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Abstract. We consider the problem of estimating the scale parameter β of
a rescaled F-distribution when β has a lower bounded constraint of the form
β > a, under the entropy loss function. An admissible minimax estimator of
the scale parameter β, which is the pointwise limit of a sequence of Bayes
estimators, is given. Also in the class of truncated linear estimators, the
admissible estimators and the only minimax estimator of β are obtained.
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1 Introduction
Historically, much of the work on estimating the parameter of a distribution
dealt with unconstrained parameter spaces. However, in many statistical
problems there exists bounds on the values that unknown parameters can
take. In such problems, usual estimators for the unconstrained parameter
are neither admissible nor minimax when the parameter is restricted. The
problem of estimation in restricted parameter spaces was first studied by
Brunk (1955) and van Eeden (1957) and then grew rapidly. A large body of
work concerned with estimation problems in restricted parameter spaces has
reviewed by Marchand and Strawderman (2004) and van Eeden (2006).
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Let X be a random variable with probability density function (pdf)

f(x|β) = c(m,α)
βα−1xm−1

(β + x)α+m−1
=

1

β
c(m,α)

(xβ )
m−1

(1 + x
β )

α+m−1
, x > 0, (1)

where c(m,α) = Γ(α+m−1)
Γ(m)Γ(α−1) ,m > 0, α > 1 and β > 0. Note that X

β is
distributed as the ratio of two independent gamma random variables. Ac-
cording to van Eeden and Zideck (1994 a, b), we refer to the distribution
with density given in (1) as a rescaled F -distribution.

The problem of estimation of scale parameter β in rescaled F -distribution
(1) when β has a lower bounded constraint of the form β > a for some known
a > 0, was first studied by van Eeden and Zideck (1994 a, b). They con-
sider, among many other estimation problems, the admissible and minimax
estimation of β(> a). They derived the admissible estimators and the only
minimax estimator in the class of truncated linear estimators of the form

C = {δρ|δρ(X) = max(a, ρX), a > 0, ρ > 0} , (2)

under the Squared Error Loss (SEL) function (δ − β)2 and Scale Invariant
SEL (SISEL) function ( δβ − 1)2. van Eeden (2000) showed that the only
minimax estimator in the class C, is minimax among all estimators.

Now consider the estimation of scale parameter β under the entropy loss
function

L(β, δ) =
δ

β
− ln

δ

β
− 1, (3)

which is known as Stein’s loss. This loss is convex in δ and is not symmetric
and it penalizes heavily under estimation. In estimation problems that over-
estimation is more serious than under-estimation, the entropy loss (3) is more
appropriate than SEL and SISEL functions which are symmetric about the
parameter value. Under the loss (3), it is easy to show that the best scale
invariant estimator of β > 0 in model (1) is δ0(X) = α−2

m X, when α > 2.
Under the entropy loss function (3) and for general scale family of dis-

tributions, Kubokawa (2004) showed that the unrestricted Minimum Risk
Equivariant (MRE) estimator δ0(X) of scale parameter β is minimax when
β > a, and also the Generalized Bayes Estimator (GBE) of β with respect
to (w.r.t.) improper prior π(β) = 1

β , β > a, dominates δ0(X) and hence
is minimax. Also Marchand and Strawderman (2005) extend the results of
Kubokawa (2004) to a general class of convex loss functions and obtained

c⃝ 2010, SRTC Iran
www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

N. Nematollahi and M. Naser Esfahani 75

class of dominating estimator of δ0(X). The results of these authors do not
adress the general and interesting question of admissibility of GBE of β(> a),
see Section 5 of Marchand and Strawderman (2005). The admissibility of
GBE of lower-bounded scale parameter has been established for some special
distributions and under SEL and SISEL functions (see for example Farell,
1964, van Eeden, 1995 and Jafari Jozani et al., 2002).

In this paper admissible and minimax estimation of scale parameter β,
when β > a, in model (1) and under the loss (3) is considered. To this
end, in Section 2, the admissibility of GBE of β, which is the pointwise limit
of a sequence of Bayes estimators, is shown. In Section 3, the admissible
estimators and the only minimax estimator in the class of truncated linear
estimators (2) are obtained. Finally a conclusion is given in Section 4.

