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Abstract. We study the distribution of discounted collective risk model
where the counting process is Poisson. For the model considered here, we
obtain mean, variance and moment generating function (m.g.f) of the model.
To do this, we use two approaches. In the first approach we use classical
methods to obtain the mean and variance. In the second approach we in-
troduce some proper martingale and then we obtain the m.g.f of total loss
by features of martingales. Additionally, we use Fast Fourier Transform to
numerically calculate the distribution of discounted collective risk model.

Keywords. Discounted collective risk model; Poisson process; Martingale.

1 Introduction
Modeling an insurance company’s cash flows by a certain stochastic process
and hence to quantify and measure the risk associated with the operation of
insurance business are belong to the most important problems in risk theory.
As Feng (2009) wrote, a risk model is typically built upon two assumptions on
insurance business: Incoming cash flows, such as premium income, interest
returns from financial markets; and Outgoing cash flows, such as its financial
obligations to insurance claims, operating costs, business overhead costs, etc.
There has been a great variety of stochastic processes used in literature to
model outgoing cash flows, especially for insurance claims, due to their nature
of randomness (see for example Paulsen, 1993; and Feng, 2009). Meanwhile,
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194 On the Distribution of Discounted Collective Risk Model

rising claim costs and higher interest rates began to motivate regulators to
scrutinize cash flow models more carefully.

We notice that to calculate the outgoing cash flows that will result from
any given insurance policy, the models look forward instead of backward.
They typically multiply claim size by the discounted factor and add up to
every considered period time. For example, if St is the claim size at time t
and e−Rt is the discounted factor at this time, then total outgoing cash flows
at period (0,∞) is given by Z∞:

Z∞ =

∫ ∞

0
e−RtdSt. (1)

Gerber (1979) studied the distribution of random variable Z∞ where he
supposed that St be an independent compound Poisson process i.e. St =∑N(t)

i=1 Xi where N (t) is a Poisson process and {Xi}i>1 a sequence of i.i.d,
nonnegative random variables, independent of N (t) and constant force of
interest δ. He showed that when t → ∞ and in addition the {Xi} are
exponentially distributed with mean β, then

Z∞ ∼ Γ

(
λ

r
, β−1

)
.

Paulsen (1993) studied the distribution of the stochastic integral Z∞
under the assumption that Rt and St are independent stochastic processes
with independent stationary increments and with a finite number of jumps
on each finite time interval. Under the assumption that E[Z2

∞] < ∞, it was
shown that the characteristic function of Z∞ can be found by solving an
integro-differential equation. When St = st+σpBp,t and Rt = rt+σBt with
Bp and B independent Brownian motions, the density was found to be

fZ∞ (z) =
f0(

σ2
p + σ2z2

) 1
2
+ r

σ2

exp

{
2p

σσp
arctan

(
σ

σp
z

)}
(2)

provided r > σ2. Here f0 is a normalization constant. This result generalizes
a previous result of Dufresne (1990). Assuming that St = t and Rt = rt+σBt,
he proved by quite different methods that Z−1

∞ ∼ Γ( 2r
σ2 ,

2
σ2 ).

Nilsen and Paulsen (1996), also considered compound Poisson process
for random variable Z∞, but with a stochastic Brownian motion interest
rate. They showed that Z∞ has the same distribution as that of a gamma
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distributed random variable divided by an independent beta distributed ran-
dom variable. The quantity Z∞, has also been studied by Paulsen (1997) for
more general St and Rt, but with main focus on its first two moments. Her-
nandez and Pacheco (2008) also considered the present value surplus process
when Rt = δWi and t → ∞, where Wi is a renewal point process.

Now consider the quantity Zt =
∫ t
0 e

−δtdSt in specific time horizon (0, t].
As above let St be an independent compound Poisson process. Let Wi, i =
1, 2, . . . denote the ith claim arrival time. Then the stochastic integral (1)
in finite time horizon can be written as

Zt =

N(t)∑
i=1

Xie
−RWi . (3)

There are a few works on this quantity. Several papers provide the asymp-
totic tail probability of the discounted aggregate claim process over a fi-
nite time horizon under the assumption of independence between the claim
amounts and the inter-claim times. Assuming a constant force of interest,
Tang (2005, 2007) and Wang (2008) derived asymptotic results for both
the classical compound Poisson and the renewal risk models. Ladoucette &
Teugels (2006) studied a similar problem for a free interest risk model assum-
ing a general claim arrival process. Asmussen (2000) showed that Zt

a.s−→Z∞
as t → ∞. He also obtained the mean and variance of Zt by using the fea-
tures of stochastic integrals. But the distribution of Zt is still unknown in
the literature whereas for many applications of the collective risk theory the
knowledge of the aggregate claim density functions play an essential role.
In this paper we will calculate the expected value and variance of Zt when
RWi = δWi as well as its moment generating function. Hence the results of
this paper may be very useful in this matter.

