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Taylor Expansion for the Entropy Rate of
Hidden Markov Chains
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Abstract. We study the entropy rate of ‘a hidden Markov process, defined
by observing the output of a symmetric channel whose input is a first order
Markov process. Although this definition is very simple, obtaining the exact
amount of entropy rate in calculation is an open problem. We introduce
some probability matrices based on Markov chain’s and channel’s parameters.
Then, we try to obtain an estimate for the entropy rate of hidden Markov
chain by matrix algebra and its spectral representation. To do so, we use the
Taylor expansion, and calculate some estimates for the first and the second
terms, for the entropy rate of the hidden Markov process and its binary
version, respectively. For small £ (channel’s parameter), the entropy rate
has o(c?), as a_maximum error, when it is calculated by the first term of
Taylor expansion and it has o(e%), as a maximum error, when it is calculated
by the second term.
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spectral representation.

MSC'2010: 60J05, 54CT70.

1 Introduction

Let X = {X}}r>1 be a first-order stationary Markov process on {0,1,...,m—
1}, with transition matrix P = {p} such that for every k > 1, py =
Px(Xy = b|Xk—1 = a) where a,b € {0,1,...,m — 1}. Consider also a noise
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process E = {Ey}i>1, independent of X, such that P(E; = [) = ¢; where
1€{0,1,...,m—1} and 37" &, = 1. Now, define the process Z = {Zj }r>1,
with

Zy, = X @ Ep, k>1, (1)

where @ denotes addition modulo m.
Consider a stochastic process {Y}r>1 with state space S. The Shannon
entropy rate of the stochastic process {Y%}x>1 is (Cover, 2006)

HY) = lim HOM Y, Y0), @

n—o0 n

where Y is a random variable demonstrating the state at time ¢, and H (Y7, Ya,
.., Y,) is the joint entropy of (Y1,Ys,...,Y,) with the joint distribution
P(yh Y2, .- 7yn) where

H(}/l,Y27...,Yn) - - Z Z Z P(yl;yQa"'7yn)10gP(y1)y27'")yn)
Yy1ES y2€S yn€S

=—Ey, v, . v, logPX1,Ys,....Y,). (3)

Shannon (1948) proved the convergenge.in probability % log P(y1,Y2,- -+, Yn)
to H()).

In the rest of the paper we deal with the entropy rate for hidden Markov
process {Z};>1 of (1) as a funetion of

T = [61,82, NN ,Em_l].

The process{Zy } ,>118 a stochastic process, also it is an example of a hidden
Markov process. Indeed, a hidden Markov process can be seen as a process
resulting fromobserving any discrete-time, finite state homogeneous Markov
chain through a discrete-time memoryless and noisy channel (Drake, 1965).
Some applications include automatic character recognition (Raviv, 1967),
speech recognition (Jelinek, 1975), communications and information theory
(Bahi, 1974), DNA sequencing (Churchill, 1989), and others.

Despite the simplicity of the definition of hidden Markov processes is
misleading, and the extensive researches have been done on their properties
and applications, some questions on fundamental properties of the processes
remain open, even for the simple case (1). Some of these questions concern
the performance of filtering , denoising (Ordentlich, 2006), and compression
on hidden Markov sources. In all these cases, algorithms exist that achieve
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optimal performance (e.g., minimal residual noise or code length), even uni-
versally (without knowledge of the process parameters). However, in general,
the optimal value of the performance of interest for each of the problems has
not been explicitly characterized. In the case of compression, the problem of
interest is the determination of the entropy rate H(Z) of the process Z as
an explicit expression in the parameters of the process.

Computing the Shannon entropy (here it is called entropy) of a hidden
Markov process was studied by Blackwell (1957), which is based on the intrin-
sic complexity of expressing the hidden Markov process entropy as a function
of the process parameters.