2 An Admissible Minimax Estimator
Let X has pdf (1) with known m > 0, α > 1 and unknown β > a. In this
section, we find GBE of β w.r.t. improper prior

π(β) =
1

β
, β > a (4)

and show that the GBE is admissible and minimax estimator of β(> a) under
the entropy loss function (3).

Similar to van Eeden (1995), consider the following sequence of proper
prior density for β,

πn(β) =
a

1
n

nβ1+ 1
n

, β > a, a > 0, n = 1, 2, . . . . (5)

Then from (1) and (5), the posterior distribution of β given X = x is given
by

πn(β|x) =
1

β
1
n+2

·
( x
β
)m−1

(1+ x
β
)m+α−1∫∞

a
1

β
1
n+2

·
( x
β
)m−1

(1+ x
β
)m+α−1dβ

=

( x
β
)m+ 1

n+1

(1+ x
β
)m+α−1∫∞

a

( x
β
)m+ 1

n+1

(1+ x
β
)m+α−1dβ

, β > a, a > 0, n = 1, 2, . . . . (6)
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The Bayes estimator of β under the loss (3) is δπn(x) = {E( 1β |x)}
−1, and

from (6) we have

δπn(x) = x

∫∞
a

( x
β
)m+ 1

n+1

(1+ x
β
)m+α−1dβ∫∞

a

( x
β
)m+ 1

n+2

(1+ x
β
)m+α−1dβ

= x

∫ x
a
0

tm+ 1
n−1

(1+t)m+α−1dt∫ x
a
0

tm+ 1
n

(1+t)m+α−1dt
. (7)

For b > 0, c > 1 and y > 0, define

gb,c(y) =
yb

(1 + y)b+c−1
and Gb,c(y) =

∫ y

0

tb

(1 + t)b+c−1
dt. (8)

Then from (8) we have

δπn(x) = x
Gmn−1,αn+1(

x
a )

Gmn,αn(
x
a )

, (9)

where mn = m + 1
n and αn = α − 1

n . Using integration by part in integral
Gb,c(y) with u = ( t

1+t)
b and dv = 1

(1+t)c−1dt, for c > 2 we have

Gb,c(y) = − 1

c− 2
gb,c−1(y) +

b

c− 2
Gb−1,c+1(y),

so,
Gb−1,c+1(y)

Gb,c(y)
=

c− 2

b

{
1 +

gb,c−1(y)

(c− 2)Gb,c(y)

}
. (10)

From (9) and (10), the Bayes estimator of β for α > 3 is given by

δπn(x) =
(αn − 2)x

mn

{
1 +

gmn,αn−1(x
a
)

(αn − 2)Gmn,αn(
x
a )

}
(11)

and

lim
n→∞

δπn(x) =
(α− 2)x

m

{
1 +

gm,α−1(x
a
)

(α− 2)Gm,α(
x
a )

}
= δπ(x) (say). (12)

Note that δπ(X) is the generalized Bayes (and limiting Bayes) estimator of
β(> a) w.r.t. improper prior (4) under the loss (3). In the following theorem
we show that the GBE δπ(X) is an admissible estimator of β(> a) under the
loss (3). We use Blyth’s (1951) method for proof of admissibility.
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Theorem 1. Let X has pdf (1) with m > 1, α > 4 and β > a. Then under
the loss (3), the GBE given in (12) is an admissible estimator of β.

Proof. The loss function (3) satisfy L(β, δ) = L(βa ,
δ
a). So, without loss of

generality we can take a = 1. Since the risk function of an estimator δ under
the loss (3) is continuous in β, we can use Blyth’s (1951) method. So, we
must show that for all η > 0 such that θ − η > a,

lim
n→∞

n{Πn(β + η)−Πn(β − η)}
n{r(πn, δπ)− r(πn, δπn)}

= +∞, (13)

where Πn is the distribution function of β with pdf (5), δπn is Bayes estimator
of β w.r.t. prior (5) and r(πn, δ

