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Abstract. In contrast to the classical discrete choice experiment, the re-
spondent in a rank-order discrete choice experiment, is asked to rank a
number of alternatives instead of the preferred one. In this paper, we
study the information matrix of a rank=order nested multinomial logit model
(RO.NMNL) and introduce local D-optimality criterion, then we obtain Lo-
cally D-optimal design for RO.NMNL models in the discrete choice experi-
ment.
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1 Introduction

In classical logit model the respondent chooses just one alternative in the
choice set with the highest utility (Jafari, 2010). There is another model in
logit family called Rank-Order logit model. In this model the respondent
can choose more than one alternative instead of one.

A rank-order conjoint experiment measures the importance of the fea-
tures of goods or services by asking the respondent to rank a certain number
of alternatives within the choice sets. Data from a rank-order experiment
can be analyzed by the rank-ordered exploded Logit like Multinmial Logit
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(MNL) and Nested Multinomial Logit (NMNL) models (Beggs, et al., 1981
and Hausman and Ruud, 1987).

In theory, when individuals are asked to rank the alternatives instead of
only choosing the most preferred option, the parameters of the choice model
and hence, the preferences can be estimated more efficiently. However, in
practice, the respondents may be unable to perform (part of) the ranking
task. This may be due to several reasons; First of all, respondents may
not be able to perform the task itself. Secondly, the respondent may not
be able to distinguish between his less-preferred alternatives. In any case,
straightforwardly, using the reported rankings may lead to a substantial bias
in the parameter estimates in the rank-order logit'model (Chapman and
Staelin, 1982). To solve this problem, Chapman and Staelin (1982) suggested
only to use the first few ranks in the estimation. They considered several
rules to determine the appropriate number of ranks to use, in their words “the
explosion depth”. One of these rules is based on a pooling test for the equality
of parameter estimates based on different’ rank information. Chapman and
Staelin (1982) proposed an alternative method to test the number of ranks
to be used in estimations. However, in both approaches this number is
assumed to be the same for all respondents. If ranking capabilities differ
across individuals, it may lead to an efficiency loss.

In this paper, first, I have studied about the Rank-Order Multinomial
Logit (RO.MNL) model and the Rank-Order Nested Multinomial Logit
(RO.NMNL) model.. 'Then; I have used the D-optimality criterion to ob-
tain locally D-optimal design for RO.NMNL model. So, I have organized my
paper as follows:

In Section 2, Treview the rank-ordered multinomial logit model (Ver-
meulen, et al.), then in Section 3, the information matrix related to the
rank-ordered NMNL model is calculated and I define a special class of de-
sign and the method of obtaining locally D-optimal design for that.

2 Rank-Order MNL (RO.MNL) Model

The Rank-Order Logit Model was introduced to the literature by Beggs, et
al. (1981). In this approach, each ranking of a choice set is converted into a
number of independent pseudo-choices. In this way, each ranking of alterna-
tives in a choice set is considered as a sequential and conditional choice task.
The alternative with the first rank is imagined as the preferred alternative
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(with the highest utility in the classical method) of the entire choice set. The
next ranked alternatives are viewed as the preferred alternatives of the choice
sets consisting of all alternatives except the ones with a better ranking. In
the resulting rank-ordered multinomial logit model, a ranking of a set of .J,.
alternatives is thus seen as a series of J. — 1 choices. In this situation as
in the classical MNL model there are J alternatives, ay,as,...,ay7. Then
we consider C choice sets each with J. > 1;Vc alternatives, where there are
27 — (J + 1) choice sets each with at least two alternatives.

e C.={aic,az¢,...,ay.} denotes a choice set with J, alternatives, where
ajc is the alternative j of choice set C..

The rank of an alternative is determined by its utility. The utility of the
alternative a; in choice set C. experienced by respondent i is modeled as (by
effects-type coding),

K Li—1

Uje =T (aj0)B+cje = > > frel0ie)Brg+ e §=1,2,...,Je, (1)

k=1 (=1

where:

o f(aj.) = (fi(aje), o, filaje), - . ,fK(ajs))T;
fr(aje) = (fr1(ge)s o fre(aje)s - o frop—1(aje))”

is the characteristies of attributes (there are K attributes each with Ly;Vk =
1,2,..., K levels) related to alternative a; (Main-effects model), which is
chosen by the individual ¢ and:

L4 B: (/617"'7Bk7"'7BK)T; 16]@ - (5]6,17"'7/8’6,@7---7Bk,Lk71)T

is p-dimensional vector of parameters (p = Zszl(Lk —1)) where ZEL:’CI Bre =
0 and:

e ¢, are error terms which have i.i.d extreme value distribution (type
II).

Now, suppose that Y(qy,...,Y(;),...,Y(;,) denote the rank-alternative
variables of a choice set with J. alternatives. For example, Y(1) = r(1) means
that alternative a,,; (r) € {1,2,...,Jc}) has the first rank with the high-
est utility (Ur, c = maxjec, Ujc) and Y(g) = r(z) means that alternative a, ,,
has the second rank, its utility is less than the utility of ar, and greater than
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the remaining alternatives (U,n(2> U]C and Uy, e < Ur(l)c)
we can say, Y(z) denotes an alternative with the second rank in the original
choice set. However, after removing the alternative with the first rank, Y(y)
will be denoted an alternative with the first rank in the new choice set (a
choice set without first rank alternative). In this state C,;) denotes a choice
set (choice set ¢), which excludes alternative a;. In this situation and to
obtain choice probabilities, we can also define the observation variables as
follows:

¢ = MaXjeC

c(r

}/7"(1)6 -

1, UT(I)C = max,eC, ch
0, Otherwise

v 1, UT’(Q)C = mane(CC<T(l)) ch

r(2)$ - .
0, Otherwise

and so on. Now, the probabilities of rank-order alternatives can be defined
as below:

exXp {fT(aT(UC)B}
PO =) = P = o e (W aagy S
exp {fT(ar(z)c)B}
Pl =70) = Fre = Zeecc(r exp {(f7(are)B) @ © Ce(ray):
exp {fT(ar(3)c)5}
P(Y(:g) = T(S)) =P — : aT(s) S CC(T(1)7T(2))’

T Y e

exp {f7 (as)3}’

e(r(1)m(2))

P(Y(Jc) — T(Jc)) = PT(JC)C = L arey,y € CC("'(l)v""(2)7~~~a7'(chl))’

where P(A) denotes probability of an event A. In this model, we expect
to obtain more information about the preferences of respondents than in
the classical conjoint choice experiment. Also, if we use the same number
choice sets (to compare with classical conjoint experiment), the parameters
of model can be more accurately estimated. Chapman and Staelin (1982)
have also attempted to achieve a desired degree of precision of the estimates,
less choice sets are required in a rank-order conjoint experiment.

