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Abstract. In this paper, we obtain the distribution functions of the range
and the quasi-range of the random variables arising from the extended type
I generalized logistic distribution.
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1 Introduction
The probability density function (pdf) of the standard logistic distribution
is

fX(x) =
e−x

(1 + e−x)2
, −∞ < x < ∞,

and hence its cumulative distribution function (cdf) is

FX(x) = (1 + e−x)−1, −∞ < x < ∞.

The shape of this distribution is similar to that of normal distribution has
made it to be preferred to normal distribution by some researchers like Berk-
son (1944, 1950, 1953), Berkson and Hodges (1960), etc. Ojo (1989) used
the logistic model to analyze some social data sets. Researchers have been
working on order statistics from the logistic distribution for a long time. It
was considered in Plackett (1958), Birnbaum and Dudman (1963), Tarter
and Clark (1965), Shah (1966, 1970). Gupta et al. (1967) obtained best
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12 On the Distribution Functions of the Range and . . .

unbiased estimators for the parameters of the logistic distribution using or-
der statistics. It is well known that the range and quasi-range are impor-
tant statistics which are defined based on order statistics. Gupta and Shah
(1965) obtained the distribution of the range from the logistic distribution
while Malik (1980) obtained the distribution function of the quasi-range from
the logistic distribution. In recent times, researchers have focused more on
generalizing pdfs with the aim of making the functions to be more robust
and applicable to model different types of data. The logistic distribution
has enjoyed the practice of generalization in many forms as could be seen in
George and Ojo (1980), Balakrishnan and Leung (1988a), Wu et al. (2000),
Olapade (2004, 2005, 2006). Though, many works have been done on the
order statistics from the logistics distribution, many of its various general-
izations of the distribution have not enjoyed such privilege. Balakrishnan
and Leung (1988a) studied order statistics from the type I generalized logis-
tic distribution while Balakrishnan and Leung (1988b) obtained the means,
variances and covariances of the order statistics, BLUE’s for the type I gen-
eralized logistic distribution. In this paper, we shall obtain the distributions
of the range and quasi-range of the extended type I generalized logistic dis-
tribution with pdf

fX(x;λ, p) =
pλpe−x

(λ+ e−x)p+1
, −∞ < x < ∞, p > 0, λ > 0 (1)

and cdf

FX(x;λ, p) =
λp

(λ+ e−x)p
, −∞ < x < ∞, p > 0, λ > 0. (2)

Some properties and application of this distribution were presented in Ola-
pade (2009) who obtained the distribution of the rth order statistics and
established the pdfs of the maximum and minimum order statistics in a ran-
dom sample.

2 Distribution of the Range
Given a set of random variables X1, X2, . . . , Xn of size n coming from the
extended type I generalized logistic distribution, let X1:n 6 X2:n 6 · · · 6
Xn:n be the corresponding order statistics. Let FXr:n(x) and fXr:n(x), r =
1, 2, . . . , n be the cdf and pdf of the rth order statistics Xr:n respectively.
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David (1970) obtained the pdf of Xr:n as

fXr:n(x) =
1

B(r, n− r + 1)
[F (x)]r−1[1− F (x)]n−rf(x).

Let us define the sample range Wn by Wn = Xn:n−X1:n. The cdf of Wn can
be written as (Gupta and Shah, 1965)

Pr(Wn 6 w) = n

∫ +∞

−∞
{F (x+ w)− F (x)}n−1f(x)dx.

By expanding {F (x+ w)− F (x)}n−1, we have

Pr(Wn 6 w) = n
n−1∑
k=0

(
n− 1

k

)∫ +∞

−∞
{F (x+w)}n−1−k{−F (x)}kf(x)dx. (3)

Substituting (1) and (2) in (3) we have

Pr(Wn 6 w) = n

n−1∑
k=0

(−1)k
(
n− 1

k

)∫ +∞

−∞

{
λ

λ+ e−w−x

}p(n−1−k)

×
{

λ

λ+ e−x

}pk pλpe−x

(λ+ e−x)p+1
dx

= npλnp
n−1∑
k=0

(−1)k
(
n− 1

k

)
∫ +∞

−∞

e−x

(λ+ e−w−x)p(n−1−k)(λ+ e−x)pk+p+1
dx.