π), r(πn, δπn) are the Bayes risks of δπ and
δπn w.r.t to the prior πn, respectively. From (5) and using L’Hopital’s rule
we have

lim
n→∞

n{Πn(β + η)−Πn(β − η)} = lim
n→∞

∫ β+η

β−η

1

t1+
1
n

dt

= lim
n→∞

e−
1
n
ln(β−η) − e−

1
n
ln(β+η)

1
n

= ln
β + η

β − η
> 0. (14)

Also from (11) and (12) with a = 1, we have

n{r(πn, δπ)− r(πn, δ
πn)} =

(
α− 2

m
− αn − 2

mn

)∫ ∞

1

∫ ∞

0

x

β
1
n
+2

f(x|β)dxdβ

+

∫ ∞

1

∫ ∞

0

{
x

mβ
· gm,α−1(x)

Gm,α(x)
− x

mnβ
· gmn,αn−1(x)

Gmn,αn(x)

}
× 1

β
1
n
+1

f(x|β)dxdβ

+

{
ln

(αn − 2)m

(α− 2)mn

}∫ ∞

1

∫ ∞

0

1

β
1
n
+1

f(x|β)dxdβ

+

∫ ∞

1

∫ ∞

0

[
ln

{
1 +

gmn,αn−1(x)

(αn − 2)Gmn,αn(x)

}
− ln

{
1 +

gm,α−1(x)

(α− 2)Gm,α(x)

}]
1

β
1
n
+1

f(x|β)dxdβ

= J1n + J2n + J3n + J4n. (15)
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Note that

J1n =

(
α− 2

m
− αn − 2

mn

)
m

α− 2

∫ ∞

1
β

1

β
1
n
+2

dβ = n

{
1− m(αn − 2)

mn(α− 2)

}
,

J3n =

{
ln

m(αn − 2)

mn(α− 2)

}∫ ∞

1

1

β
1
n
+1

dβ = n

{
ln

m(αn − 2)

mn(α− 2)

}
.

So, using L’Hopital’s rule we have

lim
n→∞

J1n = lim
n→∞

1− m(α− 1
n
−2)

(m+ 1
n
)(α−2)

1
n

=
m+ α− 2

m(α− 2)

lim
n→∞

J3n = lim
n→∞

ln{m(α− 1
n − 2)} − ln{(m+ 1

n)(α− 2)}
1
n

= −m+ α− 2

m(α− 2)
.

Hence lim
m→∞

(J1m + J3m) = 0. Using the transformation t = u
1−u in integral

of Gb,c(x) in (8), for c > 3 we have

Gb,c(x) =

∫ x

0

tb

(1 + t)b+c−1
dt

=

∫ x
1+x

0
ub(1− u)c−3du > (

1

1 + x
)c−3

∫ x
1+x

0
ubdu

=
xb+1

(b+ 1)(1 + x)b+c−2
,

therefore
gb,c−1(x)

Gb,c(x)
<

b+ 1

x
. (16)

Now for α > 4, i.e., αn − 3 > 1− 1
n > 0, from (16) and ln(x+ 1) 6 x, x > 0,

we have∣∣∣∣∣
{

x

mβ
· gm,α−1(x)

Gm,α(x)
− x

mnβ
· gmn,αn−1(x)

Gmn,αn(x)

}
1

β
1
n
+1

∣∣∣∣∣ 6
(
m+ 1

m
+

mn + 1

mn

)
1

β
1
n
+2

6 2(m+ 1)

m
· 1

β2
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and ∣∣∣∣∣
[
ln

{
1 +

gmn,αn−1(x)

(αn − 2)Gmn,αn(x)

}
− ln

{
1 +

gm,α−1(x)

(α− 2)Gm,α(x)

}]
1

β
1
n
+1

∣∣∣∣∣
6
{

gmn,αn−1(x)

(αn − 2)Gmn,αn(x)
+

gm,α−1(x)

(α− 2)Gm,α(x)

}
1

β
1
n
+1

6
(
mn + 1

αn − 2
+

m+ 1

α− 2

)
1

βx
6
(
m+ 2

α− 3
+

m+ 1

α− 2

)
1

βx
.

