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We propose a new approach to monitor an overall mean shift of a bi-variate 
quality control system. To do this, we first define beliefs on deciding 
whether the quality characteristics are in out-of-control state. Then, by 
taking new observations, in an iterative approach we update the belief of 
each quality characteristics being out-of-control. This task is performed 
using a recursive method and prior beliefs. Finally, we introduce a statistics 
in combination with Bivariate Exponentially Weighted Moving Average 
(BEWMA) statistics to improve the performance of the proposed method. In 
order to understand the proposed methodology and to evaluate its 
performance, we perform a simulation study. Moreover, we compare in- and 
out-of-control average run lengths of the proposed method with the ones 
from the well-known MCUSUM and MEWMA procedures in different 
scenarios of mean shifts. The results of the simulation study show that the 
proposed methodology performs better than the other methods for small 
shifts of the process mean.  
 
Keywords: Multivariate statistical quality control; MCUSUM; MEWMA; 
Average run length. 

 
1. Introduction and Literature Review 

In many situations, the quality of the process can be characterized by a single 
continuous random variable, which is usually assumed to follow a normal distribution. 
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However, it is increasingly common for processes to be characterized by several, 
usually correlated, variables [8].  

Multivariate control charts are widely used to monitor industrial processes [12]. 
As the objective of performing multivariate statistical process control is to monitor the 
process over time, in order to detect any unusual events allowing quality and process 
improvement, it is essential to track the cause of an out-of-control signal. However, as 
opposed to univariate control charts, the complexity of multivariate control charts and 
the cross-correlation among variables make it difficult for analysis of assignable causes 
to the out-of-control signal. This is the basis for extensive research performed in the 
field of multivariate control chart since the 1940’s, when Hotteling [6] recognized that 
the quality of a product might depend on several correlated characteristics. However, 
because of computational complexity, researchers and practitioners did not pursue the 
multivariate quality control at that time. Now that the development of high-speed 
computers, the technological advances in industrial control procedures, and the 
availability of modern data-acquisition equipments have alleviated this problem, many 
researchers have proposed several multivariate control charts, where each has 
advantages as well as disadvantages [14].  

Early research on multivariate Shewhart charts goes back to Hotelling [6], where 
he introduced the problem of correlation between the quality characteristics of a process 
and came up with the well-known T2 statistic to identify whether the whole process is 
out-of-control. A major advantage of Hotelling’s T2 statistic is that it is the optimal test 
statistic for detecting a general shift in the process mean vector for an individual 
multivariate normal observation [4]. However, the technique has several practical 
drawbacks. One of the most important ones is that when the T2 statistic indicates that a 
process is out of control, it does not provide information on which variable or set of 
variables is out of control. Moreover, it is difficult to distinguish location shifts from 
scale shifts, since the T2 statistic is sensitive to both types of process changes.  
Murphy [15] proposed a method to identify the “out-of-control” variables based on 
discriminant analysis. We can view this quality control method as trying to discriminate 
between the process of being “in control” or “out-of-control”. He divided the complete 
set of variables into two subsets and then tried to determine which one caused the “out-
of-control” signal. Extensions of the Murphy’s work are Niaki and Moeinzadeh [17] 
and Niaki et al. [18], where they developed a statistic and an algorithm for the cause-
selecting problem in which the population parameters were not known and were to be 
estimated.  

The principal components analysis is a way of explaining the variance-
covariance structure in a multivariate environment by the use of a few linear 
combinations of the original variables. Jackson [7] gave a detailed description of 
principal components and its possible use as a multivariate quality control tool. The 
problem with principal components is that they are not easily interpretable in many 
cases, and do not have a one-to-one relation with the original variables. Nevertheless, in 
some cases, depending on the context, they can be very useful.  

Doganoskoy et al. [3] proposed the use of the univariate t-statistic for ranking 
the variables most likely to have changed. Then, to further strengthen the belief that a 
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certain variable has changed, they applied the Bonferroni type interval. The obvious 
drawback of this method is that it only tells you which variable is most likely to have 
shifted, which is not conclusive. Also, this method does not allow the user to study the 
trends.  

Mason et al. [12] proposed a cause-selecting procedure using the decomposition 
of T2 statistic. By decomposing T2 statistic, the user can see the contribution of each 
variable. This decomposition also allows the user to detect which variable(s) with 
significant contribution is (are) the cause of deviation. The drawback of this method is 
its extensive computing needs and its sensitivity to the number of variables.  

