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Abstract. In applications of differential geometry to problems of paramet-
ric inference, the notion of divergence is often used to measure the separation
between two parametric densities. Among them, in this paper, we will ver-
ify measures such as Kullback-Leibler information, J-divergence, Hellinger
distance, α-Divergence, . . . and so on. Properties and results related to dis-
tance between probability distributions derived via copula functions. Some
inequalities are obtained in view of the dependence and information mea-
sures.
Keywords. Information measures; Fisher information; Kullback-Leibler
information; Hellinger distance; α-divergence.

1 Introduction
The study of copulas and the role they play is important in probability,
statistics and stochastic processes. Sklar (1959) provided a uniform repre-
sentation of bivariate distribution F on the unit square and defined copula
based on it. Many research papers and monographs due to copula aspect are
published after Sklar (1959), such as Nelsen (2006), Joe (1997), Cherubini
et al. (2004) and Mari and Kotz (2004) and their references in. Frees and
Valdez (1998) introduced the concept of copulas as a tool for understanding
relationships among multivariate outcomes. Also, dependence and copulas
have linked with each other.

The concept of the entropy originated in the nineteenth century by C.E.
Shannon (1948). During the last sixty years or so, a number of publications
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48 Information Measures via Copula Functions

discussing and extending Shannon’s original work have appeared. Among
them, Ali Ahmed et al. (1989), Darbellay and Vajda (1998, 2000), Dragomir
(2003), Blyth (1994), Torkkola (2003), Kapur (1989, 1994), Borovkov (1998),
Kagan, Linnik and Rao (1973) and Kullback (1959) are mentioned in this
research. Ma and Sun (2008) and Calsaverini and Vicente (2009) are two
recent notes related to the links between copula and information measures.

In this paper, various measures are obtained in view of copulas for bi-
variate distributions. Properties of information measures and their links with
copula is another direction of this research.

2 Preliminaries and Some Information Measures
Let (Ω,B, µ) be a measure space and f be a measurable function from Ω to
[0,∞), such that

∫
Ω fdµ = 1. The Shannon entropy (or simply the entropy)

of f relative to µ, is defined by

H(f, µ) = −
∫
Ω
f ln fdµ, (with f ln f = 0 if f = 0), (1)

and assumed to be defined for which f ln f is integrable. If X is an r.v.
with pdf f, then we refer to H as the entropy of X and denotes it by the
notation HX as well. In the case µ is a version of counting measure, (1)
leads us to a specialized version that introduced by Shannon (1948) as HX =
−
∑n

i=1 pi ln pi where pi > 0 and
∑n

i=1 pi = 1. One of the important issues in
many applications of the probability theory is finding an appropriate measure
of distance between two probability distributions. A number of divergence
measures for this purpose have been studied by Kullback and Leibler (1951),
Renyi (1961) and lot of references related to the various type of information
measures can be find in Dragomir (2003).

Assume that the set χ be the suitable support of distributions and the
σ−finite measure µ are given such that Ω = {f : χ × χ → ℜ, f(x, y) >
0,
∫
χ×χ f(x, y)dµ = 1} is used earlier for some other purpose. Consider F

and G be two bivariate distributions which are absolutely continuous w.r.t.
measure µ and dF

dµ = f and dG
dµ = g. Here, we introduce shortly the form of

some familiar information measures based on bivariate distributions.
Kullback Leibler information:

DKL(F,G) =

∫ ∫
χ×χ

ln
f(x, y)

g(x, y)
f(x, y)dµ, (2)
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χ2− divergence:

Dχ2(F,G) =

∫ ∫
χ×χ

[f(x, y)− g(x, y)]2

f(x, y)
dµ, (3)

Hellinger distance:

DH(F,G) =

∫ ∫
χ×χ

[√
f(x, y)−

√
g(x, y)

]2
dµ, (4)

α−divergence:

Dα(F,G) =
1

1− α2

∫ ∫
χ×χ

{
1− g

1+α
2 (x, y)

f
1+α
2 (x, y)

}
f(x, y)dµ, (5)

Jeffery’s distance (J-divergence):