This model may be better than the classical model but there are some
problems in its application, for example, the major disadvantage of using
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a rank-order conjoint experiment is the weak link with reality: in real life,
respondents choose the alternative which they like most and hardly ever
select a second best item, and the other is the alternatives with lower ranking.

According to Chapman and Staelin (1982), lower rankings are less reliable
if the number of alternatives to rank is high. Of course, we try to solve this
problem by considering the number of alternatives less than the total number
of alternatives (in a choice set).

Now, considering a combination of alternatives like (am) gy s - ar(‘]c));
T(1)sT(2)s -+ T(Je) € {1,2,...,J.} to analyze data, means that the alternative
arg,) has the first rank, alternative Qry) has the second rank and so forth
(rgy #rG,d 73 =1,2,...,Jc). Since there aredJ. cases for r(;) and J. —1
cases for r() and at last there is just one case for r(;,); we define the following
variable to introduce observation variable in RO.MNL model:

L i Yy =ra), Yoy =) Y = 1)
V) = 0 Otherwise

where E(y(r(l)r(Q)---r(JC))) = PT(l)c . Pr(Q)c @ PT(Jc)C'

(2)

To define a design, S (S C €) choice sets each with J; = J;Vs alterna-
tives will be considered. .Thus, according to the choice rank probabilities
and Equation (2), the Likelihood function can be defined as follows:

y('r T(oy--T( 1Y)
W7(2) ")
L(Cs,B) = “ ” “ ( rays Frigs- 17“<J)5>

roy=lrg=1 =1

TYFT(2) 7T ()

and-the log-likelihood function as:

UCy,B) = Z Z Z y?"u)?“(z) ) ln( TS T<2) : PTU)S)

T‘(1> ].1”(2) 1 7‘(]) =1

T)FT () FT()

J J
= Z Z Z (ryr2) 1)
7‘(1>:17" T(J):l

TFT@)-FT()
X (10 Py s 410 Prigys o+ I Py ). (3)
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Lemma 1. The information matriz based on Log-Likelihood (3) is obtained

by:
J
Izt (Cs, B) = Iune(Cs, B) + Z Pryys - IunL(Co(ry): B)
7"(1):1
J
+ D PrysPrg “INL(Cory g B)F
T)FT(2)
J
+o > PPy P
T(1)FT(2)F - FT(T-2)
X IMNL ((Cs(r(l),T(Q),...,T(J,2>) ’ /B)a
where:

Ivne(Cs, B) = FL(Py—pspl)Fs: The information matriz of a discrete
choice experiment (classic) by choice setwith size J (Sandor and Wedel,
2001), where:

F, = (f(a1s)sf(azs), ..., flas))".
IunL(Cy(y), B) = FST(j)(Ps(j) N pS(j)psT(j))FS(j)'
Cs(j) denotes a choice set without alternative a;.

Ps(j) = (P1sh- - - Djnlss Djtlss - - - ,pss)T is a (J —1)-dimensional vector
containing the probabilities.

P, is'a diagonal matriz with the elements of py(j) on its diagonal.

Fyy= (flars), ..., flaj—1s),f(aj1s)s - -, fays))T is the (J —1) x p)
design matriz containing all attribute levels of the profiles in choice set,
except profile a;.

The expression for the information matrix of a rank-order experiment
proves that asking the respondents to rank the alternatives in a choice set pro-
vides extra information. Since this difference Ignint,)(Cs, 3) — Innw(Cs, B)
is a non-negative definite matrix, it ensures that the amount of information
in a ranking experiment is more extensive than in classical experiments in a
choice experiment. In other words, ranking is always better than its classical
counterpart.
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Similar to the discrete choice experiment which used the criterion (Atkin-
son, et al., 2007):

V(¢ B) = In[det{Innr(&,8)}] "

to obtain the local D-optimal criterion, for RO.MNL, also, a similar situation
was used, it means that:

V(€ B) = In [det{Tpnry (€, 8)}]

to obtain locally D-optimal design, where ¢ is a-design which includes S
choice sets, C1,C,,...,Cs.

3 Rank-Order Nested MNL(RO.NMNL) Models

Suppose that there are J alternatives (in choice set Cs), which have an upper
ranking in comparison to others and which have been divided into M nests
each with J,,; Vm alternatives, @im,@2m,--.,a07,m- 1o analyze data, some
choice sets each with the same number of alternatives will be considered,
where:

(Cm N {a1m7 A2mys -« - - 7aJmm}

denotes a choice setrwith .J,, alternatives and:
M
C=JCun; Cn(Crw =9, Vm#m/,
m=1

where C includes J = 2%21 Jm alternatives. In this case, the utility of
choosing an alternative a;,, by individual ¢ is calculated as follows (w.r.t
choice set Cy):

Uij = U](m)s + UmSa

where Uj(m)s = Vjm)s + €j(m)s and Upms = Ums + ms (Train, 2003):
® Vjim)s = fT(a“ij)ﬂ; f(ajms) = (fif(ajms)a fQT(ajms)a ce 7f[7;(ajms))T;
£.(ajms) = (fi1(@gms)s fr2(Agms)s - - -+ fory—1(ajms))" -

® Ums = E(manE(Cms Uj(m)s)v
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® £j(m)s have EVD with corr(e;(m)s; €j:(m)s) = Pm; Vj # j', but s have
i.i.d EVD.

Now, let that (Y{1), Zn1)), (Y(2):Z(2)), ---» (Y1), Z(s)) denote the joint
rank alternative variables of a choice set with J alternatives, where vari-
ables Y{(;y and Z;);j € {1,2,...,J} denote alternatives and a nest with
rank j. For example, (Y(y) = (1), Z1) = m(l)) means that the alternative
ary, € Cpyys from nest my € M have the first rank, where UT(I)(m(l))S =
MAaXjeC,, - Ujimy)s and Umyys = maxmens Ums, also Yoy = 12, 42y =
m(9)) means that alternative Qry) from nest m(y) have the second rank. Cer-
tainly it is the case in the original choice set, but in the new ¢hoice set (it is
denoted by (Cs(r( ) after removing the alternative ar(l)) alternative Qry) and
nest m(y) will have the first rank, where m ) may be the same as nest m)
or not. In this state, if there is m ;) = m(y) then ar, and Qr ) selected from
the same nest, then Ur<2)(m(2))s = MaXjeCpo M) Uj(m@))57 where C,,5(j)
denotes the choice set of nest m, which excludes the alternative a;.

