered by
Ramsay and Silverman (1997), is plotting the effects of adding and subtract-
ing the eigenfunctions to the mean function. For the first four types, these
plots are shown in Figure 9. In this figure the solid line refers to the mean
functions and dashed and dotted lines represent the functions obtained from
adding and subtracting eigenfunctions to the mean, that is:

x̄(t)± c1ξ
x
i , ȳ(t)± c2ξ

y
i i : 1, . . . , 4,

the constant coefficients c1, c2 are entered to clarify the plots and make them
more interpretable. Here they are chosen to be c1 = 1.5 × ∥x̄(t) − ¯̄x∥ and
c2 = 1.5× ∥ȳ(t)− ¯̄y∥, where ¯̄x =

∫ 1
0 x̄(t)dt and ¯̄y =

∫ 1
0 ȳ(t)dt.

Part (a) in Figure 9 shows the effects of first principal component. We
saw that this type of variation is mainly caused by the x functions. Plots
in Figure 9(a) reveals the effect of first principal component as a uniform
increase or decrease on mean. It can be seen that the first mode of variation
doesn’t change mean pattern but just cause an overall rise or decline. We
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Figure 9. The effects of first four principal components.
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can conclude that this type of variation is due to speed of hand movements
along the x coordinate. These plots also illustrates that the effects of first
principal component is little in the starting points and rockets at the rest
of period. This feature comes from the fact that the differences in speed
became more significant by the time passage.

Plots of Figure 9(b) indicate similar facts about the second principal
component. Now the greater role is due to y functions. It is not surprising
to find that the second principal component has the same effect as first one on
vertical axis. Again the mean function changes at an approximately constant
rate by adding or subtracting the eigenfunction. The only distinction is that
this type creates its biggest effect at the middle of the period and this effect is
weakened in the last parts. So the second type of variation is due to moving
slower or faster than average along with the y axis. Note that this difference
decreases in the last part of the period. The structure of both types (first
and second) are simple increase or decrease during the period, but other
principal components will offer more complex effects. Third eigenfunction
affects through a combination of time shift and increase/decrease changes;
illustrated in Figure 9(c). Note that the third mode of variation dues to
both x and y functions, so it is to be analyzed simultaneously. Related x
plot reveals a time shift in the second period, where in the first part it just
contains the increase/decrease effect. Conversely, in y function, time shift
happens in the first and middle part which is an interval around t = 0.6.
This interval is related to the time of connecting the middle and last letters
in the mean function. The fourth principal components, presented in the
Figure 9(d), accounts for only 5% of variation. This effect can be interpreted
as some fluctuations during the total period.

We have indicated two sorts of variations before. The second sort is the
difference among final pattern of letters, caused by the modes of variation
related to time. Figure 10 illustrates this type of effects. The best interpre-
tation can be made by the plots themselves and in words we can just indicate
some limited features. It is not astonishing to see that the first principal com-
ponent has the effect of pushing the whole pattern along the x coordinate.
In the upper-right plot of Figure 10 the same change is made in the vertical
axes, but this time the direction of change is different in the starting and
ending parts. Plot of third principal component emphasizes this effect. We
have mentioned before that the third eigenfunction affects as a combination
of time shift and position changes, but the effects which are directly related
to time, can not be shown here. Forth principal component indicates some
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distortions in the whole pattern. People with the high scores on this type of
variation would probably have more irregular handwriting than others.

As a conclusion one could say that in the set of 32 university students
greatest similarities is found in starting period of writing. At the middle
period, they vary a lot in velocity. These differences mostly occur in writing
the second part of the letters. Also people vary a lot in writing the last
letter, specially in vertical direction. But at the almost ending instance,
all functions shows a tendency to zero line. It means that despite of all
variations even in writing the last letter, people tends to finish writing in the
same manner and velocity.

5 Discussion

In this paper, principal components method was used to describe and ana-
lyze the online handwriting data. For this purpose PCA was applied in, H,
the linear space of vectors of real functions: z = (x(t), y(t)), where

∫ b
a x2(t)dt
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Figure 10. The effects of principal components on final pattern.
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and
∫ b
a y2(t)dt are finite. Inner product is the initial concept that principal

components are built on. There are several ways to define an inner product
in a bivariate context. The one that we used and makes H a Hilbert space
is:

< z1, z2 >1=< x1, x2 > + < y1, y2 >,

where for two real valued functions f and g,

< f, g >=

∫ b

a
f(t)g(t)dt. (3)

By this definition inner product always results in a scalar value and two vec-
tors z1 = (x1(t), y1(t)) and z2 = (x2(t), y2(t)) are orthogonal if < x1, x2 >=<
y1, y2 >= 0 or < x1, x2 >= − < y1, y2 >. This does not make sense to call
two vectors orthogonal when the second situation happens. An alternative
way to define an inner product on H is:

< z1, z2 >2=

[
< x1, y1 > < x1, y2 >
< x2, y1 > < x2, y2 >

]
.

This inner product makes H a Hilbert C∗-module. In this space the principal
components would have different meaning and characteristics that needs to
be evaluated experimentally.

As the final words it should be mentioned that handwriting is a mechan-
ical process which should be incorporated in the analysis. In other words
the derivatives of functions and their relationships should be entered in the
analysis. Finding relationships among derivatives is an alternative method
to describe the process. For this purpose, differential equation techniques
could be applied to replicated handwriting samples from a single individual
(See Ramsey (2000) for a detailed example).
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