Since computing the exact amount of entropy rate of any process is still
impossible, some researchers have tried to find some proper bounds or ac-
ceptable estimation for this. Ordentlith (2004) obtained upper and lower
bounds for binary markov chain and symmetric binary channel, based on
their parameters. Also Ordentlich (2006) presented a different method for
analyzing the entropy rate of the hidden Markov process. In this method,
they used log likelihood ratio function. Jacquent (2004) defined stochastic
matrices with Markov chain’s probability transitions. Then, he estimated
the entropy rate of binary hiddem Markov chain via symmetric channel by
using matrix algebra.and. Taylor expansion. Zuk (2005) showed formulas
for higher-order coefficients of the Taylor expansion in the symmetric case
for binary Hidden Markov Chain. Han (2006) generalized Zuk’s results to a
natural class of hidden Markov chains called “Black Holes”. Jacquent (2008)
explained that the maximum error for estimating the entropy rate by the
first term of Taylor expansion is the square of channel’s parameter. Luo
(2009) acquired a-fixed point functional equation via log likelihood function
forcobtaining the entropy rate. But there was a problem. There was no
explicit answer to this equation. So he had to use numerical method to solve
this problem.

Following the Zuk’s and Jacquent’s works, mentioned above, we are going
to obtain the first order term of Taylor expansion for the entropy rate of a
hidden Markov chain with arbitrary finite state space, and the second order
term for the entropy rate of a binary hidden Markov chain. Our study will
focus on the estimation of the entropy rate of the hidden Markov chain,
where the channel parameters (noises) ;s are small. The paper is organized
as follows: In Section 2 we explain some required preliminaries. We show
Py(z}) is the product of some probability matrices. In Sections 3 and 4, we
outline the analysis of our main results. In theorems 1 and 2, we present as
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explicit first and second order terms of Taylor expansion of H(Z) near Y = 0,
as a function of the parameters pg,, respectively. We show that the linear
terms of the expansion can be expressed as a Kullback-Liebler divergence.

2 Preliminaries

For any sequence {Y}}r>1 we denote a finite sub-sequence Y;,¥y1,...,Y,
j =i of {Yi}r=1 by Yij . Using our assumptions on the processes X and F,
one can obtain easily
m—1
P(Z} En) =Y P(E,)Px(Z, @ Ep|Zy {©k)P(ZI7NE, 1 =k). (4)
k=0
Let

P, =[P(Z1",E,=0),P(Z',E, =1)y.. s P(Z{,E, =m—1)], (5)

and get M(Z,_1,Z,) as a probability matrix with dimension m x m and
entries ;1 Px(Z, & (j — 1)|Z,,—1 @ (¢ —1)) in ith row and jth column. So
it is easy to show

Py =P, 4M(Zn1,Zn), n>1, (6)
and
P7(Z1) = P1M(Z1, Z5) -+ - M(Zp—1, Zn)1Y, (7)
where 1 = [1,1, ... 1]ixm and superscript ¢ denotes transposition.

We.construct these matrices for a given realization z{ of Z{'. Using the
notation M= M(z;, z;1+1) we get

PX(2¢+1|zi) 0o --- 0
M, — 'PX(Zi+1|Zi ®1) 0 e 0
Px(zi+1’Zi@m—1> 0O --- 0
—PX(zi+1|zi) Px(z7;+1 D 1|Zz) o --- 0
—Px(zit1|zi ® 1) Px(zip1© 1|z, 0 1) 0o --- 0
+er| . . . :
—PX(zi+1|ziEBm—1) PX(zi+1®1|zi€Bm—1) 0O --- 0
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*Px(zi+1|2‘i) 0 PX(ZiJrl @2|Zl) 0o --- 0
—PX(zi+1|zi€B1) 0 Px(zi+1@2‘zi@1) 0o --- 0
+e2 | . . . .
—Px(zit1|lziom—1) 0 Px(z41®2lz;d&m—-1) 0 --- 0
4.
—Px(zi+1’2i) 0 0 Px(zi_H o m — 1|zi)
—Px(zi+1]zi @ 1) 0 0 Px(zit1Pm—1|z;®1)
Tem-1| . : :
—Px(zi+1’2i@m—l) 0O --- <0 PX(ZZ'-H @m—l]zieam—l)
=M e MY 4, M i< -1 (8)

Similarly, one can show

Py = [Px(21),0, -+ ,0] % e1[#Px(21), Px(z1 ®1),0,...,0]
+€2[—PX(21),O, Px(zl D 2),0, - ,0] + -+
+€m—l[_PX(zl)707" . 707PX(21 ©&m — 1)]