Multivariate Exponential Weighted Moving Average (MEWMA) charts have 
been also discussed by Mohebbi and Lakhbir [13], Ryan [23], Wade and Woodall [25], 
Crowder [2], Lowry et al. [9], Lucas and Saccucci [10], Prabhu and Runger [22], 
Hawkins [4], Doganaksoy et al. [3], and Marion and Young [11]. The MEWMA control 
charts use all the observations since the detection of the last special event rather than 
only the last observation vector as in the Shewhart-type charts. Their advantage over the 
latter charts is that their average run length is smaller for small shifts in the process 
mean.  In MEWMA category, Lawry et al. [9] presented a multivariate extension of the 
exponentially weighted moving average (EWMA) control chart, and compared their 
chart to a multivariate cumulative sum (MCUSUM) control chart based on the average 
run length (ARL) performance. They concluded that their chart was similar to the 
MCUSUM chart in detecting a shift in the mean vector of a multivariate normal 
distribution, and that the ARL performance of the MEWMA chart, as well as the 
Hotelling’s and MCUSUM charts depended on the underlying mean vector and 
covariance matrix only through the value of the non-centrality parameter. They stated 
that in order to avoid the potential inertia problems, one should always use the 
MEWMA and MCUSUM charts in conjunction with the Hotelling’s chart. In order to 
improve the detection of small shifts in multivariate statistical process control, Prabhu 
and Runger [22] provided some recommendations in the selection of the parameters of a 
multivariate exponentially weighted moving average control chart.  

The properties of MCUSUM control charts are quite similar to those of the 
MEWMA charts. In this category, Woodall and Ncube [26] proposed methods to 
approximate parameters of the distribution of the minimum of the run length of the 
univariate CUSUM charts. For the bivariate normal distributions, they showed that their 
MCUSUM method worked better than the Hotelling’s T2 procedure. Healy [5] 
discussed the natural applications of CUSUM procedures to the multivariate normal 
distribution. Crosier [1] presented the design procedures and the average run length for 
two MCUSUM quality control procedures. The first MCUSUM procedures reduced 
each multivariate observation to a scalar, and then formed a CUSUM of the scalars. The 
second MCUSUM method formed a CUSUM vector directly from the observations. 
These two procedures were then compared to a multivariate Shewhart chart and the 
robustness of the procedures was discussed. Pignatiello and Runger [21] considered 
several approaches for controlling the mean of a multivariate normal process. They 
compared the performance of these approaches, as well as the performance of their two 
newly proposed charts, based on the estimated ARL and reported the results. 
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The multivariate quality control problem can also be considered as an 
optimization problem to minimize the total cost. Serel and Moskowitz [24] proposed a 
method to design joint EWMA control charts for mean and variance. They calculated 
the quality related production costs using Taguchi’s quadratic loss function. Nenes and 
Tagaras [16] considered the economically Bayesian control charts. 

Furthermore, Artificial Neural Networks (ANN) have been other tools to detect 
out-of-control signals and classify the state of multivariate quality control systems; see 
for example; Niaki and Abbasi [19], Noorossana et al. [20]. 

We introduce a new approach to control the mean shifts of quality characteristics 
in bi-variate environments. To do this, in Section 2, we first define the beliefs and 
explain how to model a multivariate SPC problem by an iterative approach, where we 
take advantage of Bayesian inference. Then, in Section 3, we introduce a statistics in 
combination with MEWMA statistics and clarify the approach by which we improve the 
beliefs. An illustrative example is given in Section 4 to better understand the proposed 
methodology. In order to evaluate the performance of the proposed procedure in terms 
of in and out-of-control average run lengths, we perform some simulation studies in 
Section 5. Finally, the conclusions and recommendations for future research come in 
Section 6.  
 
2. Beliefs and the Approach of its Improvement 

For the sake of simplicity, we assume only one single observation (n=1) on the 
quality characteristic of interest in each iteration of the data gathering process. For other 
values of n, we will reach the same conclusion.  
Let kix  be the observation of the ith quality characteristic (variable), i=1,2, at iteration 
k, k=1,2,… . Then, at iteration k of the data gathering process, we define the observation 
vector [ ]1 2,k k kx x=x and observation matrix ( , ,..., )k=k 1 2O x x x . The decision-making 
process at any iteration is in a stochastic space such that we never can surely say that the 
production process is in an out-of-control state. After taking a new observation, kx , we 
define the belief of variable i to be in an out-of-control state as 1( ) ( , )i k i k kB B −=O x O . 
We let large and small values of 1( , )i k kB −x O  be signals of positive and negative shifts 
in the mean of ith quality characteristic, respectively. We call this statistics the belief of 
variable i to be in out-of-control condition given the observation matrix up to iteration 
k-1 and the observation vector at iteration k. At this iteration, we want to improve the 
belief of being in an out-of-control state based on the observation matrix 1k−O  and the 
new observation vector kx . Note that the prior belief of variable i is 1 2( , )i k kB − −x O  and 
we want to update it to the posterior belief as 1( , )i k kB −x O . 