We mention that the process {Zt} is an extension of the well-known
renewal reward processes, and when δ = 0 it is a particular instance of the
so-called aggregate claim amount in the insurance jargon. These processes
have renewal properties, feature that classifies them in a more general family
called regenerative processes.

The rest of this paper is organized as follows. In section 2 we mention
some notes about collective risk models. Section 3 derives our main results
on the distribution of the discounted collective risk model. Finally some
conclusion are presented in section 4.
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196 On the Distribution of Discounted Collective Risk Model

2 Collective Risk Model
The goal of insurance modeling is to develop a probability distribution for
the total amount claim paid in specific period of time. Specially in Non-life
insurance, actuaries usually consider the interaction between the distribution
of the number of claims and the distribution of the individual claims. In fact,
non-life insurance ratemaking is based on a claim frequency distribution and
a loss distribution. Claim frequency is defined as the number of incurred
claims per unit of risk exposure. The average loss severity is the average
payment per incurred claim per risk exposure too.

Although it is not necessary to separate the insurance loss process into
frequency and severity components, this collective risk models has several
advantages in fulfilling the need for adequate model for different insurance
purpose such as; separately modifying the components, estimating parame-
ters of components from separate sources of information and adjusting in-
flation or other time independent factors. So, collective risk model has been
developed for the total amount paid on all claims occurring in a fixed time
period based on these two components.

The main advantage of a collective risk model is that it is a computation-
ally efficient model, which is also rather close to reality. But, in collective
models, some policy information is ignored. If a portfolio contains only one
policy that could generate a high claim, this term will appear at most once in
the individual model. In the collective model, however, it could occur several
times. Moreover, in collective models we require the claim number and the
claim amounts to be independent. This makes it somewhat less appropriate
to model a car insurance portfolio, since for instance bad weather conditions
will cause a lot of small claim amounts. In practice, however, the influence
of these phenomena appears to be small (see, Kass et al. 2002).

Definition 1. A collective risk model, in specific period of time (0, t], rep-
resents the total loss St as the sum of a random number claims, N (t), of
individual payment amounts

(
X1, X2, . . . , XN(t)

)
as follows:

St =

N(t)∑
i=1

Xi, (4)

Where:

1. Individual claims Xi are independent and identically distributed,
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2. N (t) and Xi are independent, and

3. St = 0 when N (t) = 0.

The distribution of total losses, St, have a compound distribution and
is named after its frequency distribution e.g. in case that N (t) is Poisson
distributed, St has a compound Poisson distribution. Collective risk model
has several useful properties. In particular if µk denote the kth moments
of claim severity, E[Xk], then, It can be easily proved by using the rule of
Iterated expectation that

E [St] = µ1E [N (t)] . (5)

Based on this model a reasonable estimate for pure premium of policyholder
would be the expected value of St. In special case where N (t) ∼ Poisson (λt),
we have

E [St] = µ1λt. (6)

Moreover, there are some algorithms to calculate the distribution of St (for
example, please see Kass et al., 2002). Of course there is a significant amount
of literature which address this model and its applications to casualty insur-
ance. The primary source is probably the text by Beard et al. (1984). Other
complete texts dealing with Collective Risk theory and its applications are
those by Bühlmann (1970), Borch (1970) and Seal (1969).

3 Discounted Collective Risk Model
Although collective risk model seems to have many advantages, but one of
its drawbacks is that it overlooks the arrival time of claims and the effect of
interest rate. In property-liability insurance contracts there are always a time
lag between the premium payment and claims arrival time. During this time
lags, the insurer earns investment income on the unexpanded component
of the premium which is not involved in collective risk model equation (4).
So insured are eligible to have some of this investment profit during policy
coverage period.
Definition 2. A discounted collective risk model in specific period of time
(0, t], represents the total loss, Zt, as the sum of a random number claims,
N (t), of individual present value payment amounts

(
X1, X2, . . . , XN(t)

)
re-

spect to arrival times
(
W1,W2, . . . ,WN(t)

)
and constant force of interest δ
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as follows:

Zt =

N(t)∑
i=1

Xie
−δWi , (7)

Where:
1. Individual claims Xi are independent and identically distributed,

2. N (t) and Xi are independent, and

3. Zt = 0 when N (t) = 0.
The discounted collective risk models defined as above have several inter-

esting and useful properties. At the first, it incorporates investment income
into pricing model. Moreover, it provide better model for property and lia-
bility insurance in which the interval between premium payments and claim
payments is a significant factor. Therefore, insurers can present long term
insurance product in property and liability insurance market. One impor-
tant quantity is the expected value of Zt which can be interpret as the net
premium amount needed to cover insurance liability on its becoming due
without paying any expenses or contingent charges. We calculate this ex-
pected value in an important special case of discounted collective risk model
where N (t) has Poisson distribution.