Let t = (λ+ ae−x)−1, where a = e−w, then

Pr(Wn 6 w) = npλnp
n−1∑
k=0

(−1)k
(
n− 1

k

)
apk+p

∫ 1
λ

0

tnp−1

{1 + λ(a− 1)t}pk+p+1
dt

= npλnp
n−1∑
k=0

(−1)k
(
n− 1

k

)
ap(k+1)

∫ 1
λ

0

tnp−1

(1 + bt)pk+p+1
dt

= npλnp
n−1∑
k=0

(−1)k
(
n− 1

k

)
ap(k+1)A(k, p, n, λ), (4)
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14 On the Distribution Functions of the Range and . . .

where b = λ(a− 1), v = 1 + bt and

A(k, p, n, λ) =

∫ 1
λ

0

tnp−1

(1 + bt)pk+p+1
dt

=
−1

(−b)np

∫ 1+b
λ

1
v−pk−p−1(1− v)np−1dv,

=
−1

(−b)np

np−1∑
j=0

(−1)j
(
np− 1

j

)∫ 1+b
λ

1
vj−pk−p−1dv

=
−1

(−b)np

{
(−1)pk+p

(
np− 1

pk + p

)
ln

(
1 +

b

λ

)

+

np−1∑
j=0,j ̸=pk+p

(−1)j
(
np− 1

j

)(1+b
λ

)j−pk−p − 1

j − pk − p

}

Substitute for A(k, p, n, λ) in (4), we have

Pr(Wn 6 w) = np

n−1∑
k=0

(−1)k+1

(
n− 1

k

)

ap(k+1) 1

(1− a)np

{
(−1)pk+p

(
np− 1

pk + p

)
lna

+

np−1∑
j=0,j ̸=pk+p

(−1)j
(
np− 1

j

)
aj−pk−p − 1

j − pk − p

}

=
np

(1− e−w)np

n−1∑
k=0

(−1)k+1

(
n− 1

k

)
{
(−1)pk+p−1

(
np− 1

pk + p

)
we−wp(k+1)

+

np−1∑
j=0,j ̸=pk+p

(−1)j
(
np− 1

j

)
e−wj − e−wp(k+1)

j − pk − p

}
.
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By differentiating the distribution function of the sample range in equation
(2.14) with respect to w, we derive the pdf of Wn as

p(w) =
n2p2e−w

(1− e−w)np+1

n−1∑
k=0

(−1)k+1

(
n− 1

k

)
{
(−1)pk+p−1

(
np− 1

pk + p

)
we−wp(k+1)

+

np−1∑
j=0,j ̸=pk+p

(−1)j
(
np− 1

j

)
e−wj − e−wp(k+1)

j − pk − p

}

+
np

(1− e−w)np

n−1∑
k=0

(−1)k+1

(
n− 1

k

)
[
(−1)pk+p−1

(
np− 1

pk + p

)
{1− wp(k + 1)}e−wp(k+1)

+

np−1∑
j=0,j ̸=pk+p

(−1)j
(
np− 1

j

)
p(k + 1)e−wp(k+1) − je−wj

j − pk − p

]
.

It could be noted that the FW (w) and fW (w) of the extended type I gener-
alized logistic distribution are free of λ.

3 Distribution of the Quasi-range

The sample rth quasi-range denoted by W , is defined as

W = Xn−r:n −Xr+1:n, r = 0, 1, . . . ,
n− 1

2
,

where n is odd. Thus the joint pdf of Xr+1:n and Xn−r:n is

f(xr+1:n, xn−r:n) =
n!

r!(n− 2r − 2)!r!
{F (xr+1:n)}r

× {F (xn−r:n)− F (xr+1:n)}n−2r−2{1− F (xn−r:n)}r

× f(xn−r:n)f(xr+1:n), −∞ < Xr+1:n < Xn−r:n < ∞.
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Since Xn−r:n = Xr+1:n +W , we have

Pr(W 6 w) =

∫ +∞

−∞

∫ xr+1:n+w

xr+1:n

f(xr+1:n, xn−r:n)dxn−r:ndxr+1:n

=
n!

r!(n− 2r − 2)!r!

∫ +∞

−∞
{F (x)}rf(x)

×
[ ∫ x+w

0
{1− F (u)}r{F (u)− F (x)}n−2r−2f(u)du

]
dx

=
n!

r!(n− 2r − 2)!r!