Assuming that the quality characteristics of interest follow a bi-normal 

distribution with mean vector [ ]1 2,μ μ=μ  and covariance matrix
2
1 12

2
21 2

σ σ

σ σ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

2σ , at 

different iterations we use equation (3) to calculate the probability of shifts in the 
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process meanμ . However, in order to update the beliefs at iteration k, for 1,2j = , we 
use the decomposition method of Mason et al. [12] and define, 

1 1

1
1

( )k k
k

x E x
T

σ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,    (1) 

2 2 1

2.1
2.1

( )k k k
k

x E x x
T

σ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

.   (2) 

Then, in the case of in-control state, both 
1kT  and 

2.1kT are independent standard 
normal random variables. 

Based on the values of 
1kT  and 

2.1kT , the belief-updating process is proposed 
next.  
  
3. The Proposed Method 

For the initial value setting of the beliefs, assume 1 0 2 0( ) ( ) 0.5B B= =O O . Then, 
based on equations (1) and (2), we define, 

1

2.11

1 1 2
1 1

1 1 2 2 1 2

( , )( , )
( , ) ( , )

k

kk

T
k k

k k TT
k k k k

B eB
B e B e

− −
−

− − − −

=
+

x Ox O
x O x O

,  (3) 

 and 
2.1

2.11

2 1 2
2 1

1 1 2 2 1 2

( , )( , )
( , ) ( , )
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kk

T
k k

k k TT
k k k k

B eB
B e B e

− −
−

− − − −

=
+

x Ox O
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,             (4) 

Hence, 
1 2.11 1 1 1 2

2 1 2 1 2

( , ) ( , )
( , ) ( , )

k kT Tk k k k

k k k k

B B e
B B

−− − −

− − −

=
x O x O
x O x O

.              (5) 

If we define 1 1

2 1

( , )
( , )

k k
k

k k

BM
B

−

−

=
x O
x O

, we will then have, 

( )1 2.1
1 2.1 1

1 ...

k

l l
k k l

T T
T T

k kM M e e =

−
−

−

∑
= = = .             (6) 

Since ( )1 2.1
1

k

l l
l

T T
=

−∑ follows a normal distribution with mean zero and variance 

2k, we then conclude that ( )kLn M follows a normal distribution with mean zero and 
variance 2k. Hence, we can define the upper and the lower control limits of ( )kLn M as 

2

2

UCL C k

LCL C k

=

= −
                       (7) 

where C  is the upper (1 )α− % percentile of a standard normal distribution. 
From the above control limits, we derive the upper and lower control limits 

for 1 1( , )k kB −x O as: 

, 

, 
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( ) ( )2      and     2
k kLn M Ln MUCL C k LCL C k= = −  

( )2 2kC k Ln M C k⇒− ≤ ≤  

( )
( )

( )
( )

2 21 1

1 1

2 2
1 1

C k C kk k

k k

B O B O
C k Ln C k e e

B O B O
−

⎛ ⎞
⇒ − ≤ ≤ ⇒ ≤ ≤⎜ ⎟− −⎝ ⎠

 

( )
2 2

1

11 1
1

C k C k

k

e e
B O

−⇒ + ≤ ≤ +
−

 

( )12 2

1 11
1 1kC k C k

B O
e e−

⇒ ≥ − ≥
+ +

 

( ) ( ) ( )
2 2

12 21 1

C k C k

kC k C k

e eB O
e e

−

−
⇒ ≤ ≤

+ +
 .                            (8) 

 
In a trial application of the proposed method, we observed that in situations 

where there are simultaneous mean shifts in both quality characteristics, the method did 
not show good performance in term of in-control and out-of-control average run length 
criteria. Accordingly, we combined the proposed method with the bi-variate EWMA 
control chart to improve its performance. In other words, we let an out-of-control signal 
be detected, when we observe one of the following two signals, 

• ( )1 kB O  is out of the interval 
( ) ( )

2 2

2 2
,

1 1

C k C k

C k C k

e e
e e

−

−

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥⎣ ⎦
, or 

• the MEWMA statistics ( )2  for 0.1T λ = is more that a threshold value mth . 

