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1. Introduction 
The application of linear estimation of economic variable 
relationships is greatly important for empirical research and has a 
key role in our understanding of economic issues. Regression 
analysis is one of the favorite methods of estimation. The 
classical regression method only provides a crisp estimation for 
economic relations and is usually used in most economic surveys. 
However, there are numerous things which cause vague attributes 
in variables, coefficients, parameters and relations. Therefore, the 
use of a fuzzy method can be helpful for understanding these 
issues. Some of the reasons include inherent nature of some 
variables, errors in data collection and vague nature of 
parameters. In brief, the fuzzy nature of economic parameters and 
relations makes the causal analysis more difficult. Hence, it is 
necessary to apply a method for inferring the economic 
relationships in a fuzzy environment. Fuzzy theory is very helpful 
in understanding the vague problems, such as parameters, 
variables and relationships. 

The fuzzy set theory was first proposed by Zadeh (1965) and 
has since been successfully applied to many fields, such as fuzzy 
controls, fuzzy expert systems, and fuzzy database systems. Basic 
concepts of fuzzy set, fuzzy number, linguistic value, and 
defuzzification methods are explained in many studies 
(Welkenhaur, 2001; Cheng et al. 2006).  

Traditional econometric models typically assume that the 
underlying relationships are linear and that the relevant inputs 
and outputs are well-defined or crisp. Given that well-defined 
linear empirical models are always just approximations to the 
relationships suggested by theory, the important question is 
whether these approximations are sufficient to capture the 
behavior of real-world systems. In practice, however, there are 
cases in which observations are fuzzy in nature which cannot be 
described by probability distributions. The observations 
described by linguistic terms such as low, high, many, 
approximately equal to 5, etc. are typical examples. How to 
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estimate the parameters under a fuzzy environment is a challenge 
to the classical regression analyses, too. 

One way to handle these problems connected to uncertainty 
and imprecision of input values and theoretical relationships is to 
apply the fuzzy logic framework, based on the fuzzy set theory 
proposed by Zadeh (1965). For example, in the production 
theory, there are many types of functions defined for the 
production function which obviously differs from describing 
technological attributes. 

The fuzzy regression model has first been introduced by 
Tanaka and Wang (2001). In the literature, several papers have 
addressed the issue of regression analysis under fuzzy 
environment. Recent articles such as Sanchez and Gomez (2003; 
2004), Sanchez (2006), Kao and Chyu (2003) and Ishibichi and 
Nii (2001) used fuzzy regression in their analyses.  

In fuzzy regressions, the difference between the observed and 
the estimated values is assumed to be due to the ambiguity 
inherently present in the system. Two general approaches are 
used to fit the fuzzy regression model. One is the possibilistic 
regression model (Tanaka and Wang, 2001) which minimizes the 
fuzziness of the model by minimizing the total spreads of its 
fuzzy coefficients, subject to including the data points of each 
sample within a specified feasible data interval The other is the 
least squares fuzzy regression model, which minimizes the 
distance between the output of the model and the observed 
output, based on their models and spreads (D`Urso & Gastaldi, 
2000, 2001, 2002; D`Urso, 2003).  

In both approaches, the notion of “best fit” incorporates the 
optimization of a functional form associated with the problem. In 
particular, in the possibilistic approach, “this functional takes the 
form of a measure of the spreads of the estimated output, either 
as a weighted linear sum involving the estimated coefficients in 
linear regression, or as quadratic form in the case of exponential 
possibilistic regression” (Diamond & Tanaka, 1998). In the least-
squares approach, “the functional to be minimized is a quadratic 
distance between the observed and estimated outputs. This 
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reduces to a class of quadratic optimization problems and 
constrained quadratic optimization” (Diamond & Tanaka, 1998). 

In this paper, we apply a least-squares approach fuzzy 
regression model which was introduced by D`Urso(2003) for the 
estimation of the Energy Intensity regression equation of Iranian 
Industrial sector. The model functional relationship is crisp and 
its data structure is crisp input-fuzzy output.  

