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Bayesian Prediction Intervals under
Bivariate Truncated Generalized Cauchy
Distribution
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Abstract. Ateya and Madhagi (2011) introduced a multivariate form of
truncated generalized Cauchy distribution (TGCD), which introduced by
Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is de-
noted by (MVTGCD). Among the features of this form are that subvectors
and conditional subvectors of random vectors, distributed according to this
distribution, have the same form of distribution (MVTGCD). They also in-
troduced the joint density funetion, conditional density function, moment
generating function-and mixed moments. Also, they estimated all parame-
ters of the distribution using the maximum likelihood and Bayes methods. In
this paper, we used the point of view, introduced by Al-Hussaini and Ateya
(2010), to obtain the Highest Posterior Density (HPD) prediction intervals of
future observations from bivariate truncated generalized Cauchy distribution
(BVEGCD).

Keywords. Bayesian prediction intervals; highest posterior density (HPD)
prediction intervals; generalized Cauchy distribution; moment generating
function; mixed moments.
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1 Introduction

The Cauchy distribution is a well known symmetric distribution which is of-
ten used in outlier analysis. It is also well-known that the Cauchy distribution
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can arise as the ratio of two independent normal variates. The probability
density function (pdf) with location parameter p (representing the popula-
tion median) and scale parameter v (representing the semi-quartile range) is
given by

1
1 N2
fX(x)_{l—i—(x M)} , —oo<zT<o00, —00< pu< oo, y>0.

8
(1)

The bivariate Cauchy distribution has received applications in many ar-
eas, including biological analysis, clinical trials, stochastic modelling of de-
creasing failure rate life components, queueing theory, and reliability (see,
for example, Nayak (1987) and Lee and Gross (1991)).-For data from these
areas, there is no reason to believe that empirical moments of any order
should be infinite. Thus, the choice of the bivariate Cauchy distribution as
a model is unrealistic since its mixed moments of all orders are not finite.
The introduced bivariate truncated generalized Cauchy distribution can be
a more appropriate model for the kind of data mentioned.

The books by Johnson et al(1994).and Kotz et al. (2000) cover the
Cauchy distribution and many univariate and multivariate distributions in
many of their aspects starting from the history, properties, developments and
applications up to the most recent research done in the subject matter, to
the date of the books’ publication.

A random variable X is said to have a truncated generalized Cauchy
distribution (TGCD) according to Ateya and AL-Hussaini (2007), if its pdf,
takes the form

ol e
fX(x)_ﬁT(Jé;{l—i_( ~ ) } s JJZM,(H,’Y,O[>O)- (2)

Among the features of (TGCD) are that while the moment generating func-
tion (mgf) of the Cauchy pdf (1) (and the moments of any order) do not
exist, the (mgf) of the TGCD and moments of order b do exist if b < 2a.
Ateya and AL-Hussaini (2007), studied the properties of TGCD and used the
maximum likelihood and Bayes methods to estimate the parameters u,y and
a. We shall write X ~ TGCD(u,, @) to denote that the random variable
X has pdf (2).

The positive value p is very important in industry because it represents
the minimum time g before which no failure occurs (guarantee time). An-
other use for p is in epidemiological or biomedical applications where p may
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represent the latent period of some disease (the time elapsed between first
exposure to carcinogen and the appearance of the disease).

Ateya and Madhagi (2011) introduced a multivariate version of TGCD
and gave it the notation MVTGCD by compounding L(6; x) = Hle fxjo(w:]0)
and go () as follows

fx(@) = /O " L(0: @) go (6)d0,

where X = (X1, Xo, ..., X}) is a random vector such that X;|0 is distributed
as half normal with location parameter p; and seale parameter 1/ V6 with
the following pdf

2 1 0 .
Ixe(il0) = mQQ exp {2(901 - Hi)Q} Tz s 0=1,2,.00k, (3)

and © is a positive random variable follows the Gamma (c, 72—’2) distribution
with the following pdf (ge(0))