The values of C  and mth  should be determined such that the first-type-error 
associated with the proposed method equals to a predetermined value and also to ensure 
good properties of the method. 
 
4. An Illustrative Example 

In order to better understand the proposed methodology and to provide 
appropriate insight over the range of the belief values, the belief-outcomes of one 
simulation run are shown in Figure 1. To obtain the belief values, we first generate pairs 
of independent uniform random variates 1 2( , ) ; 

i i
R R 1,2,..., , 1, 2,...i k k k= + + , and use 

1 22 ln( ) cos(2 )i i iZ R Rπ= − to generate standard normal observations. If we define the 
quality characteristics to be X and Y random variables, assuming 0.5ρ = , at stage k of 
the data gathering process we generate Xi=Zi , i=1,2,…,k, with mean zero and variance 
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one and iY  by use of ( ) ( )
Y

Y
i i i X

X

E Y X X
σ

μ ρ μ
σ

= + −  and ( )2 2 21X Yσ ρ σ= − , where 

0 and 1Y Yμ σ= = . In the illustrative example, assuming the X variable is out-of-
control, the observations have been generated from a Bi-variate normal distribution 
with 0.5, 0, 1, 1 and =0.5X Y X Yμ μ σ σ ρ= = = = . Furthermore, the control parameter of 
the chart (C ) have been chosen to be 2.  

 

 
Figure 1: The belief-outcomes of one simulation run 

 
In Figure 1, it can be seen that the out-of-control belief of X starts with 0.5 and 

reaches 1 after 19 observations and thereafter.  
Next, we evaluate the performance of the proposed method and compare it with 

the ones from the well-known MCUSUM and MEWMA procedures in bi-variate 
normal cases. 
 
5. Performance Evaluation 

The performance evaluation of the proposed method is carried out using 
simulation. In each replication of the simulation study, we first generate correlated 
standard normal deviates using the methods as described in Section 4. Then, using 
equations (3) and (4) we update the beliefs ( )i kB O and evaluate ( )kLn M . In cases where 

either ( )1 kB O  is out of the interval 
( ) ( )

2 2

2 2
,

1 1

C k C k

C k C k

e e
e e

−

−

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 or MEWMA 

statistics is more than mth , an out-of-control signal is observed.  
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In 20000 independent replications, for an intended ARL0 of 320, the approximate 
threshold value of the MCUSUM, MEWMA methods are estimated 9.85 and 3, with 
ARL0 of 314, 323, respectively. For C=2, to achieve ARL0=330, the threshold value of 
the MEWMA method, thm, of the proposed method using trial-and-error becomes 11.  
For the comparison study, we estimate the ARL1 values of the proposed method as well 
as the MEWMA and MCUSUM procedures by 20000 independent replications in each 
of the different scenarios of mean shifts. The shifts are given in multiples of the process 
standard deviations and are shown in the first column of Table 1. The remaining 
columns of Table 1 show the ARL1 values of the methods under consideration along 
with the estimated standard deviations of the run lengths shown in parentheses.  

The results of Table 1 show that the proposed method performs better in small 
shifts of the process mean.  

Furthermore, the results of the simulation study on the out-of-control run lengths 
of the MEWMA, MCUSUM, and the proposed method for smaller shifts of the process 
mean are summarized in Table 2. Although the MEWMA and MCUSUM have been the 
most powerful methods in detecting small shifts of process means, the results of Table 2 
shows that the proposed method performs better in all scenarios of small shifts in the 
process mean. In these cases, if a small shift occurs in the mean of one of the variables, 
the belief of that variable being out-of-control converges to one fast. This leads to a 
good performance of the proposed recursive method in detecting small mean-shifts. 
 