= PgO) + Elpgl) +ot 5mfngm71)a (9)
and

Pz(z?) = P1M1M2 cee Mn_l].t

m—1 n—1 m—1
- <Pg0> +Y giP§Z)> I1 (M,(f) +Y siM,(j)> 1. (10)
i=1 k=1 i=1

3 The First Order Term in the Entropy Rate of a
Hidden Markov Chain

The following formula will be useful in computing the Shannon entropy of Z

Ra(s,X) =Y P5(21), (11)
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where the exponent s of Py is a complex variable, and the summation is over
all n_tuples of {0,1,...,m — 1}. Note that by the definition (1), for ¥ =0,
we can write

Ra(s,0) = Y P (1) (12)

Now by differentiating from both sides of (11) and (12) with respect to
s, we have

0

55 bn(s,X) = ZnPE(Z?)log Py (1) (13)
21
and 5
5 (. 0) = 3~ PR(:P) log P+, (14)
21

The rewrite (13) and (14), by the definition of the entropy of a subsequence
from a stochastic process, follows

0

Hu(Z7) Z & ggfn(s, T)ls=1, (15)
and 5
Hn(X{L) = _aRn(‘SvO”S:h (16)

where H,(Y]"), for.any random variable {Y;};>1, is Shannon entropy of sub-
sequence {Y1,Ya..., Y, }.

3.1 Taylor Expansion

Using Taylor expansion near Y = 0, we have

m—1

0
Ru(s,X) = R(s,0,...,0) + Y 5,687%371(3, Y)y—o +o0(2,,), (17)
k=1
where e,,4, = max{ey,e9,...,&n,_1}. Differentiate from both sides of above

formula with respect to s at s = 1 implies

m—1
82
Hn(Z]) = Ha(X]) = 37 engyoRu(s, Vlrao,emt +0(has). (19)
k=1
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. 2
For our aims, we must compute %MRH(S, Y)|r=0,s=1. So we compute firstly

a S— n 8 n
a?kRn(s, Y)|y—o = Z;SPZ 4 )Tekpz(z1 ) r=o- (19)
“1
To compute %Rn(s, T) at ¥ = 0 we may calculate
9 9 TT Af©
n o 0
@PZ(% )x=0 =P 31;[1 M;
n—21—1 . n—1
0 0 0
+ PO ST MOME T MY
i=1 j=1 j=i41
0) T £ (0) W
+ P T MM, (20)
j=1

Using (8) and (9), the derivative’of Pz(z]') at T = 0 can be calculated as

)
T%PZ(Z?)\T:O = —nPx (21) + Px (21 ® k 23)
n—2 ‘
FD WPk (2 2 @k 2) + Px(f @ k). (21)
=1

3.2 Computation of the Entropy Rate

Now:we can compute H(Z) (the entropy rate of the hidden Markov chain
{Z:}i>1), e,
1
H(Z)= lim —H,(Z7). (22)

n—o00 M

Theorem 1. Suppose pg, > 0 for any a,b € {0,1,...,m — 1}. The first
order term in the entropy rate of the hidden Markov chain Z is

m—1

H(Z)=H(X)+ > exD(Px(212223)||Px (21 220m—k 23)) +0(c00), (23)
k=1

where D(Px (z12223)||Px (21 22 @ m — k 23)) is the relative entropy between
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Px (z12223) and Px(z1 zo @ m — k z3), such that:

D(Px(z12223)||Px (21 22 ®m — k 23)) = Z Px(z12223)
212923
Px (212223)
Px(z1 zo®m —k z3)

- (24)

x log

Proof. First we define some new matrices P(s), Qix(s), Qar(s), II(s) and
11 (s) with entries

{P(s)}ij =15, {Que(9)}ij = Pisl jam—rr  {Q2k(5)¥is = DisBiami i ;-

(25)
where p;j = Px(Xq = j|Xgq-1 =1) forany d > 1 and 0 <4, <m — 1, also
{I(s)}i =pf,  {Tk(s)}i= ) ' pigk, (26)
where p; = Px (i) for any 0 <i<m — 1.
We imply Pz(Z7]) = Px(Z7") while ¥ = 0. Using (19) and (20)
T S D sl BR () S P 0 <)
n—2 .
+ Z P21 Px (Z i1 ® k 2]'49)
i=1
+ Py (1) Px (2 20 @ K)) (27)
From (25) and (26);we obtain
BikRn(S’ Y)|x=o = s[—nIl(s)P" (s) + I (s)Qor(s)P"2(s)
n—2
+ > T(s)P (5)Qui(5) Qar(5) P (s)
i=1
+11(s)P"(5)Qui(s)]17, (28)
0
@Rn(& Y)|r—0 = s[(Ix(s)Qax(s) — II(s)P(s))P"*(s)
n—2
+10(s) > P H(5)(Qui()Qar(s) — P2(s))P™ 2 (s)
i=1