2

2«
_ T a—1 7 ,
g@(e) - 9a F(Oé) ¢ exp{ 9 9} ) 0> Oa (047’71 > O) (4)

Then the pdf fx(x) takes the form

N CLCES) A I
fX(m)_@ (Hlevi)?<a>{1+§< %’M)} |
x; = iy, (i, vi, a>0),i=1,2,... k.
(5)

and also the corresponding (mgf) and mixed moments are in the forms

M tt t ANTT (a+5) 3 3
XiH’XSZW"sz( 150254, k)_ ; F(Oz)/o A

k k biq k
exp [Z t; (,ui + ; tan 0; H sec 0j> } H(cos 95)2°‘+k*(5+1)d91d02 ...dO.
i=1 j=itl s=1
(6)
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Hy b, by, = <71T>2 al i i io <?1)( ) h (?:)

where B(a,b) is the standard beta function.

1.1 Univariate, Bivariate and Trivariate Cases

In this subsection we write the pdf, (mgf) and the mixed moments in case of
n = 1 (univariate case), n = 2 (bivariate case) and n=3 (trivariate case) as
follows

Univariate Case (n = 1)

For positive parameters i, y,« and non-negative int integer b we have
pdf

My (t) = <j;>é F(l?(;;);) /OW/Q exp {t(u + v tan e>b} (cos B)2>1ap,

Moments
1 b . .
1 2F(oz+1) b\ o (J+1 J
Ext1=(=) —22 I IB (L= a—-2 b < 2a.
= (2) St 5 (e (hess). ve

Bivariate Case (n = 2)
For positive parameters pq, p2, 71,72, @ and non-negative integers by, by we
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have
pdf

(4 T(a+1) v — )\ z— 2\’ -
fX17X2<fl’x2>—<w)mw{”< ) (5 )} |

Zj 2 i, (,U”Lu Yi, & > 0)) 1= 1727

mgf
o+ 1 F
MXfl,XSQ(tl’tz) = <> / / exp{;tz<
.y 2
+ v, tan 6; H sec 0j> }H (cos ) 2a42—(s+1) g9, dbs,
j=i+1 s=1
Moments

1\ T'a+1) b b b
E[xXhxb) = <;> (F Z Z < 1>< 2)7{17%2 I

J1=072=0

. 1 S .
HB<L2+ ,a+1—2131” —Z) b1 + by < 20,

s=1
Trivariate Case (n = 3)

For positive parameters p1, to, (43, 71, V2, v3, @ and non-negative integers by, bs,
bs we have

pdf

3
4\2 T(a+32) { <x1—u1>2 <:L‘2—,u2>2
r1,22,23) =|(—) ———<14+|(——) + | ———
T30 %0, (71, 72, T3) <7T> 717273 (@) M Y2

2y —a—3

xr3 — 2 .

+ <3’}/M3> } y Lg P His (/Lzy Vi, 00> 0)7 = 1>2737
3

mgf
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3

= () B0 [ a3

i=1

b;
+ ~; tan 6; H sec9> }H(cos@s)zo‘+3 (5+1)d01d92d93,

Jj=i+1 s=1

Moments

w

pixpapap] = (1) N2 >3y e C)

J1=0j2=053=0 J3

1 3
> 7{17%2,),%3 /ilil —Jj1 32 J2 b3 J3 HB<]S+ 2

C2idt s

9 2), by +by + b3 < 2.

where B(a,b) is the standard beta function.