Table 1. The results of ARL1 (SDRL) study in bi-variate normal processes 
In-control and out-of-control average run lengths Mean shifts MEWMA  MCUSUM  Proposed Method 

323.01(319.00) 314.84(328.00) 318.47(424.10) (0,0)  
9.30(2.10) 10.35(7.94) 5.68(4.17) (1.0 ,.0)Xσ  
4.16(0.74) 2.92(1.13) 2.18(1.25) (2.0 ,0)Xσ  
2.84(0.55) 1.71(0.59) 1.40(0.64) (3.0 ,0)Xσ  

11.37(5.18) 15.13(12.05) 8.06(5.16) (0,1.0 )Yσ  
6.50(2.18) 5.72(3.50) 5.98(2.39) (1.0 ,1.0 )X Yσ σ  
3.68(0.71) 2.52(0.97) 3.04(1.26) (2.0 ,1.0 )X Yσ σ  
2.64(0.53) 1.64(0.51) 1.76(0.77) (3.0 ,1.0 )X Yσ σ  
4.76(1.31) 3.52(1.66) 3.03(1.74) (0,2.0 )Yσ  
4.03(1.08) 2.85(1.18) 3.80(1.27) (1.0 ,2.0 )X Yσ σ  
3.00(0.66) 1.99(0.69) 2.87(0.80) (2.0 ,2.0 )X Yσ σ  
2.35(0.51) 1.46(0.52) 2.01(0.69) (3.0 ,2.0 )X Yσ σ  
3.12(0.69) 2.02(0.69) 1.82(0.93) (0,3.0 )Yσ  
2.89(0.63) 1.87(0.64) 2.51(0.93) (1.0 ,3.0 )X Yσ σ  
2.49(0.54) 1.56(0.54) 2.38(0.58) (2.0 ,3.0 )X Yσ σ  
2.00(0.33) 1.24(0.47) 2.00(0.42) (3.0 ,3.0 )X Yσ σ  
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6. Conclusions and Recommendations for Future Research 
We introduced a new approach to control the mean vector of a bivariate quality 

control process. To do this, we first defined the belief and explained how to model a 
bivariate SPC problem by an iterative approach involving the beliefs. Second, we 
clarified the approach by which we improved the beliefs. Third, taking advantage of a 
bivariate MEWMA method, we explained the decision-making process of mean shift 
detections in bi-variate quality control environment. Fourth, we provided a numerical 
example along with its graph to show how we updated the beliefs. Finally, in order to 
better-understand the proposed method and to evaluate its performance in terms of in-
control and out-of-control average run lengths, we performed some simulation studies. 
The results of the simulation studies showed that the proposed method worked better 
than the two well-known methods in term of out-of-control average run lengths in small 
scenarios of process mean-shifts. 

 
Table 2. The performance of the proposed method for small shifts 

Out-of-control average run lengths  
Mean shifts MEWMA method MCUSUM method Proposed method 

249.3(240.1) 303.1(300.1) 180.1(223.4) (0.1 ,0)Xσ  
141.1(131.2) 237.8(236.1) 75.5(85.2) (0.2 ,0)Xσ  

80.1(70.2) 169.2(166.2) 39.7(41.3) (0.3 ,0)Xσ  
227.1(221.3) 292.3(295.3) 195.8(269.1) (0,0.1 )Yσ  
188.9(178.2) 270.1(269.1) 89.5(104.1) (0.1 ,0.1 )X Yσ σ  
118.1(108.3) 215.2(215.1) 45.4(46.6) (0.2 ,0.1 )X Yσ σ  

72.7(61.1) 157.1(156.9) 27.2(26.1) (0.3 ,0.1 )X Yσ σ  
118.2(108.1) 219.3(215.1) 79.8(92.3) (0,0.2 )Yσ  
105.4(93.2) 204.4(201.3) 44.4(45.2) (0.1 ,0.2 )X Yσ σ  
79.1(68.2) 167.2(165.1) 29.2(27.1) (0.2 ,0.2 )X Yσ σ  
54.1(44.7) 126.1(123.9) 19.5(16.3) (0.3 ,0.2 )X Yσ σ  
64.1(63.9) 144.3(142.1) 38.4(39.1) (0,0.3 )Yσ  
59.3(49.1) 136.2(132.2) 25.6(17.0) (0.1 ,0.3 )X Yσ σ  
50.1(39.6) 116.1(112.7) 20.7(10.1) (0.2 ,0.3 )X Yσ σ  
39.1(30.33) 93.8(90.1) 14.9(10.3) (0.3 ,0.3 )X Yσ σ  

 
While the examples of the simulation studies contain correlation of 0.5 between 

variables, future research may contain cases with different values of correlations. 
Moreover, we may apply some other functions to determine the beliefs. In addition, the 
proposed method can be developed for general MEWMA control charts when the 
number of quality characteristics is more than two. Also, a simulation study for different 
values of C and thm is a good case for research. 
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