+11(s)P"(5)(Qui(s) — P(s))]1". (29)
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Now by using the spectral representation of the matrix P(s), we can
differentiate from both sides of (29) respect to s at s =1

lim — - == Ru(s,2)|mo,01 = H(l)%(Qk(s) — P%(s))[s_11 + o(1). (30)

More details are mentioned in Appendix A.
The derivation of the (i, j)th entry of Qx(s) — P?(s) respect to s.at s = 1
is

0 0 _ -
%{Qk(s) ( }ZJ|S 1= s Z pzrpi jlg;m,kprjpf«@}n;k j _pfrpijﬂs:l
r=0
m- logm; )
=S o s
—0 ngirprj
Therefore
1 m—1m=1
9 t e e lOg Pi rom—kProm—k j
H(l)ai(Qk(s) - |s 117 = Z Z Zplp’LTij 1 ] ] )
S §=0 =0 r=0 Og PirPrj
(32)
and according to (51) we have
1 9?2 log P(21 22 ®m — k 23)
lim — - ———R,(s, ¥)|v—0s=1 = P
oo 1 0e,08 n(8 V)lr=0.5=1 Z (212223) log P(212223)
212223
= —D(P(2’12:223)HP(Z1 2o @®m—k 2’3)).
(33)
Using (15), (16), (17), (22) and (33), the proof is completed. O

4 The Second Order Term in the Entropy Rate of
a Binary Hidden Markov Chain

In this section we consider a binary hidden Markov chain, i.e., m = 2 in
Theorem 1. Using Theorem 1, the first order term in the entropy rate of the
binary hidden Markov chain {Z;};>; is

H(Z) = H(X) + SD(Px(zle,23)||Px(21§223)) -+ 0(52), (34)
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where ¢ = P(E; = 1) and Z = z & 1 (the boolean complement of a binary
variable z). To compute the second order term in the entropy rate of the
binary hidden Markov chain {Z;};>1 we use Taylor expansion near ¢ = 0,
therefore

o 62 2
R, (s,e) = R,(s,0) + EaRn(Sﬁsto + 5@311(375”;0
g3 93 ,
+ O(H@Rn(sﬂf ) (35)
and
n n 0? ez 103
H(Z') = H(XY{) — 5@Rn(5a5)|5=0 T mRn(S,ﬁﬂe:o
Fo T Rs e (36)
6 0s0e3™ "
The equality (11) follows
Ip (5,€)|em0 = ZSPH(Z”)QPZ(ZW _ (37)
Oe n\2; e=0 . 7 1 Oe 1/1e=0;
41

and

02 . d 2
s (o)l Fals ~ P (- Pa(e)lco )

n
&b

S— n 62 n
+> 5Py () 55 P2 (e le=o. (38)

2
Similar to:(21), one can show

a n

g P2 Dm0 = ~nPxCE) + 3 PGl ) (39)
and
0? " n(n—1 n = n
S Peleco =2 " Peat) - (- D S Pr( @ e
i=1
> Px(Zi‘@ez’@ea‘)} (40)
i=1 j=i+1
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where e; denotes ith column of an identity matrix of order n. To compute
92
%Rn(s,s)][;:o and %Rn(s,s)\szo at s = 1 we define

Mi(s) = [ ppy" wopi' ], Ih(s)=[ popi ' pp '],
I(s) [p1p8 2 opdpi? ], Ta(s) = [ pip % ping? ],
—1 —1

-1 -1
_ poop01 pOlpoo . p00p1o p01p11
Qi(s) = - ] Qa(s) = 2 ]
( ) p10pf1 ! pnplol ' ( ) L plopéol p11p01 D

2 2 52 T2 s—2. 9 =2
Q?(s) = poop812 PyiP0 ] QP (s) = | PooPia, \PUPIT, }
S— ) S— S— ?
L Plopu P Py | PioPoo - PinFo
r - - r —2 -2
Qs(s) = Poop‘ﬂi Pmp‘foi ] Qu(s) = P00p11p812 Po1P10P{0 ) }
| propy - PuiPyy | | popowis.  PuPgPry
(41)