1.2 Generation of a Multivariate Random Sample of Size n

From MVTGCD

In this subsection; we generate a multivariate random sample of size n from

MTGCD by the following steps:

1. Using the parameters a, u; and v;,2 = 1,2, ..., k and for fixed ¢ generate

0 from Gamma(a, %)

2. Generate z; = ““ 5 from N(0, 1).
NG

3.z = % + ;i from N(p;, %) )

4. If x;; > p,; then accept x;;, else go to step 2.

5. Repeat steps 2,3 and 4 n times to obtain the sample x;1, 2, ..., Tin.

6. Repeat steps 1,2,3 and 4 for i = 1,2,3,...,k to get the multivariate

sample ¢ = (1, %2,...,%j,...,Tn), Tj = (T1j,..., ki), 7 = 1,2,...,

n.
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1.3 The Relations Between the Proposed Univariate and
Bivariate Truncated Generalized Cauchy Distribution
and the Truncated Univariate and Bivariate Cauchy

Univariate Case

A random variable X is said to have Cauchy distribution with location pa-
rameter p and scale parameter « if its pdf, takes the form

1 N2 L
fX(a:):{l—i—(foM) } ,—00 < x <00, —00< u<oe, 4>0.(8)
™

The doubly truncated version of (8) can be easily derived in the form

o7}

ol {arctan (b_T“) + arctan (a_”) } 7
rs

5
a<z<byoa<

—1

fx(x) =

b, —oo<a,b<oo, v>0.

(9)

If the random variable X represents a failure time and the parameter p
represents a guarantee time (g = 0), then p = a,b = 0o and the pdf in (9)
will be in the form

2
ﬂ"y{ 1+ (%

It is clear that (10) is a special case of the proposed pdf in (2) in case of

_1
04—2.

fx(x) = s x>, (py oy >0). (10)
)"}

Bivariate Case

It is well-known that the bivariate version of (8) takes the form

1 r— y—p2\’ 3
271 Y2 7 V2

—o00 < z,y <00, —oo< g, <00, 1,72 >0,

(11)

fX,Y('Z"y) =
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and the corresponding cumulative distribution function can be written in the
form (see Nadarajah and Kotz (2007))

1 1 — _
Fxy(z,y) = 1 + Gy [arctan <w 71‘“) + arctan <yw'u2>

(5) (4522)
Ve (=) ()’

—o00o < x,y <00, —00 < 1,2 < 00, Y1,7Y2 > 0, (12)

+ arctan

and the truncated version of (11) can be written in'the form

et = ot foo (2 (1))
T,Y) = ——— )
XYEY 21 1 7282 7 V2

—o<a<r<b<oo, —xw<c<y<d<oo,

—co<a<pu <b<oo,—00 < e uy <d< oo, y1,7 >0, (13)
where
Q= Fxyl(a,¢) +Exy (b d) — Fxy(a,d) — Fxy(b,c). (14)

If the random variables X and Y represent failure times and the parameters
w1 and pg represent a guarantee times(uy > 0, p2 =0 ), then py = a,b =00
and po = ¢,d = ooy'then Q = 1 and the pdf in (13) will be in the form

2 z = y—p2\’ ~3
fX Y(:Evy): 1+ + | — 3
’ (W%w){ ( git > ( V2 > }

x>,u17 y>,u27 (/“"17//‘27717727a>0)7i:1727 (15)

which is a special case of the proposed bivariate truncated generalized Cauchy

distribution in case of o = %

2 BPDI’s of Future Observation Coming from Bi-
variate Distribution
The main goal in this section is to introduce a point of view in studying the

one-sample and two-sample prediction problems in case of bivariate informa-
tive observations.
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While ordering a set of univariate random variables is a clear and straight-
forward matter as it can be done by simply ordering the set of random
variables, such ordering is not as clear if we are dealing with a set of random
vectors.

Barnett (1976) classified the principles used for ordering multivariate data
into four principles: marginal, reduced (aggregate), partial and conditional
(sequential) ordering. An interesting detailed discussion of such: principles
with illustrative examples are given in Barnett’s paper.

In our paper, we wish to predict bivariate random vectors. Our point of
view can be summarized as, the first components of the predicted random
vectors are based on the ordered first components of the informative sample,
as is done in the univariate case. To predict the second components, we
compute the norms of each vector of the informative sample, order the norms
and then predict the future norms as is done in the univariate case. The
relation between the components of vectors and norms enables us to obtain
the second components of the predicted vectors. In other words, we obtain
the second component of a predicted vector from the knowledge of the values
of the first component and the norm of the vector.