The layout of the paper is as follows: section 2 will describe 
some aspects of fuzzy concepts and a review of Fuzzy sets, 
numbers and relations. In section 3, the time series fuzzfication 
model is explained. In section 4 we shall introduce a fuzzy linear 
regression (FLR) model. The specifications of the data, variables 
and the model estimation are explained in section 5. In section 6, 
we will accomplish the fuzzification of energy intensity. 
Estimation results are presented in section 7, and section 8 is 
allocated to the summary and conclusion. 
 
2. Fuzzy sets and data  
The fuzzy set theory was first proposed by Zadeh(1965). It is 
primarily concerned with quantifying and reasoning, using 
natural language in which words can have ambiguous meanings. 
Fuzzy logic is an analytical approach that applies to multiple 
memberships of sets and different levels belonging to any one 
set. The fuzzy theory has a basic assumption that is a non-clear 
boundary between members and non-members of a set. The main 
research fields in fuzzy theory are fuzzy sets, fuzzy logic and 
fuzzy measure. Some essential definitions of fuzzy theory are 
described as follows (Tsai et al., 2006; Liu, 2009; Lin & Wu, 
2008) 
 
Definition 2-1: Let X  be a universe of discourse, A is a fuzzy 
subset of X and x is a point of X. A is defined as: 

{ }XxxxA A ∈= ))(,( µ    
Where )(xAµ  is the membership function (MF) of associates x in 
A with a real number in the interval [0,1]. The value of  )(xAµ  
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represents the membership grade of x. Suppose xD  is a domain of 
x. The mapping of the membership function will be: 

[ ]1,0:)( →xA Dxµ . Fuzzy set A is sometimes represented as 
follows: 
 

n

nAAA

x
x

x
x
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1 µµµ
+++=    

Definition 2-2: The cut−α of fuzzy set A is defined as: 
{ },)( αµα ≥∈= xXxA A     

where [ ]1,0∈α .  
 
Definition 2-3: Fuzzy set A is normal if  1)(max =xAµ . 
 
Definition 2-4: N is called a triangular fuzzy number and can be a 
triplet ( )rm,, , if the membership function of N or )(xNµ  is defined 
as: 
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Where m, and r are real numbers and rm ≤≤ . The 

triangular fuzzy number is shown in Fig.1. Indeed if there is 
r= , then the fuzzy number will be called homogenous 

(symmetric), otherwise  non-homogenous(non-symmetric). A 
homogenous (symmetric) fuzzy number can be written in the 
form of ),( cm and rc ==  . If the fuzzy number is written as 

),,( RL ccm , rcc RL == , , then this is called a non-symmetric 
fuzzy number or an LR fuzzy number. In all these types, m  is the 
middle point. 
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Definition 2-5: N is called a trapezoidal fuzzy number ( )rmm ,,, 21 , 
if the membership function of N or )(xNµ  is defined as: 
 

( ) ( )
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Where 21 ,, mm and r are real numbers and rmm ≤≤≤ 21 . The 
trapezoidal fuzzy number is shown in Fig. 2. 
 
Definition 2-6: Fuzzy relations are fuzzy sets defined on 
universal sets which are Cartesian products. They capture the 
strength of association among elements of two or more sets, not 
just whether such an association exists or not. Let A and B be two 
fuzzy sets, the fuzzy relation from A to B is denoted by BAR ×=  
given by 

( ) ( )( ){ }ByAxyxyxR BA ∈∈∀= ,)(),(min,, µµ     
 

Fig 1: A triangular fuzzy number N 
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Fig 2: A trapezoidal fuzzy number N 
 

 
3. The Time Series fuzzification model  
In the Fuzzy regression analysis on time series data, model 
variables may be crisp or fuzzy numbers, but observations on the 
variables are usually crisp. This is also true about both dependent 
and explanatory variables. The main difference between the 
traditional time series and fuzzy time series is that the observed 
values of the former are real numbers while the latter are fuzzy 
sets or linguistic values. 
  
