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Using Wavelets and Splines to Forecast
Non-Stationary Time Series
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Abstract. This paper deals with a short term forecasting non-stationary
time series using wavelets and splines. Wavelets can decompose the series
as the sum of two low and high frequency components. Aminghafari and
Poggi (2007) proposed to predict high frequency component by wavelets and
extrapolate low frequency component by local polynomial fitting. We pro-
pose to forecast non-stationary processusing splines based on this procedure.
This method is applied to forecast simulated data and electricity load con-
sumption of two regions. Result of the study show, the proposed method
performance is better than the local polynomial fitting.
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1 Introduction

Classical approaches to forecast non-stationary time series need to perform
the preprocessing, such as differentiating and filtering to transform a non-
stationary process to stationary one. Selection of an appropriate transform
is not always easy.

In the recent years, application of wavelets developed very rapidly in
different domains such as statistics and image processing due to their well
properties. Considering local property of wavelets, they are well suited to
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handle non-stationary time series. A non-stationary process can be converted
to stationary one, using a regular wavelet.

Several authors considered wavelets in time series domain, see e.g. Dahlh-
aus et al. (1995), Percival and Walden (2000). Although many approaches
of time series use wavelets, there is less attention to forecasting time series.
The first approach which uses wavelets for prediction is based on wavelet
spectrum as a local version of Fourier spectrum (Fryzlewicz etraly 2003).
On one hand, this approach especially designed for the class of locally sta-
tionary wavelet process and on the other hand, their parameters selection
algorithm seems not to be convergence. Renaud et al. (2003) used another
approach which estimates the prediction parameters by direct regression of
the stationary process on Haar non-decimated wavelet coefficients depend-
ing on its past values. Nevertheless, this approach for stationary process
and classical models differ from parameterization viewpoint. Aminghafari
and Poggi (2007), extended this approach using more regular wavelets and
extrapolated the low frequency component (using local polynomial fitting)
to forecast non-stationary signal.

We assume the observation Y;, €an be decomposed to two parts as fol-
lows: Y; = f(t) + X; where X; is'a stochastic process and f(t) is a deter-
ministic smooth function. If the level of decomposition is suitably chosen,
the deterministic part of signalsi(trend or smooth part) can be estimated by
polynomial fitting on the approximation coefficients. Also purely stochastic
part can be predicted by detail coefficients (Aminghafari and Poggi, 2007).

On the other hand; local polynomial fitting is a poor technique to ex-
trapolate a signal. In this paper, we propose to bring together the existing
method and extrapolation with splines. After a short review on wavelets, we
describe the former approach briefly in Section 3. In Section 4, we describe
spline extrapolation and in Section 5, we compare our approach with classical
one and the proposed approach by Aminghafari and Poggi (2007) through
simulated and real data.

2 Non-decimated Wavelet Transform

Wavelet transform is a powerful tool in the non-parametric statistics and
signal processing. This transform is local. It can analyse the data in both
time and frequency aspect simultaneously.

The usual wavelet transform which is often used in the estimation con-
text is discrete wavelet transform (DWT). Although, this transform has many
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good properties (such as performing an orthonormal basis) but it is not ap-
propriate for time series purposes. This transform is not a shift invariant
transform. It means when we observe a new observation, all wavelet coeffi-
cients have to be recomputed. To overcome this drawback, in this article, we
use non-decimated wavelet transform, which is shift invariant. The wavelet
coeflicients at a specified level can be computed from previous one using a re-
cursive formula. The non-decimated wavelet coefficients of X =1(X;, ..., X,,)
are defined for level j > 1 as follows:

L—1

Cie =Y Mej 1 (i) (1)
=0
L—1

Wi =Y 0C 12, (2)
=0

where and h and g are the low-pass and high-pass filters associated to selected
wavelet, normalized in L', L is the filter length and (¢ — 2/711), is positive
part of (t —2/71). Let us note-that the signal X can be considered as
initial value of this algorithm.i.e. ¢y = X. The approximation coefficients
({¢jeh1<j<ue) and detail coefficients ({w;:}i1<j<s¢) have low frequency and
high frequency nature respectively. Let us note that J is decomposition level
and ¢ is time. For more details on non-decimated wavelet (NDW) transform,
the reader can refer to Percival and Walden (2000), Chapter 5.