This point of view can be shown in the following subsections

2.1 One-sample Prediction

Let (X1,Y1),...3(X;,¥s) be the first r bivariate informative observations
from a random.sample of size n of bivariate observations. Suppose that the
first components of such informative vectors are ordered, that is X7 < Xs <
-+ < X, and that their norms are given by Z1, Zs, ..., Z,.

To obtain BPI’s for the remaining future vectors, denoted by (X7, Y7), ...,
(X X5 ), where X{ < X5 < --- < Xy . and norms Z; < Z5 < --- <

Zr_ . we apply the following steps:

1. Based on ordered Z;, Z», ..., Z,, compute the BPI'sfor Z},s =1,2,...,
(n - T)a say (L157 U18>7

2. Based on X; < X2 < --- < X, compute the BPI's for X} s =
1,2,...,(n—r), say (Las, Uas),

3. From (1) and (2), compute the BPI's for Y*,s = 1,2,..., (n—r) which
are ([L3, — L3,]Y/?,[U}, — U3]"/?). This is true, since z; = (z*? +
*2)1/2
ys o),
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4. From (2) and (3), the BPI’s for (X, Y}),s =1,2,...,(n—r)is ([L3, —
L%s]1/2? L28)7 ([U125 - U225}1/27 U2S)'

2.2 Two-sample Prediction

In this case the first r bivariate informative observations (X1, Y1), ..., (X;,Y;)
from a random sample of size n is such that X; < Xo < --- < X, with norms
Z1,Z2,...,Zy. An independent future sample of size m is (X7, Y{),...,
(X}, Yy), where X; < X5 <--- < X} and norms Z; < Z5 < .- < Z». To

obtain the BPI’s of the future sample, we apply the following steps:

1. Based on ordered Z;, Zs, ..., Z,, compute the BPI's for Z3,s = 1,2, ...,
m, say (L187 Uls) )

2. Based on X; < X9 < --- < X, compute the BPI's for X} s =
1,2,...,m, say (Las, Uss),

3. From (1) and (2), compute the BPI's for Y, s = 1,2,...,m which are
([L%s - L%s]1/27 [U12$ - U223]1/2)7

4. From (2) and (3), the BPI's for (X}, Y),s = 1,2,...,m is ([L}, —
L%s]l/Qa L28)7 ([U125 Y U22$]1/2a U2s)-
3 One-sample Prediction in Case of (BVTGCD)

If, in (5), k = 2,7 =92 = L,pus = 0 and ps = 0, and let X; = X and
Xo =Y, then (X,Y) has a BTGCD pdf, given by

4 o
) (U0 ) 12T e 0200, 10
The marginal pdf’s of the random variables X and Y are given, respectively,
by
1 1
AT I
- - 7 N ]- 2 9 ) ]-
)= () HE2 e e 0es00 an
1 1
4\2T (a+3) A
= (=) — 2 >0, : 1
R E I 2 f R SRVET NCER D

In this section we apply the steps given in Subsection 2.1.
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Step 1

The norm Z of the vector (X,Y) is given by Z = (X% + Y?)/2. In Ap-
pendix A the pdf and hence cdf and rf are derived. Such functions are
given in the forms

—a—1
fZ(z):2az{1+z2} , z2 0,(a>0), (19)
Fz(z)=1—-[14+2%"%  2>0,(a>0), (20)
Rz(z) =14 247, 220, (a>0). (21)

From (19) and (21), the conditional density of Z* given « is obtained (see
Appendix B), as

s—1
* (s —1 . 91— o ) B
g1(zs]a) oca z ZO(—UZ< ; )[1 T pr Y alnr—stitl)-1
1=
X [L+ 27 QTR 20> 4 (22)

Suppose that the prior belief of the experimenter is given by the pdf (o)