Definition 3-1: ,...)2,1()( =ttY  is a subset of 1R . Let )(tY  be the 
universe of discourse defined by the fuzzy set )(tiµ . If 

)(tF consists of ,...)2,1()( =itiµ then )(tF  is called a fuzzy time 
series on )(tY  (Liu, 2009). 

There are two important techniques which can be used for 
fuzzifying historical data (crisp time series) and constructing the 
fuzzy time series. These techniques are the Song and Chisson 
method (1993) and Minimizing Entropy Principle Algorithm, 
MEPA (Christensen,1980). The first can be applied to make 
homogeneous fuzzy numbers, and the second for non-
homogenous fuzzy numbers. In this paper, we will apply the 
MEPA method. The purpose of this technique is to fuzzify real-
value data sets and partition the data set into a number of fuzzy 
sets and then to construct membership functions objectively. The 
entropy of a probability distribution is a measure of the 
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uncertainty of the distribution (Yager & Filev, 1994). To 
subdivide the data into membership functions, establishing the 
threshold between classes of data is needed. The MEPA method 
determines the threshold line and then starts the segmentation 
process by dividing the data into two classes. Therefore, a 
repeated partitioning with threshold value calculations will allow 
us to partition the data set into a number of fuzzy sets (Ross, 
2000). 

Assume that a threshold value is a sought for sample in the 
range between 1x  and 2x . An entropy equation with each value of 
x  is written for the regions ],[ 11 xxx +  and ],[ 21 xxx + , and we 
mark the first region p and the second region q . An entropy with 
each value of x in the region between 1x  and 2x  is explained as: 

)()()()()( xSxqxSxpxS qp +=   
where 

[ ])(ln)()(ln)()( 2211 xpxpxpxpxS p +−=              
[ ])(ln)()(ln)()( 2211 xqxqxqxqxSq +−=  

Where )(xpk  and )(xqk  are conditional probabilities that the 
class k sample has in the regions ],[ 11 xxx +  and ],[ 21 xxx + , 
respectively. )(xp  and )(xq  are probabilities that all samples are 
in the regions ],[ 11 xxx +  and ],[ 21 xxx +  respectively, and 

1)()( =+ xqxp . 
 A value of x that gives the minimum entropy is the optimum 
threshold value. The value estimates of )(xpk , )(,)( xpxqk  and 

)(xq , are calculated as follows: 
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 Where  
 

=)(xnk Number of class k samples located in ],[ 11 xxx +  
=)(xn   The total number of samples located in ],[ 11 xxx +  

=)(xNk Number of class k samples located in ],[ 21 xxx +  
=)(xN  The total number of samples located in ],[ 21 xxx +  

=n Total number of samples in ],[ 21 xx . 
      

While moving x in the region ],[ 21 xx , we calculate the values 
of entropy for each position of x, as in Fig. 3. The value of x in 
the region that holds the minimum entropy is called the primary 
threshold (PRI) value. Repeating this process, secondary 
threshold values can be determined which are denoted as SEC1 
and SEC2. To develop seven partitions, we need tertiary 
threshold values, here denoted as TER1, TER2, TER3 and TER4 
(Chen & Cheng, 2008; Tsaur et al., 2005).  

This method is based on a schema that describes the input and 
output relationships for a well established database. The 
induction is performed by the entropy minimization principle, 
which clusters most optimally the parameters corresponding to 
the output classes. By minimizing the entropy, we can find 
intervals in which the distribution of samples of any class is as 
relatively uniform as possible.  The steps of the Minimize 
Entropy Principle Approach (MEPA) are described below 
(Cheng et al., 2006; Chen & Cheng, 2008): 

 
Step 1: Determine the class of each data entry. 
In the Minimize Entropy Principle Approach, each data has to 

be assigned a class initially. There is no specific rule to determine 
the number of classes and the class of each data due to the 
characteristics of entropy. After doing some experiments, this 
paper assigned three classes to each data entry.  
 