DJ(F,G) =

∫ ∫
χ×χ

[f(x, y)− g(x, y)] ln
f(x, y)

g(x, y)
dµ, (6)

Combination of version of α−Divergence:

DCα(F,G) =
4

β2

∫ ∫
χ×χ

{
g

β
2 (x, y)− f

β
2 (x, y)

}2

gβ−1(x, y)
dµ, (7)

Bhattacharyya distance:

DBh(F,G) =

∫ ∫
χ×χ

√
g(x, y)f(x, y)dµ, (8)

Harmonic distance:

DHa(F,G) =

∫ ∫
χ×χ

2g(x, y)f(x, y)

g(x, y) + f(x, y)
dµ, (9)

Triangular discrimination:

D∆(F,G) =

∫ ∫
χ×χ

[f(x, y)− g(x, y)]2

g(x, y) + f(x, y)
dµ, (10)
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50 Information Measures via Copula Functions

Lei and Wang divergence:

DLW(F,G) =

∫ ∫
χ×χ

f(x, y) ln
2f(x, y)

g(x, y) + f(x, y)
dµ. (11)

Relative information generating function:
The relative information generating function of f given the reference measure
g is defined by Guiasu and Reischer (1985) as,

R(F,G, t) =

∫ ∫
χ×χ

[
f(x, y)

g(x, y)

]t−1

f(x, y)dµ, (12)

where t > 1 and the integral is convergent. We note that R(F,G, 1) = 1.

Power divergence measures:
Cressie and Read (1984) proposed the power divergence measure (PWD)
which gathers most of the interesting specification. This measure is defined
as

PWD(F,G) =
1

λ(λ+ 1)

∫ ∫
χ×χ

{[
f(x, y)

g(x, y)

]λ
− 1

}
f(x, y)dµ. (13)

The power divergence measure leads to different well-known divergence mea-
sures for different values of λ. PWD for λ = −2,−1,−0.5, 0, 1, implies
Neyman Chi-square, Kullback Leibler, squared Hellinger distance, Likeli-
hood disparity and Pearson Chi-square divergence respectively. Note that
PWD(F,G) = 1

λ(λ+1) [R(F,G, λ+ 1)− 1].

3 Information Measures in View of Copula Dis-
tributions

The copula function C(u, v) is a bivariate distribution function with uniform
marginal on [0, 1], such that

F (x, y) = CF {F1(x), F2(y)}.

By Sklar’s Theorem (Sklar, 1959), this copula exists and is unique if F1

and F2 are marginal continuous distribution functions. Thus, we can con-
struct bivariate distributions F (x, y) = CF {F1(x), F2(y)} with given univari-
ate marginal F1 and F2 by using copula CF , (Nelsen, 2006). We have the
following properties:
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• (Nelsen, 2006) Let F (x, y) be a joint distribution function with marginal
F1(x) and F2(y), then
(i) The copula CF is given by

CF (u, v) = F{F−1
1 (u), F−1

2 (v)}, ∀u, v ∈ [0, 1],

where, F−1
1 and F−1

2 are quasi-inverses of F1 and F2 respectively.
(ii) The partial derivatives ∂CF (u,v)

∂u and ∂CF (u,v)
∂v exist and c(u, v) =

∂2CF (u,v)
∂u∂v is density function of CF (u, v).

Ma and Sun (2008) defined copula entropy as follows:

Definition 1. Let X be a two dimensional random vector with copula
density c(u, v). Copula entropy of X is defined as

Hc(X) = −
∫ ∫

u,v
c(u, v) ln c(u, v)dudv.

Kullback Leibler information:

DKL(F, F1F2) =

∫ 1

0

∫ 1

0
c(u, v) ln c(u, v)dudv. (14)

In this case, Kullback Leibler information is called mutual information.

Theorem 1. Mutual information of the random variable is equal to the
negative entropy of their corresponding copula function,

DKL(F, F1F2) = −Hc(X).

Proof. Via f(x, y) = c{F1(x), F2(y)}f1(x)f2(y) easily derived.