We know that if C01"1“(5j(m(1))57Ej/(m(l))s) = pm, and corr(aj(m(2>)s,

€j/(m(2))s) = Py J # Jthen py( = pm, if may = m). Now, keep-
ing to the relation between p and A/ (A = /1 — p.), it can be written that
Am(l) = )\m(2), where /\mu) and /\m@) are dissimilarity parameters related to
nests, which include the first rank alternative and the second rank alterna-
tive, respectively. Now, we denote the choice probability related to choosing
an alternative with the first rank as follows (w.r.t the choice set Cy):

Py yymgys = Py =@y, Zay = m))
=PYu) =rwlZa) =mq)) - P(Zq) = mq))

= Bryimays - Pmys:

Thus:
exp {fT(zr(l)s),B}
Froymas = m (1) m(fl;(a- )B
w5

Am
fT(ajS)ﬁ W
[Zj ECmepys P { Am )

Am ’
£7(a;,) 8 M M £7(a;0) 8]
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where C,,,s denotes a choice set, which includes all of the alternatives in the
nest m and (Cm(l) s denotes a set of all of alternatives in nest my) which has
the first rank with respect to choice set C,. Also, vector f (a%') s) denotes
the characteristics of the attributes related to alternative ar; > which has the
rank r(;) (w.r.t choice set Cs)

Similarly, the choice probabilities of the second rank alternative and nest
are obtained by:

Proymeys = P(Y2) = 1(2), Z(2) = my2))
= P(Yo) = r2)|Z(2) = m(z)) - P(£(a). = m(3))

= By mezys - Pmiays:

7 (ariyys )B
(2
exp { /\’”(1)

= §omay = mye),

J:;L(U s £fT'(q.
>jmi exp {A‘;Q S)ﬁ}

where:

B,

@Im(2)s

and

(1) Am(qy
Tt T (as
|:Zj—1(1) exXp { )\(:L]S)B }]
(1)

(1) Am gy M A
Tmiyy s T(q. T(q. m
@° £7(a;5)PB Jms £7(a;5)B
[zj_l exp { e Y Sy e { T

m=1

~—
(m#m(qy)

Im gy s T (q. )\m(2)
(2) (a;5)B
[Zj - { Am )

Pm(Q)s: 7 (1) = M(2),

( Am’(l)

Tk s [6T (a8 Tmzye 170308117 @), o [ £7(a;)8) 1"
~—~—
(m#m(1y,m(2))

my # m(2),

where:
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e J,,s denotes the number of alternatives in nest m of choice set Cs.

° Jmu) s is the number of alternatives in nest m) which has the first
rank, with respect to choice set Cs.

° Jm<2> s denotes the number of alternatives in nest m2) which has the
second rank based on the original choice set and has the first rank with
respect to a new choice set (after removing alternative ar(l)) so that if
m() = my) then Jm@)s = Jm(l)S — 1.

° J:,f<11>> s is the number of alternatives in nest my)-after choosing alter-
native ar,, and removing it.

Also, to obtain the other choice probabilities related to the alternatives with

lower ranking like Prgymeys - Priyyme,y, Weact in a similar way, where

J = Z%zl Jms for each choice set, Cg, and Jﬂg@l denote the number of

alternatives in nest m after removing the alternatives a; and a;.
In this situation, the observation variables to analyze the RO.NMNL
model is defined as follows:

L Yy =rw),Za) =m@),---, V) =70,
Z) =mw);

y((’!'(l) sm(1))5(T(2),mM(2))5e 0 (reaymn)) =
0, Otherwise,

where:
E(y((r(l)ﬂm(l))v(T(Q)7m(2))7~~'7(T(J)7m(J)))) = PT(1)m(1>S ’ PT<2)m(2>S T P’"U)’”(")S

and J = Z%:l Jms are the number of alternatives in choice set Cg so that:

M JM(l)S Jm(2)s Jm(J)S

Z Z Z Z Z Z Proymays Prymeays -« Pripym s = 1.

mm=lmaoy=l  my=lrgy=lro=l =1

some nests maybe equal T()FET(©2)-FT ()

3.1 Information Matrix for RO.NMNL Model

In this section, the information matrix for the two-level RO.NMNL model
will be obtained. Then, we define the local D-optimality criterion, which
is a function based on the determinate of the information matrix. As we
know, the information matrix is calculated by log-likelihood function, where
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Likelihood function for RO.NMNL model is calculated as follows (w.r.t choice
set Cy):

JTVL<1)S JTVL<2> Jm(J)s
100 1 01 A VR | Y
m(l) 1 m(2) 1 m(J) 1 T(l) 1 T(Q) 1 J) 1

T ()7 FT ()

y/
"P'I‘<J)m(])8> ’

where )’ = y((?“(1)7m<1 )5(re2),m2) )5 (reaymgy))

The log-likelihood function for the two-evel RO.NMNL model and based
on the above likelihood function is calculated by:

M I Imeys Tmegys

=D 31D S DN b S S

mu=lme=" my=lrg=lre=1  ruy=1

some nests maybe equal r(l);zér(;),...;ér(J)
X Gs((r(1)>m(1))> (T(Q)a m(2))a SRR (T(J)a m(J)))7 (4)
where G, : Cy = R7 and:

Gs ((ray,m@)s (reypm)s - (1) M) = I Prgymeys + 10 P mey s
+...+InP,

(N S*

According to the number of attributes, K, each with Li;k = 1,2,..., K
levels, we define parameters vector and the characteristics of attributes as
follows:

:(ﬁvk)T7 B:(ﬁlv"'aﬁka"'aﬁK)Ta )\:(Alv"'a)‘ma"'a)‘M)Tv

e 3, = (Bkvl,...,ﬁkyg,...,Bth,l)T (w.r.t effect type codding,
Zf:klﬁkgzo)a

where \;, have been introduced by symbol /\m(r)’ which is the dissimilar-
ity parameter related to a nest with rank r (or it had rank r). In reality,
parameters vector 6 includes p + M parameters, where p = Zszl(Lk —1).
Also:
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® Vrymey)s = £ (@rGyms)Bs f(a;mm(r)s) = (Eulargymys)s- -
fk(ar(j)m(r>s)7 ceey fK(a](T)m<T>s)) 5

° fk‘(aﬂ“(])m(T ) (fk‘l(ar(J)m(r)s) s fkﬂ(aT(j)m(r)S)a ... 7fk‘Lk—1(ar<j)m(r)s))T7

where fkg(ar(].)m(T) s) denotes the characteristics of the fth level of attribute
k for alternative a; ;m,, (has the rank r) in nest m,) (with rank r).

W)) for thelocal

Corresponding to Equation (4) and definition —F ( 5000~

information matrix, we obtain:

0%0(Cy 0))
I Cs,0)= —FE | ———=
RINMNL)( ) ( 90007

=ZZ Yy YTy

muy=lm= myFkrayslrg=l )=l

T(l)#T<2)...#T<J)
—82Gs(’l“(1), 7“(2) PN T(J))
X i ,
0000
which is the information matrix of the two-level RO.NMNL model, where:

/
° E(y ) T(Um(l)s : PT(2)m(2)s e P’"(J)m(ﬂs

o —PCsray ey ) EWPrgymgys PWPrgmgs o PP ym_ys

0050™" 0000" 0000" 0000"

Lemma 2.:According to the above descriptions, the information matriz of
RO.NMNL maodel is calculated as follows:

M J7n(1)s
Ir(nmnp)(Cs,0) = Inuni(Cs, 0) + Z Z Praymays - INMNL(Cs(ry)), 0)

ma=tra=t

M TmyysTm gy
+ Z Z Priymays - Prigymeys - INMNL(Co(ryy rp)),0) + -+
may M@=l ra)re)=t
maybe cqual (1) #7(2)
o Tm(yysredmg_gys
+ Z Z Prymays - Pros_symis_ays " INMNL(Co(riyy i 52y 0),

(1) m(.],Q):l 7‘(1),4..,7‘(‘]72):1

maybe equal 7“(1)#~~~?57”(J—2)
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Proof.