3 The Basic:Method

In this section, we describe briefly the proposed method for forecasting non-
stationary time series in Aminghafari and Poggi (2007). For non-stationary
time series, consider an observed time series of the form Y; = X;+ f(t), where
X; is'a purely stochastic time series and f(t) is a deterministic component.
From the reconstruction equation, we have X = Aj;+ Z}‘le Dj, (see Percival
and Walden (2000), p. 173), then we can write:

J
Yi=(As(X)i+ | X Di(X) | +f(t), 1<t<N (3)
j=1 .

where A;(X) and D;(X) are respectively suitably chosen reconstructed ver-
sion of approximation and detail coefficients of level j, which obtained by
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non-decimated wavelet (NDW) coefficients of X. If we choose a convenient
wavelet i.e. using a wavelet which has enough zero moments, the details
are supposed to be free of f. Hence, the term D; = (Z}]:l D;(X)): can
be predicted using a regression between observations and their past wavelet
coefficients {w; 1 }r<i—s-

To predict Yn 41, when we have observed Y1, ..., Yy, the prediction equation
is considered as follows:

?N-&-l = bN-H + ZN-H (4)
where f)N+1 represents the prediction of high frequency stationary com-
ponents i.e. Dy and Zyy1 is extrapolation of the rest i.e.-extrapolation of

—

Zy =Y — (Z;j:l D;(X)): = Y;— D, which is an estimation of (As(X))e+f(2).
The quantity D N1 can be written as follows:

B T
DN+1 = PNa

where Py contains wavelet coefficients until time N and « is the vector
of parameters to be estimated by minimizing the empirical mean square
prediction error (MSPE) defined.as follows:

T
Pt = [’U)Lt,...,’U)Lt_er,...,wt]’t,...,wj,t_zjrl]] 5 t= 1,...,N
T
QO=1[A11, Al eies @1y s Q] (5)

Let us note that « can be estimated by minimizing another criterion
such as mean absolute prediction error. In the presence of outliers in the
data this criterion is preferred to be used. Since in our references MSPE is
used, we use this one. Signal Z; can be extrapolated by various deterministic
or stochastic ways. For example, using polynomial fitting (Aminghafari and
Poggi, 2007); using Kernel smoothing (Aminghafari and Poggi, 2011) or by
splines which is proposed in this paper. In the next section, we describe the
extrapolation technique using cubic splines. When Zy 1 is extrapolated, it
replaced in equation (4), then the final prediction of YN+1 will be obtained
where N is the number of observations.

4 Extrapolation with Spline

Splines are useful tools for interpolation and extrapolation of signal. Splines
are piece-wise polynomial, hence, they have local nature in the analysis of
signal. For more details about splines, see Hastie et al. (2001) Chapter 5.
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Let us denote the extrapolation of a signal Z; at time ¢+ 1 by Zt+1 using
a cubic spline. Z;y1 can be written as follows:

K

Zip1 = Br+ Bot + Bst® + Bat® + > Barr(t — &)% (6)
k=1

where £’s are knots, K is the number of knots and (¢ — &) is positive part
of (t —¢,). For the given knots, we estimate 3’s by minimizing empirical
mean square prediction error. To extrapolate or interpolate using splines,
one needs to select the number of knots and their position. In the following
remark, we describe the method that we use for this purpose.

Remark 1. To select optimal knots, we use an iterative algorithm based on
the Gauss Newton method. For details, see’Gallant and Fuller (1973) and
Bjorck (1996). To this end we use the optknt function of MATLAB which
is based on algorithm described in de Boor (1997). This function needs the
initial values. For selecting the initial knots we propose to divide the data
into intervals of equal lengths. We call this interval a knot interval. For each
interval, we choose two knots, which are the relative maximum and minimum
number of the data in that interval. For example, if we have 1000 data as a
training set and we choose an interval of length 200, i.e. we have 10 knots
overall.

In this approach, one needs to determine the length of interval. We
use a similar approach to Aminghafari (2006), a cross-validation technique.
Suppose that we observed n observations. We consider n —m observation as
training set and the last m sets as test set. We fit cubic spline to training
set considering the proposed interval length and extrapolate the test set one
by one: We select the length which has the best error criterion on the test
set.