• On noting Theorem 1, difference of the information contained in joint
distribution and marginal densities is equal to copula entropy. Hence,

H(X) =

2∑
i=1

H(Xi) +Hc(X),

where X = (X1, X2) and independence X1 and X2 implies Hc(X) = 0.
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• Normalizing DKL index, Joe (1997) defined

δ∗ = [1− exp{−2DKL(F, F1F2)}]
1
2 ,

where δ∗ is confined to the interval [0, 1]. When the dependence is
maximal, DKL tends to infinity and δ∗ can be considered as a measure
of dependence. As an example, let X ∼ N(µ,Σ) where µ = [µ1, µ2]

and Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
then, δ∗ =| ρ | that is a suitable measure

for finding correlation coefficient in this case.

• Joe (1989) obtained measure of dependence in multivariate cases as

ρ∗X1,X2,...,Xn
=

[
δX1,X2,...,Xn

Σn
i=1H(Xi)−MaxjH(Xj)

] 1
2

,

where

δX1,X2,...,Xn =

∫ ∫
ℜn

. . .

∫ [
ln

f(x1, x2, . . . , xn)∏n
i=1 fi(xi)

]
× f(x1, x2, . . . , xn)dx1dx2 . . . dxn

and H(Xi) = −
∫
ℜ[ln fi(xi)]fi(xi)dxi. In bivariate case, let X and

Y be identically distributed but not necessarily independent, then
ρ∗X1,X2

= DKL(F,F1F2)
H(X) where 0 6 ρ∗X1,X2

6 1 and ρ∗X1,X2
= 0 im-

plies independence. So, ρ∗X1,X2
= 1 implies X1 and X2 are perfectly

correlated.
Also, the linear correlation for standarized variables in terms of the
copula densities is ρ(X,Y ) =

∫ 1
0

∫ 1
0 c(u, v)F−1

1 (u)F−1
2 (v)dudv. If X and

Y are independent, then, c(u, v) = 1 and consequently ρ(X,Y ) = 0.
A better alternative for measuring correlation concordance would be
the rank correlation that is known as Spearman’s ρ as ρrank(X,Y ) =
12
∫ 1
0

∫ 1
0 uvc(u, v)dudv − 3. Note that this measure for a pair of con-

tinuous random variables X and Y is identical to Pearson’s correlation
coefficient (linear correlation) of U = F1(X) and V = F2(Y ).

χ2− divergence:

Dχ2(F, F1F2) =

∫ 1

0

∫ 1

0

[c(u, v)− 1]2

c(u, v)
dudv. (15)
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Hellinger distance:

DH(F, F1F2) =

∫ 1

0

∫ 1

0

[√
c(u, v)− 1

]2
dudv. (16)

α−divergence:

Dα(F, F1F2) =
1

1− α2

∫ 1

0

∫ 1

0

[
1− {c(u, v)}−

(α+1)
2

]
c(u, v)dudv. (17)

Jeffery’s distance (J-divergence):

DJ(F, F1F2) =

∫ 1

0

∫ 1

0
[c(u, v)− 1] ln c(u, v)dudv. (18)

Combination of version of α−divergence:

DCα(F, F1F2) =
4

β2

∫ 1

0

∫ 1

0
[1− {c(u, v)}

β
2 ]2dudv. (19)

Bhattacharyya distance:

DBh(F, F1F2) =

∫ 1

0

∫ 1

0

√
c(u, v)dudv. (20)

Harmonic distance:

DHa(F, F1F2) =

∫ 1

0

∫ 1

0

[
2c(u, v)

c(u, v) + 1

]
dudv. (21)

Triangular discrimination:

D∆(F, F1F2) =

∫ 1

0

∫ 1

0

[
{c(u, v)− 1}2

1 + c(u, v)

]
dudv. (22)

Lei and Wang divergence:

DLW(F, F1F2) =

∫ 1

0

∫ 1

0
c(u, v) ln

[
2c(u, v)

1 + c(u, v)

]
dudv. (23)
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Relative information generating function:

R(F, F1F2, t) =

∫ 1

0

∫ 1

0
[c(u, v)]tdudv. (24)

where t > 1 and the integral is convergent.
Power divergence measures :