Jm s
92(( LR I Prpy s
Irivmn)(Cs,0) = lz(a&%ﬂ'):: 22 E: ”Nmms<()()

0000™
JTYL S J?Yl s
M (1) (2) 8 1nP’I m S
i P P T T Tremes ) Ly
T(1)M(1)$ T(2)M(2)8" T
=1 =1 1 0000
my=lru= m(=1r@=1
+ Z Z Z Z Z PT(l)’"(l)S ’ P’"<2>m<2>5"'PT<J—2>m<J—2>S
muy=lm@=l my_n=lre=lre=1 ru-2=1

(1) AT (2) - FT(T—2)
J

m(j_1)s
—9? lnPr(J -1y
X Z Z TI—nM-1)8 )

T
06000
m—p=1lry-n=1

where:

J; —92In P, .
M ™ oM\ _
® Zm<1):1 Zr(l)_ Pr<1)m(1)s <W) — INMNL((CSa 0),

Imors —0?2In Py, m s
(2) (2)™(2) —
Zm<2 =1 ZT(2)_ T'(2)M(2)s" ( 8089T > - INMNL((Cs(r(l))a 0)7

o M Z‘]’”"u D p (PP ymg s
my—1)=kiare—1)=1 T(J HM(I-1)8 9000"

InuNL (Cs(r(l),...,r(J_Q))7 0)

O
where Cs(j) denotes a choice set without considering alternatives a;. In this
case, since PT(J)m(J) 1 then In PTU)’”(J) 0 and:

e InunL(Cs, 0) (full alternatives),

° INMNL(CS(T(D),H) (without alternative ar, ),

. INMNL((CS(r(l),r(g))aO) (without alternatives (ar,,arg,)),

° INMNL(CS(T(I)7.“’,,(‘]_2)), 0) (without alternatives (ar(l), e a’"<(172)))'

will be calculated by the following lemma (Lemma 3).
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Lemma 3. According to a NMNL model with two nests each with Jis and
Jos alternatives, the information matrix INMNL((CSO), 0) will be calculated as
follows:

Loy Tiogsy Iissrs
820(Cyyi, 0) L1s(j)  *12s(j) +13s(4)

InmnL(Cy(j), 0) = —E(imT )= Iipzs(j) Ioas(y Ia3si) |,
13s(5) ~23s(j) ~33s(j)

where I y;y and I ;) denote the elements of above information matriz with-
out considering alternative a;.

Proof. According to the following assumptions:

o Ans() = Fl ()P ims(i)»

* B,us(j) = FLo )P ims() Fms(i)

)T

p.|ms(j) = (pl\ms(j)a <oy Pj— 1|ms(5)» pj+1|ms(])7 .. ameS(j)\ms(j)

Y

P.\ms(j) = diag[p1|ms(j)7 < Pi—1ims(4) Pi+1ims()» - - - 7mes(j)|ms(j)]7
Fos) = (F(aims); - - £(aj 0, me)sf(aj11,ms), - - - ’f(aJ,jnSms))T’

L4 f(aj’ms) = (fl(aj’ms)a - - 7fh(aj’ms)u o 7fp(aj’ms))T; j, 7é ju
,jns fT(a"/rrLs)l8
Ups(j) = In [Z‘jj,zl exp {j\m}] ,

T
exp{f (aj’ma)’a}

Pithms(j) =
'jtims (5) Zl;nlse {f (alms),@}

oo 2]

- A2
JJ T JJ T
[2113 exp{—(“ﬁs)ﬁ b | o { o8 }]
We will have:

Liislpxp = pljéj) (Bis(j) — Ars(nAly) + p2§éj) (Bas(j) — Ass()Aly()
FP15()P2s () (A1s () Als(s) + Azo() Ay — Ars() Adu() — Aas()Als(s))

Mosgylpx1 = —pljéj) (B1s¢jy — A1s(j)Aﬂ(j>),3 + W(Am(]’) — Aoy (M vis(h)
-AT,;HB)

® Pms(j) =
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Miasilpx1 = — 252 2 (Baa(j) — Aza(j) AZy(5))B + P P2e0) (Ags(j) — Ats(s)) (A2-vas(j)
25@)/3)

2250y ]1x1 = MﬁT(Blsm—A1s<j>A1Ts<j))ﬂ+w0\l-vlsm—ﬁTA1s<j>)(/\1»Uls<j)
—AY,(;8)

[I335(j)]1x1 = pQ‘”(”BT(stm—Azs(j>A2Ts(j))ﬂ+%(/\Mzsm—BTAzsm)(/\z‘wsm
—AL;HB)

[Toss(]ix1 = = 5 Prs)Pes() Arvis() — BT Avs(y) (A2.v24(5) — Aga()B)
]

In above information matrix, all of the notations'with (j) will be calcu-
lated without alternative a; and Jl,s denotes the number of alternatives in

nest m of choice set s without alternative a;, such that Js = Jms — 1.

Corollary 1. For 3 = 0, the information matrix (Lemma 3) was calculated
as follows (let J{, = a, J3, = b):

M1s)] = L . |FT I, — L 1A VP 0| + L

MO ad3 (@M + bh2) 28 Sl A bA3(a Mt + bh2)
T 1 T b)‘za)‘l 1 T T

{FQsm (Ib -3 1blb> Fzsm} - {7(QA1 e\ “Fishlala Frsp)

1 1
+ 5 Fau 1o LyFau) =us - Flylaly Fau) — e Fz?s(ﬁlblfFls(j))

b2 ab
Li2s(] = (%) ' E -Fi()La — % 'ng(j)lb} ;
T13s()] = {(b’;?j:—é%)g} : E “Faulo - é 'F{s(ﬂla}
) g+ (@)
[Las(n)] = (a)\cib;;)z -In(a) In(b),
M pre

[Is3s()] = m {1

3.2 D-Optimal Design

Similar to the classical choice experiments in which the formula:

U (€,0) = Indet (Igyn, (€, 0))
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Table 1. NMNL Model: There are two Nests each with J1 and Js alternatives

nest(I) nest(IT)

Q115 -y A1,y ooy Q1 12, -y @j2, -y ATy2

has been used to obtain the local D-optimality criterion, it is also used in
the RO.NMNL:

UR(E,6) = Indet (I;{(INMNL) (&, 0))

to calculate the local D-optimality criterion, where £ is'a design with choice
sets Cq,...,Cq,...,Cs. In this position, £*, which’ minimizes ¥ (§,0) for
true value of @ is called locally D-optimal design, where:

* = inWx(£.0
3 arg min r(£,0)

for true value of parameters.