O/:1—1 e C2

The likelihood function of « given Z1,..., Z, is given by

r r —a—1
L(alz1, . a0 2r) ocfRz(z)]" " H fz(zi) < a"[1 + zz]a("”{ H[l + zf]}

i=1

Since the posterior density 7*(«|z1,..., 2 ) x w(a)L(a|z1,...,2,), can be
written in the form

7 (af21s- 0 2) o @71 4 22700 exp [_O‘ {02 +> i+ z?)}] |

i=1
(24)
From (22) and (24), the predictive density function of Z* is given by

o0
iz = [ g (@l )da. (25)
0
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Which can be rewritten in the form

o r
G a1z = A1 [ et | —ad et Y1 2
0 -
j=1

« Z (S - 1) [1 + Z* 2] a(n—r—s+it+1)—1
X [1 + 276 N da, ¥ > 2, (26)

By choosing

/ / " exp | —al co + Z In[1 + 2]2)
j=1
» Z (S — 1) [1 + Z ]7a(n—'r'fs+i+1)*1

X [1+zr]—a(s = dadz?, (27)

then, gj(z¥| z1,...,2-), will be a pdf.

It’s clear that the predictive density function in (26) is not symmetric,
so that we will use the HPD Prediction method to obtain (1 — 7) % HPD
Prediction interval{(Ls, Uys) by solving the following two nonlinear equations

Uis
P(L15<Z;<U18|Z17-'-az7“):/ g{(zyzla"'?ZT)dZ;:l_Ta (28)
Lys

91 (Lis| 21, -y 2r) = g1 (Uns| 215 -+ oy 20). (29)

Step 2

By using the pdf(17), the rf can be written in the form (after some sim-
ple mathematical steps),

— Bl /:o {1 —i—uz}adu = (o, 1/2), (30)
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where B(a, 1/2) is the complete beta function.
The predictive density function of X} can be written as follows

(o)
gi(ﬂﬁilml,---,xr)Z/ g2 (w5|le) T (a] 21, . . o, 2 )de, (31)
0
where

g2(zgla)m (| 21, . 2y) = chl—l exp[—czq]

s () e ()

7

e (a))
o (02)) (G )

1
2
) o)
2 2
[1—1—3: ] H{l—kx?] . Xy > @y

i=1

n—r—s+i

(32)

where A, is a normalizing constant which ecan be computed from the relation

L P @
X {er (oz, %) }5_1_1 {B(;%)}rﬂ [1 . 2] (—a—1)

r

11 [1 - x?} Fail)da da?. (33)

i
The (1 — 7). % HPD Prediction interval (Las, Uas) is obtained by solving the
following two nonlinear equations

Uls
P(Lis < X! <Uslxy,...,zp) = / go(xh|xy, .. xp)des =1 —71, (34)

Lys

g5(Las| 1, ..., xp) = g7 (Uas| 1, . .., 2r). (35)

Step 3

From steps 2 and 3, a (1 — 7) % HPD Prediction interval for Y is ([L3, —
L%s]1/2’ [UIQS - U223]1/2)'
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4 Two-sample Prediction in Case of (BVTGCD)

In this case we apply the steps in Subsection 2.2 as follows
Step 1

Substituting from (19) and (21) in (14), we can write

s—1 —a(m+i—s+1)—1
3(zha) o az) Z ( )[l—i—z”] Y 22 >0. (36)

By using the posterior (24), we get

g3(Z5|) T (] 21, . . ., 2) = Agzia Tl 4 20
T
exp [—oz {02 + Zln @+ zf) }]
i=1
s -1 —a(m+i—s+1)—1
XZ < : )[14—,2;‘2} ,za > 0.
(37)
and As is a normalizing constant.
It then follows that the predictive density function of Z} is given by
[e.e]
93 (22| 21,4, 2p) = / g3(zia)m* (o 21, . . ., 2 )dax
0 o
= e [t sy
0
T
exp [—oz {02 + Zln (1+ zf) }]
i=1
s—1 —a(m+i—s+1)—1
XZ < , )[1—}—2;‘2} dov, zz > 0.
(38)
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By choosing