The below lemma states some simple but fundamental features of the
conditional arrival time of Poisson distribution.
Lemma 1. In the discount collective risk model (7), let N (t) ∼ Poisson (λt),
then density function of ith arrival time given N (t) = k is

fWi|N(t) (s | k) =
k − i+ 1

t

(
k

i− 1

)(s
t

)i−1 (
1− s

t

)k−i
, 0 6 s 6 t.

(8)

Proof. Let N (t) ∼ Poisson (λt) and Wi be the arrival time of the ith
claim for i = 1, . . . , N (t), then distribution function of ith arrival time given
N (t) = k is

FWi|N(t) (s | k) = Pr [Wi 6 s | N (t) = k]

= 1− Pr [N (s) 6 i− 1 | N (t) = k]

= 1−
i−1∑
m=1

Pr [N (s) = m,N (t) = k]

Pr [N (t) = k]
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= 1−
i−1∑
m=1

(
k
m

)(s
t

)m (
1− s

t

)k−m
, 0 6 s 6 t. (9)

Now the fWi|N(t) can be found by taking derivatives of (9) with respect to s.
Using Lemma 1 for the lth moment of ith arrival time given N (t) = k,

we have:

E
[
W l

i | N (t) = k
]
=

∫ t

0
sl
k − i+ 1

t

(
k

i− 1

)(s
t

)i−1 (
1− s

t

)k−i
ds

= tl
k! (l + i− 1)!

(i− 1)! (l + k)!
. (10)

Applying the previous lemma, we now proceed to derive the net premium
for discounted collective risk model under the Poisson assumption for claim
frequency. The expected value of Zt is stated in the following theorem.

Theorem 1. Suppose in the discounted collective risk model (7), N (t) ∼
Poisson (λt), then

E [Zt] =
µ1λ

δ

(
1− e−δt

)
. (11)

Proof. At the first we calculate E [Zt | N (t) = k] by using (10). We have:

E [Zt|N (t) = k] = E

N(t)∑
i=1

Xie
−δWi |N (t) = k


=

k∑
i=1

µ1E
[
e−δWi | N (t) = k

]
=

k∑
i=1

µ1E

[ ∞∑
l=1

(−δ)l W l
i

l!
| N (t) = k

]

= µ1

∞∑
l=0

(−δt)l
k!

(k + l)!

k∑
i=1

(
l + i− 1

l

)
. (12)

(We notice that Fubini’s Theorem allows the order of summation to be
changed in the later expression). Moreover, it can be easily shown that∑k

i=1

(
l + i− 1

l

)
=

(
l + k
l + 1

)
. So, we can rewrite (12) as
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µ1k

∞∑
l=0

(−δt)l

(l + 1)!
=

µ1k

δt

(
1− e−δt

)
. (13)

Now we turn to calculation of E [Zt]. From equation (13) we have,

E [Zt] = E

[
µ1N(t)

δt

(
1− e−δt

)]
=

µ1λ

δ

(
1− e−δt

)
.

Corollary 1. Process {At}t>0 =
{
Zt − µ1λ

δ

(
1− e−δt

)}
t>0

is a martingale.

Proof. It is enough to show that for all h > 0:

E [At+h −At|At = at] = 0,

or equivalently:

E [Zt+h − Zt|Zt = zt] =
µ1λ

δ

{
e−δt − e−δ(t+h)

}
.

we have:

E [Zt+h − Zt|Zt = zt] = E

N(t+h)∑
i=1

Xie
−δWi −

N(t)∑
i=1

Xie
−δWi |Zt = zt


= E

 N(t+h)∑
i=N(t)+1

Xie
−δWi


= E [Zt+h]− E [Zt]

=
µ1λ

δ

{
e−δt − e−δ(t+h)

}
Let us now consider the discrepancy between the obtained premiums

based on the collective risk model equation (6), and by the discounted col-
lective risk model equation (11). In fact equation (6) is a special case of
relation (11) when the δ → 0. It is easy to see that,

lim
δ→0

E [Zt] = E [St] .