3.3 Example

Imagine that there is a two-level NMNL model with two nests in a way that
one of them has J; alternatives and the other includes 7> alternatives (Table
1), where J1 + o= 7.

In this situation, we select three alternatives, Js = 3;Vs € S, from Table
1 (It is assumed that just three alternatives have suitable ranking). In this
case, we will encounter two classes (N = 2), where:

)-(2) o= (4)+(2)

According to the dimensions of parameters, 3 (p-dimensional) and A (2-
dimensional), there is a (p + 2)-dimensional parameters vector. In most
of non-Bayesian linear problems, an upper bound on the number of support
points in an optimal design is available (Pukelsheim, 1993). The D-optimality
criterion in linear models typically leads to an optimal number of support
points that is the same number of unknown parameters and the design takes
an equal number of observations at each point (Silvey, 1980). The bound
also applies to most local optimality criteria and Bayesian criteria for lin-
ear models (Chernoff, 1972). In contrast for nonlinear models, there is no
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such bound available on the number of support points. Thus we define the
following design based on two classes:

fn:{ 1 Cae s

Wn1 Wp2 - Wps,

}EEn; n=1,2. (5)

The information matrix corresponding to &, (5) is calculated by:

Irvune) (6, 0) ans Irvvn) (Cos, 0);
where the local D-optimality criterion is defined as follows:

W (6, 0) = Indet (T bongr (602 6) )

Now, with respect to &,;n = 1,2 and the combination of them, £ = 2721:1 Q-
&, we will have:

§" = argminWr(&,0) (6)
IS

is locally D-optimal design in & (2= Ui:l =), where (2721:1 an =1, a, >
O;n=1,2):
2

Z \IJR fnv )

Lemma 4. Theinformation matriz of a choice set which includes two nests,
so that one of them aneludes two alternatives and the other has one (Figure
1), is calculated by:

Jm<1)s
Iz v (Cs, €) = Innne (Cs, 0) + Z > Praymays - INNL(Cyryy )5 0),
m(l) 1 T‘(1> 1
where Prymays = Priyimays * Pmys and
oxp { fT<ar§\2’Z§1)s)ﬁ}
7(Cm s:{ar meq1ysy Ajm s}§
Priyylmays = - T (ariym(qys)3 o T (a8 (1) mmays tima)
Ay Amy)

17 CnL(l)s = {ar(l)nl(l)s}-

(7)
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T (ar mypy o) T (ajm B )] @)
[exp { ym)'(l()l) e ;’”((11))

T (ar )8 T (ajmy OB ] ’

Cm(1>5 = {ar(l)m(l)s,ajm(l)s}:,
P’V‘VL(l)S = (8)

£ (aim, )3 T (a, Y Am )
{exp{ R A e exp {7 (anggym ) BY

Cin1ys =Hanqymq) s T

with 7(1),5,7" € Cs; vy # j # j' and mgy),m = 1,2 (twosmests) and Ap,,,
is the dissimilarity parameter of a nest, which includes an alternative with
the highest utility (first rank). In Equations«(7) and (8), the notation Cy, ,
denotes the choice set with the first rank nest.

Corollary 2. Now, consider a special case (Figure 1, Case 1). In this
situation, Ignwint)(Cs, €) is calculated as follows:

11T1s(o) I O Liis@any) 0 O
IR(NMNL) (C37 0) = 112%0) 1223(0) 0 + Pausls : OT 0 0
0 0 0 o" 00

@
12:
%usag, %11 @13, Pz

Casel Clase

Figure 1. NMNL Model: There are two nests (for choice set Cs), one of one of them with
two alternatives and one for another (a;ms denotes the jth alternative of the mth nest from

choice set s)
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Liisa,) 0 O Litsarny) Tizs(arns) O
+Pa21318 . OT O 0 + Pa12328 : I,{Qs(a ) ‘[228(0,123) 0
o 0 0 o” 0 0
where:
® Puyas=PYyy =ans, Zoy = 1) = Py 1s - Prs,

o Puyis = P(}/(l) = a21s, Z(l) = 1) = Pagls\ls - Py,

® Pupos = P(Y1) = a12s, Z(1) = 2) = Py 26 - Pos

are calculated by (7) and (8), where P, ;s has alréady been defined (See
Section 3), Iy (0) (1ee(0)) denotes the £th row and #'th column of the informa-
tion matrix I (based on choice set C;) with respect to all of the alternatives
in the choice set Cy. But, Ipp(jy (Ipp(;)) demotes the ftherow and £'th column
of the information matrix I (based on choice set Cy) without alternative a;.
Moreover,

* Lu) = Pusg) - Ps) - (FlaBas) + Fa(pFas) — FioFasti
*Fsz(j)Fls(j)); Vj = ai1s,@21s;

° Ills(a1zs) = )\% : (Bls(mzs) 4 Als(a12s)A{8(a12s)> )
L4 1128((1123) 2 _)Tléz : (Bls(a12s) - Als(aIQS) 18(0«129 ) B’

L I22$(a125) - }\1711 N IBT <B15(0~125) - Als(‘l12s) 1s(a12s) )’6’

- exp{fTa )ﬁ} oy o .
® Dis(y) = exp{fT (a; )ﬂ}-ﬁ-exp{fT(algs)ﬁ}’ VAS {a1157a215}a J 7& J (See

Section 3.1)

where ', ;(j), Pms(;) denote the design matrix and the probability of choosing
nest (in choice set C,) when the alternative a; is removed.