Step 2: Calculate the threshold value (PRI, SEC1, SEC2, TER1, 
TER2, TER3, TER4).The entropy value of each data entry is 
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computed by the entropy equation proposed by Christensen 
(1980) described above. The dataset must be sorted based on the 
value of each year. We must calculate the entropy values between 
every two adjacent data to obtain the minimal entropy value. By 
repeating this procedure to subdivide the data, the thresholds can 
be obtained. 
 
Step 3: Determine the length of intervals and build membership 
functions. 
Using the thresholds from Step 2 as the midpoint of the triangular 
fuzzy number, the membership function of Minimize Entropy 
Principle Approach can be established.  
 
Step 4: Fuzzify the historical data. 
     According to the membership function in Step 3, the 
membership degree of each data is calculated to determine its 
linguistic value.  
 

Fig 3: Partitioning process of Minimize Entropy Principle Approach 
 

 
 
 
 
 
 
 
 
 4. Fuzzy linear regression (FLR) model  
Regression analysis is one of the common methods of parameters 
estimation. The classical regression method only provides a crisp 
estimation for parameters in economic models. However, there 
are numerous things which cause vague attributes in variables, 
coefficients, parameters and relations. Therefore, the use of a 
fuzzy estimation method can be helpful for understanding the 
vague nature of phenomena in the economic surveys. Like any 
regression technique, the objective of the fuzzy regression model 
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is to determine a functional relationship between a dependent 
variable and a set of independent variables. In fuzzy regression 
model, functional relationships can be obtained when the 
observations over independent variables, dependent variable, or 
both, are not only crisp values but also intervals or fuzzy 
numbers. 
In general, the fuzzy linear regression model can be described as 
(Wu, 2003; Kao & Chyu, 2003; Shapiro, 2005): 
 

mjUxAxAxAAAxfY ijkkjjj ,...,2,1,...),( 33221 =+++++==                (1) 
 
Where, mjYj ,...,2,1, = , is the output observation j  that may be a 
non-fuzzy(crisp) or fuzzy observation, 1,,...,2,1, 1 == jij xkix  and 

mj ,...,2,1=  is the model input which crisp. kiAi ,...,2,1, =  are the 
fuzzy coefficients which can be defined in the form of 
asymmetric or non-asymmetric fuzzy numbers. Indeed, jU  is the 
fuzzy error associated with the regression model.  According to 
the output observations attribute, two types of fuzzy regression 
are identified as follows. 

In both types, the output is a fuzzy number but the inputs are 
crisp as before. Indeed, the coefficients of the model are fuzzy 
numbers continuously. In the first type, the fuzzy output is 
represented by a triangular fuzzy number in the form of 
symmetric ),( jjj eyY = , and, in the second type, the fuzzy output 
has the form of trapezoidal fuzzy number or LR-type 

mjeeyY R
j

L
jjj ,...,2,1,),,( == . Both types and those membership 

functions are described in section 2. In this paper, I apply the LR-
type fuzzy regression. Eq. 1, for LR-type of the fuzzy coefficients 
and output can be written as below 
 

mjjxcca

xccaxccaccaeeyY

jjkj
R
k

L
kk

j
RL

j
RLRLR

j
L
jjj

,...,2,1,),,(),,(...

...),,(),,(),,(),,(

321

33332222111

=++

+++==

εεε
    (2) 
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Where, kiforcca R
i

L
ii ,...,2,1),,( =  is the regression parameters 

in the form of  triangular fuzzy number, and ),,( 321 εεε is the 

regression error term in the form of triangular fuzzy number. 
As stated earlier, in this paper we apply a fuzzy regression 

model based on the least squares approach that is supplied by 
Pierpalo D`Urso(2003). In this model, the dependent variable is a 
trapezoidal fuzzy number, but the explanatory variables are crisp. 
This fuzzy regression model in its structural form is 
 

mjxaxaxaay jkjkjjj ,...,2,1,... 133221 =+++++= ε                       (3) 

mjbyde jj
L

j ,...,2,1,2 =++= ε                      (4) 
mjgyhe jj

R
j ,...,2,1,3 =++= ε                     (5)  