5= / / ZEal Tl + 227 exp [—a {02 + Z In (1+ 27) }]
i=1
s—1 —a(m+i—s+1)—1
X Z ( ) [1 + 27 2] dadz}, (39)

the function g5(z}| 21, ..., 2,) will be a pdf.
The (1 —7) % HPD Prediction interval (L4, Uys)+is obtained by solving
the following two nonlinear equations

Uis
P(Lls<Z:<U13|Zla---vzr):/ 9§(Z:|217~--,Zr)d»3;:1—7'a (40)
L

1s

g3(Lis| 21, .-, 2) = 93(Uss| 21, - . ., 2r). (41)

Step 2

Using the pdf (17), its cdf and the same posterior as in (24) the predic-
tive density funetion of X7 is given by

[ee]
sl Nod) = / gl (ol z,... o)da, 2t >0, (42)
0

where

1 n—r
g4(a::\a)7r*(oz| Z1,. .- 71'7“) = A4a61_1 exp[_CQQ] {CCET <Oé, 2> }

S (O e ) (i)
( (
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By choosing A4 such that

o T emian s (05)}) S e

1=

1 m+i—s 1 r+l i
X {Cx; (Oé,2>} {B(a’%)} |:1+$s

1

f[ [1 + :pf] . av)dadm (44)

=0

The (1 —7) % HPD Prediction interval (Lag, Uss) is obtained by solving the
following two nonlinear equations

—_

()

[\

](aé)

U2s
P(Los < X! < Usslxy,...,2p) = / g1 (23 @, ..., xp)day =1 —7, (45)
L

2s

g1 (Los| z1, ..., xp) = gy (Ussl @, ..., 2). (46)

Step 3

From steps 2 and 3, a/(1'= 7). % HPD Prediction interval for Y is ([L3, —
Lgs]l/Q’ [UIQS - U223]1/2)'

5 Numerical Example
In this section we follow the steps
1. Given the set of prior parameters (c1, c2), generate the parameter «,

2. Using the generated population parameter, generate a bivariate random
sample of size n, say (X1,Y7),...,(X,,Y,) as shown in Subsection 1.2

3. Follow steps in Sections 3 and 4.

In Tables 1 and 2 95% HPD Prediction intervals are computed in case of the
one- and two-sample predictions, respectively, using informative samples of
different sizes, r.
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Table 1. One-sample prediction- 95 % HPD Prediction intervals

for Z;, Y, and X7, s =1,2,3.

1

Number of samples which cover the HPD Prediction intervals from
10000 samples.

HPD Prediction intervals for z7, z%, ys.
Length of the HPD Prediction intervals.

*

*

r z1* z5 z3
1 9621 9707 9807
10 2 (1.9201,3.2213) (3.5115,5.6536) (5.8433,8.1477)
3 1.3012 2.1421 2.3044
1 9587 9652 9738
2 2 (2.3104,3.5119) (4.1005,6.1860) (6.0115,8.1181)
3 1.2015 2.0855 2.1066
9517 9594 9672
45 2 (2.8920,3.9109) (4.1702,5.6754) (5.7003,7.6017)
3 1.0189 1.5052 1.9014
r ] x5 T3
1 9692 9865 9893
10 2 (1.9105,2.3196) (2.5205,3.2955) (3.5048,4.4609)
3 0.4091 0.7750 0.9561
1 9605 9717 9799
20 2 (2.0720,2.7231) (2.8309,3.5415) (3.9004,4.7104)
3 06511 0.7106 0.8100
1 9588 9676 9717
45 2 (2.7713,3.0256) (3.1615,3.7017) (3.9114,4.5717)
3 0.2543 0.5402 0.6603
T Y1 Y3 Y3
1 9703 9805 9897
10 2 (0.1918,2.2352) (2.4449,4.5938) (4.6755,6.8180)
3 2.0434 2.1488 2.2425
1 9687 9704 9759
2 2 (1.0221,2.2177) (2.9665,5.0719) (4.5744,6.6118)
3 1.1955 2.1054 2.1374
1 9672 9694 9724
45 2 (0.8268,2.4781) (2.7195,4.3020) (4.1466,6.0733)
3 1.1513 1.5825 1.9267
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Table 2. One-sample prediction- 95 % HPD Prediction intervals

for Z;, Y, and X7, s =1,2,3.