Example 1. For a two-level RO.NMNL model, we have two attributes each
with two levels, then there are four alternatives aq1, o1, d12, do2, where:

CNij At-l(fl(ajm)) At'2(f2(djm))
an +1 +1
as1 -1 +1
ais +1 -1
aso —1 -1
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Table 2. Two-level Nested MNL model: Four choice sets,Cs; s = 1,2, 3,4, each with three
alternatives (a;jms denote the jth alternative of the nest m in choice set s)

Choice set ( Cps) First nest (I) Second nest (IT)
Ciu=C a1l = ai , az11 = Gz1 aiz1 = Q12
Ci2 =Co ai12 = 411 , a212 = G21 a122 = Q22
Co1 =C3 ai13 = ai G123 = Q12 , 4223 = Q22
Coz =Cy a114 = Qo1 a124 = Q12 , G224 = 022

Let’s consider experiments which include four choice sets each with three
alternatives (Table 2, Figure 1), where 3 = (81, 82) s X = (X1, \2)” thus
we can write @ = (1, B2, A1, A2)T. In this position, there are two classes in
which their information matrices will be calculated as follows:

1. & = { Cu Crz } € 21, where

w1l Wia
2
Ir(vunr) (&1, 0) = Z wis - Ironmn) (Cis, 6),
s=1
2. & = { Ca Co } € =9, where
wa1 W2
2
Iromie) (62, 0) = Z was - Ir(nmn) (Cas, 6).
s=1

According to & = a1 - &1 + ao - & we will have;
foe el .
1 W2 w3 W4

where wi = aq - w1, w2 = a1 - Wi2, W3 = Qg - w9 and wyg = a9 - waey. The
information matrix of the design (9) is calculated by:

4
IR(NMNL) (57 0) = Z Ws - IR(NMNL) ((Csa 0)7 (10)

s=1

where Ignvnt) (Cs, @) for each of choice sets are calculated by (Lemma 4
and Section 3):
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For C;:
I1T11(o) Iioi0) O gy 0 0
Irune)(C1,0) = | Loy L2100 O | + Payyinn- 0 00
0 0 0 0 0 0
Litttas) O O Littas)  Ti21assiye O
+Pa21111 ’ 0 0 0 + Pa12121 : I121(a121) 1221((1121) 0 5
0 0 0 0 0 0
where

—p1|11){pi\|§1 + 1—1711(0))(1—171\11)} —(1—p11(0))(1—p1|11) :|

I111(0) 4p11(0)'|:
(1 *Pu(o))(l *Pl\ll) (1 *pll(o))

1 2B81p111 (1—1711(0))()\1 In(1—pyj11)+2B81p1)11)
I —9 ] (L= piu) {— N N
121(0) =4P11(0) (1= Pu(o))()\lln(l —p111)+2B1pP1j11)
A1

I _Apypiio)(1-p11)B7 | Prioy(I—piicoy) (M In(1—p1j11)+281p1111)2
221(0) = X + 32

+1 -1
Lit(ann) =411 (I =P11(an) - [ 1 +1 }

0 0
Illl(agn) :4p11(a211) g (1 —pll(agu)) : |: 0 +1 :|

I _4P1\11'(1—P1|11) +1 0 I _ 4p1\11(1—P1|11) /61
111(0,121) - )\% : O 0 ) 121(0,12]_)__ )\? 0
4p1j11(1=p1j11) _ exp (—B1+B2)
1221(a121) Tﬂl’ Pi1(a1nn) = eXP(—51+B2)-;eXp2(51—,32)’
exp (B1+082)

Pi1(azi1) = exp (B1+082)+exp (B1—PF2)
{exp (51+52)+e xp (%)}/\1

P11(0) = {exp (,81;1,82)+exp( 5;\1"52)}/\1+exp (Bi—B2)

exp (ﬁl;LlﬁQ)
P11 = = .
T e () e (2
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Table 3. RO.NMNL model A\ = .6, A2 = .4 (Two nests): Locally D-optimal design for
Design (9), where there are four choice sets each with three alternatives; w.r.t local D
-optimal criterion, (€, 00) = (det(Irnmnr)(€,600))) "

For Cs:

Irvmne) (C2, 0) =

+Pa21212

where

Bri B2 wi wi; wiz wi PYr(£*,00)
-7 .489  .000 297 214 1.370
-4 534 .000 .466  .000 1.233
-8 0.0 .500 .000 .500 .000 1.164
3473 .000 527 .000 1.183
.6 .459  .000 .541 .000 1.269
-7 487 019 494 .000 1.383
-4 501  .000 .499  .000 1.170
-3 0.0 .504 .000 .496 .000 1.061
3 505 .000  .495  .000 1.096
.6 .507  .000 .493  .000 1.230
-7 .235 0 .242 260 © .263 3.680
-4 .249 248 252 251 2.974
0.0 0.0 .273 .260 .235 - .232 2.702
3 293 268 223 217 2.943
.6 309 273 212 206 3.619
-70.0000 528 232 240 1.183
-4 .000. .533 .060 .407 1.102
6 0.0 ..000 .509 .000 .491 1.069
3 256 .262  .000  .482 1.088
.6 467 0 .079  .000  .454 1.146
Loy lizee) O Lii2ga,) 0 0
I?22(0) I222(0) 0 | + Paypo12 0 0 0
0 0 0 0 0 0
1112(a212) 00 1112(a122) 1122(!1122) 0
0 0 0 +Pa12222 I?QQ(aIQQ) 1222((1122) Oa
0 00 o’ 0 0
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17
P11t {% +pra(l —Plz(o))} P11 (1 = P120)) ]

I112(0) :41912(0) [
pl\ll(l - P12(0)) (1- P12(0))

261(1=p111) (1=p12(0)) (A1 In(1=py1j11)+2B1p1)11)
I __9 D111 3 + N
122(0) =7 4P12(0) _%1—P12(0))()\1 In(1—p1j11)+2B81p1)11)
A1

T _4P1|11P12(0)(1*p1|11)5% p12(0)(1*p12(0))()\1 ln(17p1‘11)+2131p1|11)2
222(0) = N + 32

0 0
Liio(ains) =4P12(a110) (1 = P12(a112)) [ 0 +1 ]7

+1 +1
1112((1212) :4p12(a212)(1 _p12(a212)) [ +1 41 }

I CApyn(l-pip) | 10 I ~ Apynn(l-pij1) b1
112(0,122) - )\% O O 9 122(&122)_k /\Cf 0
_Apyn(-pin) 52 4 xp (—B1+82)
L) =" 30 U P12end)™ p (P4 a) b (—F1=B)

exp (S1+82)

P12(a212) = oxp (Bi+B2)+exp (—Bi—p32)

éxp (——2’81;1’3

P = B1+B82 —B1+82\°
o (it e (F572)

{oml( 255 ) remp (22472) )

PR e (5 v (B} e (i)
For Cs:
Liiz0) 0 Iizso Lit3(ans) O Tis3(aiss)
Irvmne) (Cs, 6) = o 0 0 +Pay1313 0 0 0
17 0 I 17 0 I3,
133(0) 333(0) 133(a113) 333(a113)
I113(a503) O O L113(as) 0 O
+Pi00323 0 0 O [ 4 Pags23 0 0o 01,
0 0 0 0 0 0
where
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1— Papgs 4 1— 1—
1113(0) :4(171013(0)) [( P3|23) { A2 P13(0)( P3|23)} p13(0)( p3|23)]
P13(0)(1 — P3j23) D13(0)

. 0 | (1- p3|23) {_251;0;\23 i P13(0) (N2 ln(1*)1\923|23)+251103|23)}
133(0) = P13(0) p13(0)€)\2 In(1—p3123)+261P3|23)
A2

I _4p3ja3(1—p130)) (1—p3j23)B7 | P13y (1—P13(0)) (A2 In(1—p5)23)+2B1p5)23)°
333(0) = A + X2