 
Where handgdb ,,  are regression parameters for ;, RL ee  
equations. Other variables and parameters are introduced latter. 
This model has a recursive structure, which is an important type 
of simultaneous equations model. In this model, all the 
explanatory variables and 1ε  determine y . y  is the predetermined 
variable with respect to Eqs. 3 and 4. Then y determines Le and 

Re , with 2ε  and 3ε , respectively. Recursive models are always 
exactly identified (Interligator, 1978).  By incorporating y from 
Equ. 3 in Eqs. 4-5 we have  

mjxbaxbaxbadbae jkjkjj
L

j ...,,2,1,...)( 233221

*

=++++++= ε                             (6) 
mjxgaxgaxgahgae jkjkjj

R ...,,2,1,...)( 333221 =++++++= ε                             (7) 
 

Eqs. 6-7 are the reduced form of the Eqs. 4-5, respectively.  
Incorporating Eqs. 6-7 to Equ 2 we have 

mj

xgabaaxgabaa
xgabaahgadbaaeeyY

kjkkkj

j
R
j

L
jjj

,...,2,1

)(),,(...),,(
),,(),,(),,(

3213333

2222111

=

++++++

+++==

εεε          (8) 

Which is the reduced form of the Eq 2. 
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5. Specification of data, variables and model estimation 
As noted in previous sections, the purpose of the present paper is 
to estimate the fuzzy regression model based on the least squares 
approach for annual end-use energy intensity on its determinant 
factors for Iranian industrial activities. Here, the annual end-use 
energy is equal to the annual sum of the consumed energy 
carriers’ quantities in MBOE37 measures by industrial groups. 
The energy carriers include oil derivatives, electricity and natural 
gas. Hence, the end-use energy intensity is calculated as the total 
end-use energy divided by the industrial real value-added (see 
Patterson 1996; Ang 1994 & Sun 2001 for details).  

According to the literature on the energy economic, there is a 
supposition that factors which can determine energy intensity 
consist of end-use energy cost, structural change in industrial 
activities, energy carriers’ combination in end-use energy bundles 
and technical efficiency progress (for instance, Boyd and Pang, 
2000; Ang 1994 & Farla et al., 1998). Associated with these 
factors, we introduce, in the present study, explanatory variables 
such as the end-use energy average price, each sector’s share in 
industrial total value-added for the index of structural changes, 
the share of natural gas in total end-use carriers and technical 
efficiency score calculated by the DEA method38 for carriers 
combinations and technical change progress factors, respectively.  

In this study, industrial activities are classified into 9 main 
groups associated with ISIC. Our database consists of 225 pooled 
observations on response and explanatory variables within 9 
industry groups in the period1982-2006, which were collected 
from Iranian Statistical Center publications. All monetary values 
such as prices and value-added are deflated by an industrial price 
index based on 1999 constant prices.  

Let us point out again that the response variable is supposed 
to be a fuzzy time series which is scaled by linguistic indexes. In 
order to provide such indexes, we must first fuzzify the original 
observations on energy intensities by means of one of the two 

                                                
37 Million Barrels of Oil Equivalents 
38 Data Envelopment Analysis  
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approaches introduced in section 3, that is, the Sang and Chisson 
method and Minimizing Entropy Principle Algorithm (MEPA). 
Because of high differences between industrial groups in terms of 
energy intensity, we prefer to use the second approach (MEPA) 
for fuzzifing the energy intensity time series observations. 
Applying this approach, we can make the LR-type fuzzy numbers 
for response variables. 