Since E( 1
X ) = α−1

β(m−1) , m > 1 and for α > 4∫ ∞

1

∫ ∞

0

2(m+ 1)

m
· 1

β2
f(x|β)dxdβ =

2(m+ 1)

m
< ∞

and∫ ∞

1

∫ ∞

0

(
m+ 2

α− 3
+

m+ 1

α− 2

)
1

βx
f(x|β)dxdβ

=
α− 1

m− 1

(
m+ 2

α− 3
+

m+ 1

α− 2

)
< ∞,

so from Lebesgue dominated convergence theorem, lim
n→∞

J2n = lim
n→∞

J4n = 0,
and hence from (15)

lim
n→∞

n{r(πn, δπ)− r(πn, δ
πn)} = 0. (17)

From (14) and (17), we conclude (13), which completes the proof.

Remark 1. From Theorem 2.4 of Kubokawa (2004) and Corollary 4 of
Marchand and Strawderman (2005), we can conclude that the GBE δπ(x)
in (12) is a minimax estimator of β when β > a, and hence δπ(x) is an
admissible minimax estimator of β under entropy loss (3).

3 Admissibility and Minimaxity of Truncated lin-
ear Estimators

In this section we discuss the admissibility and minimaxity of truncated
linear estimators in the class C given by (2). If X be a random variable
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with pdf (1), then the MRE estimator of β under entropy loss (3) is δ0(X) =
α−2
m X when α > 2 and β is unrestricted i.e., β > 0. From Theorem 2.3 of

kubokawa (2004) and Corollary 11 of Marchand and Strawderman (2005) we
can conclude that the estimator δ0(X) in restricted parameter space β > a is
minimax and any minimax estimator of β has minimax risk equal to constant
risk δ0. Since

Minimax Value = Eβ

{
(α− 2)X

mβ
− ln

(α− 2)X

mβ
− 1

}
= 1− η(α,m)− ln

α− 2

m
− 1

= ln
m

α− 2
− η(α,m), (18)

where η(α,m) = Eβ=1[lnX] 6 lnEβ=1(X) = ln m
α−2 , so, it is easy to verify

that a (necessary) and sufficient condition for an estimator δM to be minimax
estimator of β > a under the entropy loss function (3) is given by

R(β, δM ) 6 sup
β>a

R(β, δM ) 6 ln
m

α− 2
− η(α,m). (19)

From (18), or equivalently from Theorem 2.4 of Kubokawa (2004) and Re-
mark 5 of Marchand and Strawderman (2005), the truncated version of
δ0(X), i.e., δα−2

m
(X) = max(a, α−2

m X), is minimax estimator of β(> a) under
the entropy loss function (3). The estimator δα−2

m
(X) belongs to the class

C of truncated linear estimators of β(> a) which is given by (2). This class
was studied by van Eeden and Zidek (1994 a, b) and van Eeden (1995) for
the estimation of lower bounded scale parameter of rescaled F and gamma
distributions, respectively, under SISEL function. We want to characterize
the admissible and minimax estimators of β(> a) in the class C under en-
tropy loss function (3). In the following theorem we show that exactly one
estimator in the class C is minimax estimator.

Theorem 2. Let X be a random variable with pdf (1) where β > a and
α > 2. Then under the loss (3), the estimator δα−2

m
(X) = max(a, α−2

m X) in
the class C is minimax estimator of β(> a), and no other estimator in C is
minimax.
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Proof. From (18), it suffices to show that

sup
β>a

R(β, δα−2
m

) = ln
m

α− 2
− η(α,m)

sup
β>a

R(β, δρ) > ln
m

α− 2
− η(α,m) for ρ ̸= α− 2

m
. (20)

The risk function of δρ under the loss (3) is

R(β, δρ) = Eβ

(
ρX

β
− ln

ρX

β
− 1

)
+

∫ a
ρβ

0

[(
a

β
− ln

a

β

)
− {ρs− ln(ρs)}

]
f(s|1)ds

=
ρm

α− 2
− ln ρ− η(α,m)− 1 +

(
a

β
− ln

a

β

)∫ a
ρβ

0
f(s|1)ds

−
∫ a

ρβ

0
{ρs− ln(ρs)}f(s|1)ds. (21)

So, for all ρ > 0 we have

∂

∂β
R(β, δρ) =

β − a

β2

∫ a
ρβ

0
f(s|1)ds > 0.