0 0
L113(as3) =4P13(a225) (1 — P13(a223)) [ 0 +1 ]7

+17 +1
1113(0,123) :4p13(a123)(1 —p13(a123)) |: +1 +1 :|

I _ 4psja3(1—p3)23) +1 0 I _ 4p323(1—p3)23) B1
113(a213) — )\g 0 0| 133(a213) — )\g 0

__4ps23(1-P323) _ B1+B
1333(“213)_W6%’ P13(a223) = exp (512(52();%1)2()51—52)’

_ exp (B1+82)
P13(a123) = exp (—B1—Ba)+exp (Bi+52)

exp (B1+52) _
exp (51+62)+{exp (51>\—252)+exp (%2—52)} 2

P13(0) =
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Table 4. C.NMNL model, A1 = .6, A2 = .4 (two nests): Locally D-optimal design for
Design (9), where there are four choice sets each with three alternatives; w.r.t local D
-optimal criterion, ¥(&, 80) = (det(I narnry(€,00))) " (Comparing to Table 3)

Br Bz wi w; wz wi ¥(,00)

-7 .500 .000 .500 .000 2.099
-4 .500 .000 .500 .000 1.829
-8 0.0 .500 .000 .500 .000 1.716
.3 .500  .000 .500  .000 1.785
.6 .500 .000 .500 .000 2.004

-7 469 .066 .464 .000 2.123
-4 486 .028 486 .000 1.756
-3 0.0 .500 .000 .500 .000 1.606
.3 .500  .000 .500  .000 1.721
.6 .500 .000 .500:..000 2.058

-7 272 272 228 228 4.769
-4 284 284 216 .216 3.960
0.0 0.0 .305. 1305 .195 .195 3.762
S 3240 324176 176 4.234
6 341 .341 159 159 5.345

-7 .000 .605 .000 .395 1.691
-4..000 .574 .000 .426 1.495
.6 0.0 .000 .537 .000 .463 1.445
3 .000  .521  .000  .479 1.550
.6 .000 .512 .000 .488 1.807

For Cy:
Lig0) 0 Tz Ligan) O Liza(ain)
Irvmne) (Cy, 6) = TO 0 0 |+ Pay4 . 0 0 0
I134(0) 0 Is34(0) 1134(a114) 0 I334(a114)
Ill4(a224) 00 1114((1124) 00
4Pyt 0 0 0| +Pm 0 00
0 0 0 0 0 0
where
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P3j23 (17}03'23 + P3[23P14(0 ) —P3|23P14(0
2
T114(0) =4(1 *1014(0)) | A2 | © | ©
—P3|23P14(0) P14(0)
281(1-p3j23) | P1a(o)(A2 In(1—p3|23)+2B81p3)23)
I — o1 ) P3|23 33 + N
134(0) = P14(0) _ P14(0) (A2 In(1—p323)+251p3)23)
A2
I _4p3ja3(1-p14(0)) (1—P3j23)B7 | P1ao) (1—P1a(0)) (A2 In(1—p5)23)+2B1p5)23)°
334(0) = A + 32

[+1 -1
1114((1224) :4p14(a224)(1 - pl4(a224)) -1 +1 :l)

[0 0
Ill4(a124) :4p14(a124)(1 _p14(a124)) 0 +1 :|

_4Ap3j23(1—p3)23) +1 0 _ Ap3ja3(1—p3)23) b1
I = e I =l e
114(0,114) )\g 0 0 ) 134(0'114) )\3 0

_ 4p3jo3(1=p3)28) 52
I334(a114)_ )\421 ﬂl’

_ exp (—B1+052) _ exp (—f1+82)
P14(az24) = xp (—Prtpa)texp (B1—P2) * P14(a124) = oxp (“Br+B2) +exp (—B1—P2)

exp (—B1+p2)

PO Z (=B1-+62)+{exp (2522 ) exp (2= Bz)}A2 ,
()
Psj23 = (222 ) exp (4222)

where pj|,,,s denotes the conditional probabilities and I (), Pms(;) denote
the elements of the information matrix and marginal probabilities without
considering alternative j, respectively. We can see Table 3, which includes
some locally D-optimal design based on the RO.NMNL model.
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Table 5. RO.NMNL model, 81 = 82 = 0.0 (two nests): Locally D-optimal design for
Design (9), where there are four choice sets each with three alternatives; w.r.t local D
-optimal criterion, ¥r (£, 00) = (det(Irmnmnr) (€, 00)))

A1 A2 wi w3 w3 w;  Yr(£",00)
0.1 0.321 0.293 0.196 0.190 1.251
0.2 0.367 0.325 0.158 0.150 1.341
0.3 0376 0.331 0.151 0.143 1.358
0.1 04 0378 0.332 0.149 0.140 1.366
0.8 0.380 0.332 0.149 0.139 1.386
0.9 0.379 0.332 0.150 0.139 1.392
0.1 0.220 0.218 0.281 0.280 1.493
0.2 0.247 0.239 0.258 0.255 2.018
04 0.3 0286 0.268 0.226° 0.220 2.306
0.5 0336 0.306 0.182  0.175 2.539
0.8 0.358 0.321 [ 0.164 0.156 2.649
1.0 0.363 0.324 0.161 < 0.152 2.693
0.1 0.214  0.213 - 0.286 0.286 1.526
0.2 0.221  0.219° 0.280 0.279 2.121
0.8 0.3 0234  0.229 0.269 0.268 2.529
0.5 0.268 0.257 0.239 0.236 3.031
0.8. 0309 0.291 0.202 0.197 3.368

Table 4 denotes some locally D-optimal designs for C.NMNL (Classical NMNL)
model. Based on Table 4 and Table 5, it is seen that:

VR(E",0).= (det(Irpnr) (€7, 0))) ™" < (det(Inunw (€, 0))) " = U(€7,0)

for all of values of the parameters (true values). Then, it can be argued
that the Rank-Order choice experiment is better than the classical choice
experiment for estimating NMNL models.

Specially, let 85 = 0 and Ay = Ao = A. Now, based on the two choice
sets Cp and C3, we will have pyj1; = pija3, Paji1 = Poje3 (Marginal choice
probabilities w.r.t all of the alternatives in choice sets Cg; s = 1,3 and p11 =
pos, also there exist similar considerations for two others choice sets Co and
Cy so that pij12 = p1jass P2j12 = P2j2a and p12 = p2s. Due to the symmetry
considerations, we can derive an optimal solution with weights w; = ws and
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wy = wy for the design (9), where 2w; + 2wy = 1 or wy = % — w; as follows:

[1]

g:{cl ICQ Cs C4 }G (11)

1
wy 3 —w wr 3 —wi

In this case, wj = 0.5 when 8; < —0.05 (Table 6) so that we can consider a
locally D-optimal design, when A = 0.1, as follows:

% N C C C; Ci
$51<-005 =\ 05 0.0 05 0.0

But if f; is positive then w first decreases (when 0 < 1 < 0.01, for too
small values of 1) then increases (when 0.05 < 51) as i increases (Table
6). For instance, in comparison, when wi(51=0.3) = 0.000, wi(ﬂlzo.fs) = 0.005,
wf(ﬁlzo.g) = 0.068 and wi(ﬁlzl.o) = 0.315, more cases were calculated in
Table 6 (the Sequential Quadratic Programming method by MAPLE).