PWD(F, F1F2) =
1

λ(λ+ 1)

∫ 1

0

∫ 1

0
[{c(u, v)}λ − 1]c(u, v)dudv. (25)

• It is easy to see that DH(F, F1F2) = 2[1 − DBh(F, F1F2)] 6 2. Via
Taylor expansion and approximation, we can get, DKL(F, F1F2) ≈
1
2Dχ2(F, F1F2), DJ(F, F1F2) ≈ 1

2 [Dχ2(F, F1F2) + Dχ2(F1F2, F )],
Dχ2(F, F1F2) ≈ 4DH(F, F1F2) and Dχ2(F, F1F2) > DH(F, F1F2). The
DCα(F, F1F2) and Dα(F, F1F2) are linked via the following identity:
DCα(F, F1F2) = 16( 2β−1)A+16(1− 1

β )B where A and B are Dα(F, F1F2)
with α = 1−β and α = 1−2β respectively. The chi-squared divergence
Dχ2(F, F1F2) = DCα(F, F1F2) and Dχ2(F, F1F2) = 2Dα(F, F1F2) on
taking β = 2 in (7) and α = −3 in (5) respectively. Also, the
Hellinger distance DH(F, F1F2) =

1
4DCα(F, F1F2) and DH(F, F1F2) =

1
2Dα(F, F1F2) on taking β = 1 in (7) and α = 0 in (5) respectively. The
Hellinger distance is symmetric and has all properties of a metric. Also,
DBh(F, F1F2), DHa(F, F1F2), D∆(F, F1F2) are symmetric and DLW(F, F1F2)+
DLW(F1F2, F ) 6 D∆(F, F1F2).

• Let C0 and C1 be two copula functions. Cuadras (2009) defined mixture
copula Cθ as

Cθ(u, v) = (1− θ)C0(u, v) + θC1(u, v), θ ∈ [0, 1].

On noting that the copula density of mixture copula is
cθ(u, v) = (1− θ)c0(u, v) + θc1(u, v), θ ∈ [0, 1],

the relation information generating function (case integer t) for it, can
be find via,∫ 1

0

∫ 1

0
[cθ(u, v)]

tdudv =

t∑
j=0

t!

j!(t− j)!
(1− θ)t−j(θ)j

×
∫ 1

0

∫ 1

0
[c0(u, v)]

t−j [c1(u, v)]
jdudv.
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So, for some of the copula density c0 and c1, we can find easily via
the calculation of the integrals, the information generating function
for mixture copula of c0 and c1. For other measures such as power
divergence, Hellinger distance and α−divergence it is also applicable.

• Let X and Y be continuous random variables with copula CXY . If α
and β are strictly increasing on range of X and range of Y respectively,
then, CX∗Y ∗(u, v) = CXY (u, v), ∀u, v ∈ [0, 1], where X∗ = α(X) and
Y ∗ = β(Y ), (Nelsen, 2006). Because of invariance of CXY under strictly
increasing transformations of X and Y , all of the information measures
of the transformation of X and Y are the same as the information
measures that are defined based on CXY . Also, the following results
are noticeable:

(1) If α is strictly increasing (decreasing) and β is strictly decreasing
(increasing) on range of X and range of Y respectively, then,
the information measures of CX∗Y ∗ are obtained via the integrals
that are expressed the information measures based on it via copuls
density with c(u, 1−v){c(1−u, v)} in place of c(u, v) in integrals.

(2) If α and β are strictly decreasing on range of X and range of
Y respectively, then, the information measures of CX∗Y ∗ are ob-
tained via the integrals that are expressed the information mea-
sures based on it via copuls density with c(1 − u, 1 − v) in place
of c(u, v) in integrals.

(3) Let X1 and Y1 be random variables with continuous distribu-
tion functions F1 and G1 respectively and copula CXY . Let F2

and G2 be another pair of distribution functions such that X2 =
F−1
2 {F1(X1)} and Y2 = G−1

2 {G1(Y1)}, then, all of the information
measures of that introduced here based on CX2Y2 can be achieved
via the integrals of copula based on CX1Y1 .