∫ +∞

−∞
{F (x)}rf(x)[∫ F (x+w)

F (x)
(1− y)r{y − F (x)}n−2r−2dy

]
dx.

Integrating the expression in braces r times by parts, we have

Pr(W 6 w) =

r∑
k=0

2r−k∏
i=0

(n− i)

r!(r − k)!

∫ +∞

−∞
{F (x)}r{1− F (x+ w)}r−k

{F (x+ w)− F (x)}n−2r+k−1f(x)dx

=

r∑
k=0

2r−k∏
i=0

(n− i)

r!(r − k)!

n−2r+k−1∑
j=0

(−1)j

(
n− 2r + k − 1

j

) r−k∑
l=0

(−1)l
(
r − k

l

)

×
∫ ∞

−∞
{F (x)}r+j{F (x+ w)}n−2r+k−j+l−1f(x)dx.

Let Λ =
∫∞
−∞{F (x)}r+j{F (x+ w)}n−2r+k−j+l−1f(x)dx, using f(x;λ, p) and

F (x;λ, p) shown in equations (1) and (2) respectively we have

Λ =

∫ +∞

−∞

(
λ

λ+ e−x

)p(r+j)( λ

λ+ e−x−w

)p(n−2r+k−j+l−1)

× pλpe−x

(λ+ e−x)p+1
dx

=

∫ +∞

−∞

pλp(n−r+k+l)e−x

(λ+ ae−x)p(n−2r+k−j+l−1)(λ+ e−x)pr+pj+p+1
dx,
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Let t = (λ+ ae−x)−1, where a = e−w, then

Λ = pap(r+j+1)λp(n−r+k+l)

∫ 1
λ

0

tpn−pr+pk+pl−1

{1 + tλ(a− 1)}pr+pj+p+1
dt.

Taking λ(a− 1) = b and 1 + bt = u, we have

Λ =
−pap(r+j+1)

(1− e−w)p(n−r+k+l)

×
∫ 1+ b

λ

1
(1− u)pn−pr+pk+pl−1u−(pr+pj+p+1)du.

=
−pap(r+j+1)

(1− e−w)p(n−r+k+l)

×
∫ 1+ b

λ

1

pn−pr+pk+pl−1∑
m=0

(−1)m
(
pn− pr + pk + pl − 1

m

)
um−pr−pj−p−1du

=
−pap(r+j+1)

(1− e−w)p(n−r+k+l)

×
∫ 1+ b

λ

1

{
(−1)p(r+j+1)

(
pn− pr + pk + pl − 1

pr + pj − p

)
u−1

+

pn−pr+pk+pl−1∑
m=0,m̸=p(r+j+1)

(−1)m
(
pn− pr + pk + pl − 1

m

)
um−pr−pj−p−1

}
du

=
pe−wp(r+j+1)

(1− e−w)p(n−r+k+l)

{
(−1)p(r+j+1)

(
pn− pr + pk + pl − 1

pr + pj − p

)
w

+

pn−pr+pk+pl−1∑
m=0,m̸=p(r+j+1)

(−1)m+1

(
pn− pr + pk + pl − 1

m

)
e−w(m−pr−pj−p) − 1

m− pr − pj − p

}
.

Finally,

Pr(W 6 w) =
r∑

k=0

2r−k∏
i=0

(n− i)

r!(r − k)!

n−2r+k−1∑
j=0

(−1)j
(
n− 2r + k − 1

j

)

×
r−k∑
l=0

(−1)l
(
r − k

l

)
· pe−wp(r+j+1)

(1− e−w)p(n−r+k+l)
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18 On the Distribution Functions of the Range and . . .

×
{
(−1)p(r+j+1)

(
pn− pr + pk + pl − 1

pr + pj − p

)
w

+

pn−pr+pk+pl−1∑
m=0,m̸=p(r+j+1)

(−1)m+1

(
pn− pr + pk + pl − 1

m

)
e−w(m−pr−pj−p) − 1

m− pr − pj − p

}
.

It should be noted also that the distribution function of quasi-range of the
extended type I generalized logistic distribution is free of the parameter λ.
When p = 1, the result obtained agrees with Malik (1980) for the standard
logistic distribution.
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