Based on Eq. 2 and the variables explained above, our fuzzy 
regression equation will be,  
 

25,...,2,1;9,...,2,1
)(),,()(),,(

)(),,()(),,(

),,())(),(),((

444333

222111

000

==
++

++

=

ti
effscorLogccavaluadsLogcca

enpricLogccaeninmedLogcca

ccasprerightLogspreleftLogeninmedLog

it
RL

it
RL

it
RL

it
RL

RL
it

    (2b) 

 
Based on Eqs. 3 to 5, our selected recursive model for 

estimating the fuzzy regression (2b) can be rewritten as bellow:  
 

25,...,2,1;9,...,2,1
)()(

)())1(()(

143

210

==
+++

+−+=

ti
effscorLogavaluadsLoga

enpricLogateninmedLogaaeninmedLog

iitit

ititit

ε (3b) 

25,...,2,1;9,...,2,1
)(..1)( 2

==
++=

ti
eninmedLogbdspreleftLog iitit ε

                              (4b)  

 

25,...,2,1;9,...,2,1
)(..1)( 3

==
++=

ti
eninmedLogghsprerightLog iitit ε

                        (5b)  

 
where, eninmed  is the med-point value of energy 

intensity(fuzzy number), spreleft and spreright are left and right 
spreads, eninmed(t-1) is the lagged value of eninmed,  enpric, 
valuads and effiscor are the energy average price, industry sector 
value added share and efficiency score, respectively, i and t are 
the time and the industry sector subscripts and Log is the natural 
logarithm assignment.  
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Equation 3b is one type of autoregressive regression model 
sets. We suppose that there is a long-run or desired path for the 
energy intensity variable which is determined by the explanatory 
variables: enpric, valuads and effscor. Therefore, Eq. 3b is a 
partial adjustment to the model. The distance between the 
observed (current) value of energy intensity and its desired value 
is called the error term. The energy intensity partially adapts to its 
long-run path in the short-run. The error term in this model would 
be modified by error correction phenomena.  

In the partial adjustment models, the lagged dependent 
variable is independent of the disturbance term, thus this model 
can be estimated with the OLS procedure. In Eq. 3b, 11 a−  is 
called the dynamic adjustment rate coefficient. Based on the 
partial adjustment model structure, in Eq. 3b the explanatory 
variables coefficients are short-run model coefficients. Long-run 
model coefficients are obtained by dividing the short-run 
coefficient by the partial adjustment rate ( 11 a− ). For example, 2a  

is the short-run price elasticity, whereas 
1

2

1 a
a
−

 is its long- run 

value (Chow, 1983).       
According to estimation rules for the recursive model 

mentioned above, in our model, Eq. 3b could be estimated by the 
OLS technique. Then Eqs. 4b and 5b would be estimated by 
associated techniques such as 2SLS and 3SLS with instrumental 
variables which include the model predetermined variables: 
eninmed (t-1), enpric, valuads and effiscor.  

 
6. Fuzzification of energy intensity data  
In this section, we calculate the fuzzy values for the energy 
intensity observations based on the Minimizing Entropy Principle 
Algorithm (MEPA) introduced in section 3. The energy intensity 
database in this study includes 25 annual observations for each 
industrial group and, as a result, 225 pooled observations for all 
groups. The MEPA procedure, with an energy minimizing screen 
process, subdivides the energy intensity data with threshold 
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values, which allows us to partition the dataset into a number of 
fuzzy sets with associated membership functions (Tsai, 2006).  

The number of the fuzzy sets depends on repeating screen 
processes. To determine the maximum partitions during the 
screen process repetition, we must calculate the entropy value of 
every potential threshold point by MEPA equations (in section 2-
3) until there is no extra partition process. With the application of 
the MEPA method, the attained maximum number of partitions 
for the energy intensity observations is seven. Hence, there are 7 
membership functions and 7 linguistic values for our respond 
variable too.  

Table 1 shows the calculated threshold points. These points 
can be used to construct the linguistic values and membership 
functions for the energy intensity variable that are represented in 
table 2 and figure 4, respectively. 