4 Inequalities of Information Measures for Weakly
Negative Dependence

Ranjbar et al. (2008) presented a new definition of dependence which is dis-
cussed in this section and obtained inequalities due to information measures
based on it.
Definition 2. The random variables X and Y are said weakly negatively de-
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pendent (WND) if there exist a γ > 1 such that, f(x1, x2) 6 γ.f1(x1).f2(x2)
where f(x1, x2), f1(x1) and f2(x2) are joint density and marginal densities
of X and Y , respectively.

The class of WND random variables is well defined and a large class of
these random variables can be find. The following examples are evidence of
WND random variables:

Example 1. (i) Suppose that X1 and X2 have half-normal distribution,
then

fX1,X2(x1, x2) =
2

π
√

1− ρ2
exp

[
− 1

2(1− ρ2)
{x21 + x22 − 2ρx1x2}

]
, x1, x2 > 0,

fXi(xi) =

√
1

π
exp

{
−1

2
x2i

}
; i = 1, 2.

If −1 < ρ 6 0, then X1 and X2 are negative quadrant dependence (NQD)
random variables. Moreover,

fX1,X2(x1, x2)

fX1(x1)fX2(x2)
=

1√
1− ρ2

exp

[
−ρ2

2(1− ρ2)
(x21 + x22) +

ρ

1− ρ2
x1x2

]
6 1√

1− ρ2
.

Then f(x1, x2) 6 γ.f1(x1).f2(x2), where γ = 1/
√

1− ρ2 > 1. So, X1 and X2

are WND.

(ii) Let X and Y be two random variables with joint Farlie-Gumbel-Morgenstern
(FGM) distribution, we have

fX,Y (x, y) = fX(x)fY (y) [1 + α{1− 2FX(x)}{1− 2FY (y)}] .

On the other hand, it’s obvious that

|1 + α{1− 2FX(x)}{1− 2FY (y)}| 6 1 + |α|,

and
fX,Y (x, y) 6 [1 + |α|]fX(x)fY (y).

Therefore, the random variables X and Y are WND with γ = 1+ |α| > 1.
In addition, we know if −1 < α 6 0, then X and Y are negative quadrant
dependence (NQD).
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So, we have the following inequalities for the information measures:

DKL(F, F1F2) 6 ln γ,

Dα(F, F1F2) 6
1

1− α2

[
1− γ−

α+1
2

]
,

DJ(F, F1F2) 6 (γ − 1) ln γ, DBh(F, F1F2) 6
√
γ,

DHa(F, F1F2) 6
2γ

1 + γ
,

DLW(F, F1F2) 6
γ − 1

1 + γ
.

Also,

Dχ2(F, F1F2) 6
[
1− 1

γ

]2
,

DH(F, F1F2) 6 (
√
γ − 1)2,

DCα(F, F1F2) 6
4

β2

[
1− γ

β
2

]2
,

D∆(F, F1F2) 6
(γ − 1)2

γ(1 + γ)
.

Note that |1− f1(x)f2(y)
f(x,y) | > 1− 1

γ implies f(x, y) > γf2(y)f1(x) or f(x, y) 6
1

2− 1
γ

f2(y)f1(x) that is contradicted with considering f(x, y) 6 γf2(y)f1(x)

for γ > 1.

• We know that power divergence measure implies different well-known
divergence measures for different values of λ such as Neyman Chi-
square, Kullback Leibler, squared Hellinger distance, Likelihood dis-
parity and Pearson Chi-square divergence. The following inequalities
are noticeable for the above cases:

R(F, F1F2, t) 6 γt−1, t > 1,

PWD(F,G) 6 1

λ(λ+ 1)
{γλ − 1}, λ > −1.

If γ = 1 implies that these two random variables X and Y are inde-
pendent in most of the cases that is mentioned in this note.
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5 Conclusion
The mutual information is actually negative copula entropy. We derived
forms of some information measures based on copula functions. Also, several
results and properties are obtained via various information measures on using
copula. For bivariate distributions finding characterizations and results in
view of copula and information measures is the direction of continuing this
research.
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