1

Number of samples which cover the HPD Prediction intervals from
10000 samples.

2 HPD Prediction intervals for 2z}, x5, ys.

3 Length of the HPD Prediction intervals.

T z" 23 z3
1 9788 9806 9873

10 2 (1.1503,1.9608) (2.1037,3.1205) (3.2207,4.6278)
3 0.8105 1.0168 1.4071
1 9704 9754 9805

20 2 (1.0506,1.8426) (2.0308,2.9388) (3.2316,4.4335)
3 0.7920 0.9080 1.2019
1 9628 9704 9729

45 2 (1.6915,2.2021) (2.4014,3.0107) (3.2105,4.1179)
3 0.5106 0.6093 0.9074

r x} 3 x3
1 9726 9794 9878

10 2 (0.6508,0.9925) (1.3047,1.7706) (1.9148,2.6454)
3 0.3417 04509 0.7306
1 9701 9750 9805

20 2 (0.5704,0.9634) (1.1508,1.6167) (1.7309,2.4310)
3 0.3930 0.4659 0.7001
1 9663 9713 9788

45 2 (0.9327,1.2133) (1.3215,1.6757) (1.9115,2.3345)
3 0.2806 0.3542 0.4230

T Y1 Y3 Y3
1 9804 9894 9927

10 2 (0.9485,1.6911) (1.6502,2.5695) (2.5897,3.7972)
3 0.7426 0.9193 1.2075
1 9737 9806 9897

20 2 (0.8822,1.5707) (1.6733,2.4541) (2.7289,3.7076)
3 0.6885 0.7808 0.9787
1 9616 9756 9801

45 2 (1.4111,1.8877) (2.0050,2.5012) (2.5794,3.3922)
3 0.4266 0.4963 0.8128
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Concluding Remarks

In Tables 1 and 2 we take different sizes for the informative sample, 10, 20
and 45 and predict the first three future observations .
In these tables, we observe that

1. The length of the HPD Prediction intervals and the number of samples
which cover these intervals increase by increasing s and decrease by
increasing the informative sample size,

2. tTe results become better as the informative sample size r gets larger.
3. In all cases, the simulated percentage coverages-are at least 95%.

4. If the hyperparameters are unknown, they can be estimated by us-
ing the empirical Bayes method, see Maritz and Lwin (1989), or the
hierarchical method, see Bernardo-and Smith (1994).
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Appendix A
Proof of equations (19)-(21) From the joint density function of the ran-
dom variables X and Y which is given by (15) and using the transforms

X =Zcos® and Y = Zsin© we get the joint density function of the ran-
dom variables Z and © in the form

4 —a—1
fz,e(z,G)—<aZ>[1+z2] L 220, 0<O< T
T

5 (a>0). (47)

Integrating (47) with respect to 6, we get the density function of Z in the form
—a—1
fz(z):2az[1+z2] , 220, (a>0). (48)
The (edf) of the random variable Z is given by
z
Fy() Za/ Wl + w2 ldu = 1—[1422%, 230, (a>0) (49)
0
The rf) of z is given by

Rz(2)=1—-Fz(2) =142 220, (a>0) (50)
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Appendix B

Proof of equation (22)
From (8), (19) and (21) we have
g1(zle, @) o [Rz(z) = Rz ()1 D[Rz ()" *[Rz ()] 20 f2(20)

s—1
() IRe D R o),

i=0
(51)
where the reliability function Rz(z), given by (21)yields
g1(zia) x a z; Z <8 ) )[1 2 2}—06(71—7“—5—1—@4-1)—1
x [1+ Zr] TR (52)
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