Hence R(β, δρ) is a strictly increasing function of β. Therefore using L’Hospi-
tal’s rule, we have

sup
β>a

R(β, δρ) = lim
β→∞

R(β, δρ)

=
ρm

α− 2
− ln ρ− η(α,m)− 1− lim

β→∞

{
ln

(
a

β

)∫ a
ρβ

0
f(s|1)ds

}
=

ρm

α− 2
− ln ρ− η(α,m)− 1

= hα,m(ρ), (say).

Note that hα,m(ρ) is a strictly convex function of ρ and takes its minimum
at ρ = α−2

m . Therefore (19) holds true, which completes the proof.

Now consider the following subclass of C

C ′ =

{
δρ ∈ c|0 < ρ 6 α− 2

m

}
. (22)
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We want to show that C ′ consist of all those estimators in C which are
admissible in C. To do this, we use the technique of van Eeden and Zideck
(1994 b), which they used for SISEL function. For the proof of this result,
the following lemmas are needed.

For convenience, let p = m and q = α − 1 in the expression (1), and
let g(x, p, q) = xp

(1+x)p+q for x > 0, then from (1) we have f(x|1) = c(p, q +

1)g(x, p− 1, q + 1), x > 0.

Lemma 1. For p > 0 and q > 0,

∂

∂ρ
R(β, δρ) S 0 ⇐⇒ ρ

∫ ∞

a
ρβ

g(y, p, q)dy S
∫ ∞

a
ρβ

g(y, p− 1, q + 1)dy.

Proof. Note that

R(β, δρ) =

∫ a
ρ

0

(
a

β
− ln

a

β
− 1

)
f(x|β)dx+

∫ ∞

a
ρ

(
ρx

β
− ln

ρx

β
− 1

)
f(x|β)dx

=

(
a

β
− ln

a

β
− 1

)
+

∫ ∞

a
ρβ

{
(ρy − ln ρy)−

(
a

β
− ln

a

β

)}
f(y|1)dy.

(23)

So,
∂

∂ρ
R(β, δρ) =

a

ρ2β

∫ ∞

a
ρβ

(
y − 1

ρ

)
f(y|1)dy

and hence
∂

∂ρ
R(β, δρ) S 0 ⇐⇒

∫ ∞

a
ρβ

yf(y|1)dy S 1

ρ

∫ ∞

a
ρβ

f(y|1)dy

⇐⇒ ρ

∫ ∞

a
ρβ

g(y, p, q)dy S
∫ ∞

a
ρβ

g(y, p− 1, q + 1)dy

which completes the proof.

Lemma 2. For p > 0 and q > 1, let

H(k) =

∫∞
k g(y, p− 1, q + 1)dy∫∞

k g(y, p, q)dy
, k > 0,

then H(k) satisfy
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(i) H(0) = q−1
p

(ii) lim
k→∞

H(k) = 0 and lim
k→∞

kH(k) = q−1
q

(iii) H(k) is strictly decreasing and kH(k) is strictly increasing in k.

The proof of Lemma 2 is similar to proof of Lemmas 4.2 and 4.3 of van
Eeden and Zideck (1994 b), in which p and q are replaced by p−1 and q+1,
respectively, and hence is omitted.

The properties of the risk function of the estimators in the class C as a
function of ρ and β are given in the following theorem.

Theorem 3. For α > 2 and β > a > 0, there exists a ρ(β) for every
β > a(α−1)

α−2 such that

(i) ∂
∂ρR(β, δρ) S 0 ⇐⇒ ρ S ρ(β),

(ii) 0 < ρ(β) < α−2
m ,

(iii) ρ(β) is strictly increasing in β,

(iv) ρ(β) → 0 as β → a(α−1)
α−2 and ρ(β) → α−2

m as β → ∞,

(v) R(β, δρ) is strictly increasing in ρ for a 6 β 6 a(α−1)
α−2 ,

(vi) There exists β(ρ) > a(α−1)
α−2 such that R

(
β(ρ), δα−2

m

)
< R (β(ρ), δρ) for

every ρ ∈ (0, α−2
m ).