Another special case is when t → ∞. In this case:
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lim
t→∞

E [Zt] = lim
t→∞

µ1λ

δ

(
1− e−δt

)
=

µ1λ

δ
. (14)

which can be interpreted as a net single premium for a perpetuity that
continuously pays µ1λ.

Moreover, note that if δ → ∞, then E [Zt] → 0, and when t → 0, then
E [Zt] → 0, which are reasonable results.

Corollary 2. Suppose that in the discounted collective risk model (7),
N (t) ∼ Poisson (λt), then

E

 N(t)∑
i,j:i<j

XiXje
−δWi−δWj | N (t) = k

 = µ2
1

k (k − 1)

2

(
1− e−δt

δt

)2

. (15)

Proof. First one by going along the same lines of the proof of lemma 1
with some obvious modification it can be shown that

fWi|Wj ,N(t) (s | u, k) =
j − i+ 1

u

(
j

i− 1

)( s
u

)i−1

×
(
1− s

u

)j−i
, 0 6 s 6 u 6 t. (16)

Now by rule of Iterated expectation we have

E

 N(t)∑
i,j:i<j

XiXje
−δWi−δWj | N (t) = k

 = E

[
E

{
N(t)∑
i,j:i<j

XiXje
−δWi−δWj | Wj = u,

N (t) = k

}
| Wj = u

]
.

By using equation (16) we can get:

E

[
N(t)∑
i,j:i<j

XiXje
−δWi−δu | Wj = u,N (t) = k

]
= µ2

1

k∑
j=2

e−δu

× E

[
j−1∑
i=1

e−δWj | Wj = u,N (t) = k

]
= µ2

1

k∑
j=2

e−δu (j − 1)
(
1− e−δu

)
δu

.
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Now we calculate the second expectation with respect to Wj ,

E

[
N(t)∑
i,j:i<j

XiXje
−δWi−δWj | N (t) = k

]
= µ2

1E

[
N(t)∑
j=2

e−δWj

×
(j − 1)

(
1− e−δWj

)
δWj

| N (t) = k

]

= µ2
1

1

δ

k∑
j=2

(j − 1)

{ ∞∑
l=0

(−δ)l E
[
W l−1

j | N (t) = k
]

l!

−
∞∑
n=0

(−2δ)nE
[
Wn−1

j | N (t) = k
]

n!

}

= µ2
1

1

tδ

k∑
j=2

(j − 1)

{ ∞∑
l=0

(−tδ)l

l!

(l + j − 2)!k!

(j − 1)! (l + k − 1)!

−
∞∑
n=0

(−2tδ)n

n!

(n+ j − 2)!k!

(j − 1)! (n+ k − 1)!

}

= µ2
1

k (k − 1)

tδ

{(
1− e−δt

δt

)
−
(
1− e−2δt

2δt

)}
= µ2

1

k (k − 1)

2

(
1− e−δt

δt

)2

.

Based on this result, it is easy to calculate conditional second moment of
Zt given N (t) = k as follows,

E
[
Z2
t | N (t) = k

]
= E

N(t)∑
i=1

X2
i e

−2δWi | N (t) = k


+ 2E

 N(t)∑
i,j:i<j

XiXje
−δwi−δwj | N (t) = k


From theorem 1 and relation (15) we can get:

E
[
Z2
t | N (t) = k

]
= µ2

k

δt

(
1− e−2δt

)
+ µ2

1k (k − 1)

(
1− e−δt

δt

)2

.
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After some calculation we find that:

var [Zt | N (t) = k] = µ2
k

δt

(
1− e−2δt

)
− µ2

1k

(
1− e−δt

δt

)2

(17)

Theorem 2. Consider the discounted collective risk model described in (7),
if N (t) ∼ Poisson (λt), then

var [Zt] =
µ2λ

2δ

(
1− e−2δt

)
. (18)

Proof. By the law of total variance and equation (17) proof is completed.

Corollary 3. The process {Bt}t>0 =

[{
Zt − µ1λ

δ

(
1− e−δt

)}2
− var [Zt]

]
t>0

is a martingale.
Using the martingale approach, many interesting results can be obtained;

refer to Gerber and Shiu (1998) for a thorough discussion. In the next
theorem we use similar technique to find the moment generating function of
Zt.

Theorem 3. Let MZt (u) denote the m.g.f of Zt defined by relation (7) and
let N (t) ∼ Poisson (λt), then

MZt (u) = exp

[
−
∫

λ
{
1−MX

(
ue−δt

)}
dt

]
(19)

where, MX (·) is m.g.f of X.