In the rest of this paper we need to use 52 Rn(s £)|e=0 and 2 52 Rn(s7 €)|e=o0,
which will compute in Appendix B1. With spectral representation of the
matrix P(s), we have

i o R 8)|: et = TI() 5 (Q(s) — PH(5)) i1 o(1), (42)

li ! o R, (sg€)] 2I1(1
im — ——— $¢€Ne=0,6=1 = —
n—oon 02208 0,s=1 =

( () = P*(5))]s=1

(Q1(5)Qs(5)Qa(s) — P*(5))s=11'
(2
1

+I(1)(QP(1)QYY (1) + 2Qu(1))1 + o(1).
(43)

) 5s
+1I(1 )5

For more details, see Appendix B2.
It is easy to show that %(Q(s) — P2(5))]s=1 is equal to

2 Po1p10 2 Po1piL PoopoL
olog + po1p1o log - Poopot log EXELL + po1 iy log BT

P1oPoo

propoo og B + pyypiglog B propy log 2L+, log 2por
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It follows
0 Px(212’22’3)
II(1)— s) — 1! Px(z12223) 1o
( )aS(Q( ) |5 1 Z X 1~2 3 gPX(ZlZQZ3)
212223
= D(Px(zleZ;g)HP)((ZjZQZg)). (45)
If 9
= 55 (Q1(5)Qs(5)Qa(s) — P?(s))s=1, (46)
with entries
3
p01P11P10 PooPo1P10 b
Moo = pag log ———5—— + 2poopo1p1o log ———— -~ paiPo1pio log ——2—,
poo PooP1oPo1 Pp11pPo1P10
2
P bo1 PooPo1P10 Pp1P10
M1 = pgopo1 log —5— + pfip10log —5——— +Fpoopo1p11 log ———
oop Po1P10 PooPo1P11
p P01
+ pOlPu log 00
p01p11
2
PioPo1 PbooP11P10
Mo = p1opgo log L + poopropir log =—2—— + po1pi, log ————
opoo PooP1oP11 Po1Pig
P p1o
+ p1opi; log =2
p10p11
3
p P1oPo1P11 Po1P10Poo
M1 = p1opooporlog ——— + 2p11p1opor log ———— + p3; lo 0g—=3 —,
P1oPooPo1 Pp11P1oPo1 p11

then

H(l)%(Ql(S)Qs(S)QQ(S)—P3(S))!s11t= Y. Px(z122237)

21222324

Px (z1222324)
X log —————————=
Px(2z1227324)

= D(Px(2z1222324)|| Px (21222324)).
(47)

At the end, using (36), (42), (43), (45) and (47), we have the following
theorem.

© 2010, SRTC Iran


www.SID.ir

Gh. Yari and Z. Nikooravesh 115

Theorem 2. Suppose pqp > 0 for any a,b € {0,1}. The second order term
in the entropy rate of the process Z is,

H(Z) = H(X) + (e — €))D(Px(z12223)|| Px (21%223))

62

2
2

+ SIMQPMQY7 (1) +2Qu))1 Fe(). | (48)

+ —D(Px (z1222324)||Px (21Z2Z324))

Conclusions

We studied the entropy rate of the hidden Markov chain defined as the output
of a symmetric channel whose input is a Markov chain:” We used the Taylor
expansion to compute the first order termn the entropy rate of the hidden
Markov chain and the second order term in the entropy rate of a binary
hidden Markov chain. We will try to obtain the higher order term in the
entropy rate of the general hidden-Markov processes.
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Appendix

Appendix A

We use the spectral representation (Karlin, 1975) of the matrix P(s). Since
pab > 0, for any a,b € {0,1,...,m — 1}, the Perron-Frobenius theorem (Bre-
maud, 1998) applies. So there exists a real eigenvalue \(s) with algebraic
geometric multiplicity one such that Ai(s) > 0, and Ai(s) > |A;(s)| for any
other eigenvalue \;(s). Moreover the left eigenvector /i(s) and the right
eigenvector r1(s) associated with A\;(s) can be chosen positive and such that
li(s)rt(s) = 1.

Let A2(s),A3(s),..., Am(s) be the eigenvalues of the P(s) other than A\;
ordered in such a way that A;(s) > [A2(s)| > [Az(s)] > -+ > [An(s)| and we
know that the vectors 1 and [ are real-valued with nonnegative components.
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The matrix spectral representation yields
P¥(s) = A (s)(r{ ()l (s)) + o(|A2["). (49)

Since P(1) is a positive stochastic matrix, we have \j(1) = 1, so|A2| < 1.