Let’s consider A = 1.0. Table 6 denotes that w} decreases as 3 increases.
So that, we will face (approximately) the following locally D-optimal design:

e C C G C
1 025 0.25 0.25 0.25 [’

where S1 tends to zero from both right and left.

In the other cases we suppose that 3 = 0,\2 = 0.1. Based on the
combination of alternatives in choice sets Cq to C4, there will be permutation
between the two choice sets C; and Co, by permuting the levels of the first
attribute in the second nest. Furthermore, by permutation, the levels of the
first attribute in the first nest will have permutation between the two nests
Cs and C4. Now, we consider the following invariant design instead:

gz{cl L G G }ez. (12)

1 1
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Table 6. RO.NMNL model, 82 = 0,

with respect to Design (11)

A1 = X2 = A (two nests): Locally D-optimal design, w7,

A
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9 0.068 0.056  0.021  0.000 0.000 0.000 0.000 0.000 0.000 0.041
0.8 0.044  0.027  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047
0.7 0.024  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.059
0.6 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 . 0.078
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.048 = 0.101
0.4 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.084 /0.129
0.3 0.000  0.000  0.000 0.000 0.000 0.000 0.018 0.080 0.125 0.159
0.2 0.000  0.000 0.000 0.000 0.000 0.041 -0.101 0.141 0.169 0.191
0.1 0.000 0.000 0.000 0.062 0.127 0.161  0.184- 0.200 . 0.212  0.222
0.05 0.000 0.024 0.154 0.188 0.201 0.211 0.220 0.228 0.234 0.238
B1 0.001 0.263  0.257 0.257 0.257  0.257. 0.257 0.256 _0.256 0.255  0.255
-0.001 0.281 0.265 0.263 0.261 0.260  0.259 0.258 0.257 0.257  0.256
-0.05 0.500  0.500 0.500 0.424 0.356.. 0.322 0.303 0.290 0.281 0.275
-0.1 0.500  0.500 0.500 0.500 0:492 0.408 . 0.360 0.330 0.310 0.296
-0.2 0.500  0.500 0.500 0.500 0.500 0.500 0.498 0.425 0.377 0.343
-0.3 0.500  0.500  0.500 0.500  0.500 +0.500 0.500 0.500 0.454 0.398
-0.4 0.500  0.500  0.500 0.500- 0.500 0.500 0.500 0.500 0.500  0.458
-0.5 0.500  0.500  0.500 '0.500 0.500 0.500 0.500 0.500 0.500  0.500
-0.6 0.500  0.500  0.500 © 0.5000.500 0.500 0.500 0.500 0.500  0.500
-0.7 0.500  0.500 0.500. "0.500 0.500 0.500 0.500 0.500 0.500  0.500
-0.8 0.500  0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500  0.500
-0.9 0.500 <0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500  0.500

Table 7. RO.NMNL model, 3 = 0: Locally D-optimal design, w*, with respect to Design (12)

A1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 0.307 0.243 0.225 0.219 0.217 0.215 0.214 0.214 0.213 0.213
0.2 0.346 0.306 0.265 0.243 0.232 0.226 0.223 0.220 0.219 0.217
0.3 0.353 0.335 0.305 0.277 0.257 0.245 0.237 0.232 0.228 0.225
0.4 0.355 0.345 0.327 0.305 0.283 0.267 0.255 0.246 0.240 0.236
A2 0.5 0.356  0.349 0.337 0.321 0.304 0.287 0.273 0.263 0.254 0.248
0.6 0.356  0.351 0.342 0.331 0.317 0.303 0.289 0.278 0.269 0.261
0.7 0.356  0.352 0.345 0.336  0.325 0.313 0.301 0.290 0.281 0.273
0.8 0.356  0.353 0.347 0.340 0.331 0.321 0.310 0.300 0.291 0.283
0.9 0.356  0.353 0.348 0.342 0.334 0.326 0.317 0.308 0.299 0.291
1.0 0.355 0.353 0.349 0.343 0.337 0.329 0.321 0.313 0.305 0.298
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Based on design (12) and the assumptions 3 = 0, Ay = 0.1, Table 7 denotes
that w* increases as A1 decreases, when Ao = 0.1. For different values of
A1 and Ag, optimal weight has been shown by Table 7 (It has used the
Sequential Quadratic Programming method by MAPLE). It can be seen
that the optimal weight, w*, decreases when A; and A9 are equal and also
increase (Table 7). Also, with respect to the fixed values for the dissimilarity
parameter Ao, Table 7 denotes that the optimal weight, w*, decreases as \;
increases. That means that the alternatives of the two choicesets C1, Cqy are
more similar than the combination of the alternatives in the two other choice
sets; C3,C4. But, based on fixed amounts of \; optimal weight, w*; has an
increasing trend (expect when 0 < A; < 0.2) as A2 dncreases:. That means,
the combination of the alternatives in the two choice sets Csz, C4 are less
similar than the alternatives in two choice sets C1,Cy. Table 7 also denotes
that for fixed small values of A; (0 < A1 < 0.2);the optimal weight, first, has
an increasing then a decreasing trend when Ay increases.

4 Discussion

This paper has dealt with a model from non-linear models. This model
belongs to a very complex model from logit family. In this kind of logit
model we have tried to obtain the probability related to choosing an alterna-
tive with the highest utility in the choice set. In this situation, a consumer
prefers to choose an alternative with the best utility within all of the alter-
natives in a choice set. But, sometimes we like to know her/his preference
about the other alternatives in the same choice set (except the best alterna-
tive). Therefore, we'want the consumer to choose other alternatives based
on his/her preference. Of course, in this step it is not necessary to rank all of
the alternatives in the choice set by the consumer, instead, she/he can rank
a part of them.

In this paper, in contrast to classic logit models (McFadden, 1974) the
alternative with the highest utility will be removed from the choice set, then
the next alternative will be chosen from the new choice set which excludes
that alternative with the highest utility. This algorithm will be continued to
choose suitable alternatives (not all alternatives) in the choice set.

In continuation, based on several choice sets we have defined a design
(for estimating parameters), then we have obtained the information matrix
of that design. Based on D-optimal criterion and with respect to the lo-
cal optimality criterion (non-linear complex model) a suitable criterion was
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introduced and it was determined how we can obtain a locally D-optimal
design. Finally, we have described this method by an example.
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