Proof. Using Lemmas 1 and 2, the proof of (i)-(v) is similar to the proof of
Theorem 2.2 (i)-(iv) of van Eeden and Zideck (1994 b). For a proof of (vi),
note that from (22) we have

R(β, δα−2
m

)−R(β, δρ) =

∫ ∞

am
(α−2)β

{(
α− 2

m
y − ln

α− 2

m
y

)

−
(
a

β
− ln

a

β

)}
f(y|1)dy

−
∫ ∞

a
ρβ

{
(ρy − ln ρy)−

(
a

β
− ln

a

β

)}
f(y|1)dy.

(24)
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Now it is sufficient to prove that the limit of right hand side of (23) when
β → ∞ is negative. But this limit is∫ ∞

0

{(
α− 2

m
y − ln

α− 2

m
y

)
− (ρy − ln ρy)

}
f(y|1)dy = 1− ρm

α− 2

+ ln
ρm

α− 2
< 0,

since lnx < x− 1, x > 0, which completes the proof.

In the following theorem we characterize the admissible estimators in
class C.

Theorem 4. If β > a > 0 and α > 2, then

(i) δρ dominates δρ′ for α−2
m 6 ρ < ρ′,

(ii) Each estimator in the class C ′ given by (22) is admissible in the class
C given by (2).

The proof of Theorem 4 is similar to the proof of Theorem 2.3 of van
Eeden and Zideck (1994 b) by replacing α, n and β̂ with α+1, m− 1 and δ,
respectively, and hence is omitted.

Remark 2. From Theorems 2 and 4 we conclude that the truncated linear
estimators δρ = max(a, ρX) of β(> a) in the class C are admissible if and
only if 0 < ρ 6 α−2

m and the only admissible and minimax estimator in this
class is δα−2

m
(X), which is the truncated version of MRE estimator δ0(X) =

α−2
m X.

Remark 3. Let T and W be two independent random variables with
Gamma(m,λ1) and Gamma(α − 1, λ2) distributions , respectively. Then
X = T

W has rescaled F-distribution with pdf (1) where β = λ1
λ2

. The distri-
bution of the ratio of random variables are of interest in different problems
such as biological and physical sciences, econometrics, classification, and
ranking and selection. Examples of the use of the ratio of random variables
include Mendelian inheritance ratios in genetics, mass to energy ratios in
nuclear physics, target to control precipitation in meteorology, and inven-
tory ratios in economics (Masoom Ali et al., 2007). The distribution of ratio
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of independent gamma random variables have some applications in statis-
tical inference. An application of this distribution is given in the following
example. For more details see Provost (1989) and Bowman et al. (1998).

Example 1. Let Xi1, . . . , Xini , i = 1, 2 be two independent random sam-
ples from N(µi, σ

2
i )-distribution, i = 1, 2. Then X =

S2
1

S2
2

has a rescaled

F-distribution with pdf (1) where β =
σ2
1

σ2
2
, m = n1−1

2 and α−1 = n2−1
2 . Now

if we have a prior information σ2
2 6 σ2

1, then β > 1. So, to estimate the ratio
of two normal variances β =

σ2
1

σ2
2

with the restriction σ2
2 6 σ2

1, we can use
the results of Sections 2 and 3 to find admissible and minimax estimators of
β(> 1).

4 Conclusion
In previous sections in estimation of scale parameter of rescaled F-distribution
with pdf (1), we derive admissible and minimax estimators of scale parame-
ter β under entropy loss function (3), when β has a lower bounded constraint
of the form β > a. An admissible minimax estimator of β(> a), which is
the pointwise limit of a sequence of Bayes estimators, is given. In the class
of truncated linear estimators (2) of β(> a), we derive the only minimax
estimator and characterize the admissible estimators in this class.

It is worth to consider estimation of lower bounded scale parameter of
rescaled F-distribution under other scale invariant loss functions, and we are
working on it for driving further nice results.
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