5 Experimentation

Now, we explain the framework of our experimentation. We compare follow-
ing methods in this paper:

e First method: forecasting based on autoregressive model denoted by
AR in the tables;
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Table 1. Prediction performances of different methods for prediction of a sinusoidal data

Method Parameter R
AR p=14 1.15
Wavelet+Polynomial window=10 1.05

Wavelet+Spline knot interval=200 1.11

e Second method: forecasting based on wavelet and polynomial (pro-
posed method by Aminghafari and Poggi, 2007) denoted by Wavelet +
Polynomial in the tables;

e Third method: forecasting based on wavelet and spline (our proposed
method) denoted by Wavelet + Polynomial in the tables.

Let us recall that we use cubic spline to extrapolate Z;;1. We use Daubechies
wavelet with 2 vanishing moments, db2 wavelet and reserved filter. This
wavelet is orthogonal to polynomial of order 2. We use also the root of
an unbiased estimator of mean square prediction error as the criterion for
comparing these methods asfollows:

R .
N o > (X - Xy)? (7)

t=n+1

R =

where N represents the number of total data, N — n represents the number
of data to be predicted based on each method, X is the real value and X,
is its prediction.

5.1 Simulated Data: A Sinusoidal Function Contaminated
by Gaussian Noise

We simulate 30 realizations of time series of N = 1000 from the model of
a sinusoidal function contaminated by Gaussian noise with zero mean and
variance equal to 1. In this data, we choose onward, the first 904 data as
training set and the last 96 data points as test set. We perform the one step
ahead prediction methods on test set. For this data, we define R as the mean
of R on 30 simulated realizations. The results are given in Table 1 wherein
p is the order of AR model.
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The best prediction method for this data is obtained for polynomial and
wavelet method. Our proposed method has better result than AR prediction.

Table 2. Prediction performance of our method for different knot intervals for FEC data

knot interval R
100 417.31
125 411.21
150 409.90
175 409.95
200 409.28

Table 3. Prediction performances of different methods for prediction of FEC data

Method Parameter R
AR p =31 971.48
Wavelet+Polynomial window=10 414.20

Wavelet+Spline knot interval=200 410.14

5.2 France Electricity Consumption Data

To examine the performance of our method, we consider France electricity
consumption (FEC) data.. The consumption is measured from first August
1985 to 4th July 1992, every half an hour. We divide the data in two parts:
we take the first 1344 data as past data and then we predict 96 points.
In Table 2, the performance of our method is computed for different knot
intervals.

The proposed method select the best knot interval equal to 200. In Table
3, R has been computed for different methods. Our proposed method has
the best performance. The second method i.e. wavelet and polynomial has
performance near to our method. As expected, fitting AR model to this data
leads to an inadequate result.

5.3 Tehran Electricity Consumption Data

This data set is collected on the first region of Tehran electricity consumption
(TEC) every hour from 22 Mars 2009 to 22 September 2009. We consider
the last 1440 data and divide the data in two parts: we take the first 1344
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data as past data and we predict 96 points. In Table 4, the performance of

our method is computed for different knot intervals.

Table 4. Prediction performance of our method for different knot intervals for TEC data

knot interval R
100 164.86
125 163.40
150 163.09
175 162.68
200 161.43

As shown in Table 4, the approach propose to select knot interval equal
200 for which we have the best performance. In Table 5, R is given for dif-
ferent methods. The best performance is obtained for our proposed method.
The performance of wavelet and polynomial is near to performance our
method. AR has the worst performance. Figure 2 shows TEC data and its
prediction based on proposed method for the knot interval equal to length

200.

3 . .
1340 1360 1380

I
1400

Figure 1. FEC data to be predicted (line) and its prediction using our method (line dots)
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Table 5. Prediction performances of different methods for TEC data

Method Parameter R
AR p=27 190.11
Wavelet+Polynomial window=10 165.05

Wavelet+Spline knot interval=200 162.43

6 Conclusion

As expected, our proposed method leads to better result on real data than the
method based on polynomials and wavelets. For‘simulated data, these two
methods have the similar results. The proposed method seems interesting
and needs more study. The proposed method does not need any prepro-
cessing as applied in the classical method and does not need to know if the
data is stationary or not. In the classical. method, we need to perform some
transformation to change the data to stationary one. If this transformation
does not selected correctly, the results can be inadequate. Two directions
for future work will be considered. In this paper, we use cubic spline. First,
it seems we can apply other splines such as B-splines. Second perspective
can be studying on knots selection.»We expect applying a better strategy to
choose knots leads to a_better result.

5500
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Figure 2. TEC data to be predicted (line) and its prediction using proposed method (line dots)
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