Note that (rf{(s)l1(s)) is an outer product resulting in a m x m matrix.
Define Qp(s) = Qqx(5)Qax(s). It follows immediately that Q(1). = P?(1)
and Qir(1) = Qox(1) = P(1). Therefore, by differentiating %Rn(s,a)\-r:o
respect to s at s = 1, the only terms do not vanish in the derivative are those
involving the derivative of Qx(s) —P?(s), Qux(s) —P(8), Qar(s) =P(s). Now,
differentiating from both sides of (29) respect to/s at s.= 1, and simplifying
power sums, one can obtain:

2
LT R ) v = 1) (D (1)) &

% (Quls) — P?(5))ls=1(r1(1)12(1))1" + o(1).

lim — -
n—oon OJcp0s

For the transition probability matrix’P = P(1) we have [;(1) = II(1) and
ri(1)=[1,1,...,1].
Thus TI(1)7¢ (1) = 1;(1)1%.= 1 and (50) are simplified to

P ot = 1) (Qus)—PH(s)) o1 o(1). (1)

Appendix B

Due to the definition of Qi(s) and Qa(s) in (41) we have

O R(5.)]e-0 = s(TI(5)Qa(s) — T1(s)P(s))P" 1"

Oe
n—2
+s11(s) > P (5)(Qu(5)Qa(s) — P2(s)) P2 (s)1
=1
+sT1(s)P"2(5)(Qu(s) — P(s))1", (52)

and

J. Statist. Res. Iran 7 (2010): 103-120


www.SID.ir

118 Taylor Expansion for the Entropy Rate of Hidden Markov Chains

82

5oz Bn(5:)|e0 = 5(s = D[n*LL(5)P" ! (s) — 20T (5)Qa(5)P"*(s)

— 2nI1()P"2(5)Qu () + I(s)P"*(5)Q{” (5)
- 2nZ 1(5)P™%(5)Q1 () Qa(5)p" "~ (5)

+ T (5) Q57 P (s)
+SH(s)PZ’”(s)QSZ)(s)Qé”(s)pn-i-l(s)

+ 2111 (5) Qu(s5) Qa(s)P™3(s)

+2ZH1 )P (5)Q1(s)Qa(s)p" ' (s)
n—3 n—1 .

+23° 3 AR E)Qi(5)Qas)p ()
1=2 j=142

x Q1(s)Qa(s)p" ' (s)
R 20 (s)P"5(5)Qu(5)Qu(s) + 20T (5)Qa(s)P"*(5)Qu (s)

o gms)w2<s>Q1<s>Q4<s>Q2<s>pn”<s>

2 Z; 1(5)P"2(5)Qu (5) Qu()p"™ () Qu ()1

2™ VP (9) - (n - DI (9)Qa(s)P"(s)
. ’f_:n<s>pi2<s>Q1<s>Qs<s>Q2<s>pM2(3)

- ; — DI(s)P"2(5)Q1(s)

. : T3 (5)Qa ()P (5)Qu (5)Qa ()P (5)
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(s)P™" % (5)Qu(5)Qs(s)
n—2
+ > T(s)P*(5)Qu(s)Qa(s)p" " 2(5)Qu(s)
=2
+ 111 (5)Qs(s)Qa(s)P" 3 (s)
-3 n—1
Z s)P'2(5)Qu(5)Qa ()P’ 7 (8)
=2 j=1+42
X Qu()Qa(s)p" 71 (s)
n—1

—(n=1)) T(s)P"*(s)Q1(s)Qa(s)P" " (s)

i=2
+ I (5)Qa(s)P™*(5)Qu (s)]1". (53)
Appendix B2

With spectral representation of the matrix P(s) as introduced in Appendix
A, and with (52) and«(53);:we have

2
aim LT ot = ) R () 2
X (Q(s) = P2(s)) s (4 (DI (1)1 + o(1),
(54)
and
3
T O R (5,6) et = 20 (U (1)
X (Q(s) — P2(s))|s= 1<t<1> 1(1)1
(L) (r (DL ) QP (HQY (1)
+2Q4<1>><ri< )i (1))1¢
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