Proof. Consider the process {Mt}t>0 =
{

euZt

g(t,u)

}
t>0

where g(t, u) is a func-
tion to be determined later and satisfies in the initial condition g(0, u) = 1.
We first seek a value of g(t, u) such that {Mt}t>0 is a martingale. To do this,
we note that based on the properties of martingale, Mt must satisfies in the
following relation (for all h > 0):

E

[
Mt+h

Mt
| Mt = mt

]
= 1.

In this case, we have:

E

[
e
u
∑N(t+h)

i=N(t)+1
Xie

−δWi

]
=

g(t+ h, u)

g(t, u)
.
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Now by rule of Iterated expectation it can be shown that

E

[
E

{
e
u
∑N(t+h)

i=N(t)+1
Xie

−δWi | N (t+ h)−N (t) = k

}]
=

∞∑
k=0

E

[
e
u
∑N(t+h)

i=N(t)+1
Xie

−δWi

| N (t+ h)−N (t) = k

]
Pr [N (t+ h)−N (t) = k]

=
g(t+ h, u)

g(t, u)
(20)

Based on the properties of Poisson process we can rewrite (20) as follows,

∞∑
k=0

E

[
e
u
∑N(t+h)

i=N(t)+1
Xie

−δWi | N (t+ h)−N (t) = k

]
Pr [N (t+ h)−N (t) = k]

= (1− λh) + E
[
euXN(t+h)e

−δ(t+h) | N (t+ h)−N (t) = 1
]
λh+ o (h)

= (1− λh) +MX(ue−δ(t+h))λh+ o (h)

=
g(t+ h, u)

g(t, u)

Where o(h) is a generic function that goes to zero faster than h when h goes
to zero. By a few simplification we have:

−λ
[
1−MX{ue−δ(t+h)}

]
+

o(h)

h
=

g(t+ h, u)− g(t, u)

h.g(t, u)
(21)

Taking limits as h → 0 in above relation, we have:

d

dt
ln g(t, u) = −λ

{
1−MX(ue−δt)

}
, (22)

Now it is sufficient to show that MZt(u) = g(t, u). It follows from the initial
condition g(0, u) = 1 that M0 = 1. Moreover based on the properties of
martingale, we have E (Mt) = E (M0) = 1 which complete the proof.

Example 1. In the discounted collective risk model, let claim sizes are
exponentially distributed with mean β then the m.g.f of Zt is given by:

MZt(u) = E
[
euZt

]
=

(
1− βue−δt

1− βu

)λ
δ

. (23)
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It follows from this example that:

lim
δ→0

MZt (u) = exp

(
λtuβ

1− uβ

)
(24)

which is precisely the m.g.f of St given in the relation (4). Moreover by
limiting when t tend to infinity we have:

lim
t→∞

MZt (u) = (1− uβ)−
λ
δ (25)

which is coincide to the result that Gerber (1979) has obtained.
An interesting point is to find the distribution; this does not seem an easy

task. Nevertheless we can use the Fourier Transform to perform numerical
approximation. We know that for given moment generating function, there
always exists a unique distribution. The Fast Fourier Transform (FFT) tech-
nique gives a fast way to compute a distribution from its moment generating
function. This numerical methods can easily be implemented in R software
and using its Actuar package. Figure 1, shows the differences between col-
lective risk model and the discounted collective risk model. As it appear
from these figures, the difference between two models increase with t.

4 Conclusion
In studying economic phenomena, the effects of interest and inflation must
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Figure 1. Density functions of collective risk model and discounted collective risk model for
λ=4, β=1, δ=0.05, t=5 (left side) and t = 50 (right side).
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be taken into account. As it was seen in this paper, Zt, is a version of St that
takes into account the interest rate. Knowing the moments of Zt is useful to
approximate the distribution of it. Moreover it is useful for calculating the
premium based on the various premium principles. As it said in the text,
there are many researches that have studied the distribution and features
of total loss collective risk models. In those researches the distribution of
Zt have studied for infinite time horizon. But there are many practical
problems that is not true assumption. The interested reader is referred to
Gerber (1979) for more applied details.

In this paper we obtain the mean and variance of Zt for all values of t .
It has also been demonstrated that some functions of Zt are martingale and
use this feature to obtain the m.g.f of Zt for all values of t . Although, we
used classic approach to obtain the mean and variance of total loss, it may
be use the similar approach with the m.g.f, to get the mean and variance by
martingale properties.

The obtained formula for m.g.f of Zt by Theorem 3 works for every claim
size distribution and poisson distribution for the counting process. A formal
example is exponential distribution for claim size that the results of it and
limiting cases are agree with previous researches. Additionally, we use Fast
Fourier Transform to numerically calculate the distribution of discounted
collective risk model.
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