 
Table 1: Thresholds of MEPA 

Thresholds TER1 SEC1 TER2 PRI TER3 SEC2 
EC2 TER4 

Value 0.62 1.30 1.89 2.45 2.87 5.75 7.00 
 

Table 2: Membership function of MEPA 
Linguistic value Lower bound Midpoint Upper bound Length of 

interval 
L1 (very very 

low) 0.33 0.62 1.30 0.97 

L2 (very low) 0.62 1.30 1.89 1.27 

L3 (low) 1.30 1.89 2.45 1.15 

L4 (moderate) 1.89 2.45 2.87 0.98 

L5 (high) 2.45 2.87 5.75 3.30 

L6 (very high) 2.87 5.75 7.00 4.13 
L7 (vey very 

high) 5.75 7.00 13.70 7.95 

 
FIG 4: Membership function of MEPA for energy intensity 
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7. Estimation results 
We use the software EVIEWS to estimate the recursive model as 
specified in Eqs. 3b-5b. Eq.3b is estimated by iterative WLS39 
whereas, because of the selected model structure, Eqs. 4b-5b are 
estimated by the 2SLS method. As noted above, our observations 
are pooled (panel) data, thus during the estimation we examined 
different effective procedures for panel data such as none, fixed 
and random effects. The fixed-effects model supplies the best 
results compared to others for Eq. 3b. Hence, the constant terms 
in equations have one estimated value for each of 9 industrial 
sectors.  Tables 3-4 report the short-run and long-run estimated 
results for Eq. 3b and Eqs. 4b-5b.  
 

Table 3: Estimation results for equation 3b, the response variable is 
iteninmedLog )(  and the estimation method is WLS 

variable Short- run  
estimated coefficient 

Long- run estimated 
coefficient 

itteninmedLog ))1(( −  
0.413 
(7.84 ) 

-------- 

itEnpricLog )(  
-0.155 
(-6.26 ) 

-0.263 

itvaluadsLog )(  
-0.105 
(-2.64 ) 

-0.178 

iteffiscorLog )(  
-0.158 
(-2.93 ) 

-0.268 

Sector fixed effects terms 
[min to max] 

[ 1.65 - 3] [2.8 - 5] 

2R  0.968 ------------ 
D.W statistics 1.9 --------------- 

 
 
 
 
 
 
 

                                                
39 Weighted Least Square Estimator   
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Table 4: Estimation results for equation 4b and 5b, the estimation 
method is TSLS 

Equation and 
Respond variable 

Constant and 
Variable term Estimated coefficients 

Constant ( d̂ ) [-0.97 -0.22] 

iteninmedLog )(  
0.295 
(3.27) 

2R  0.36 

Equation 7b 
itspreleftLog )(  

DW statistics 2.1 

Constant ( ĥ ) [-0.4- 0.22] 

iteninmedLog )(  
0.332 
(2.73) 

2R  0.64 

Equation 8b 
itsprerightLog )(  

DW statistics 2.01 
 

The short-run and long-run coefficients for fuzzy regression 
Eq. 2b can be calculated by the estimated results of the recursive 
model as shown in above tables. Table 5 reports the estimated 
coefficients of predetermined variables for Eq. 2b. And so, the 
fuzzy fixed effects terms of Eq. 2b are shown in table 6. 

 
Table 5: Estimation results for equation 2b 

Description ),ˆ,ˆ( 111
RL cca  ),ˆ,ˆ( 222

RL cca  
Short-run 

coefficients (0.413,0.122,0.137) (-.155,-.045,-.05) 

Long-run 
coefficients (0.703,0.207,0.233) (-.267,-.076,-.085) 

 
Table 5:continuation 

Description ),ˆ,ˆ( 333
RL cca  ),ˆ,ˆ( 444

RL cca  
Short-run 

coefficients (-.105,-.03,-.03) (-.158,-.046,-.05) 

Long-run 
coefficients (-.179,-.05,-.05) ( -.27,-.07,-.09 ) 

 
Based on estimated results, we can explore the short-run and 

long-run membership functions for each fuzzy regression 
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coefficient as specified in Eq. 2. This allows us to calculate 
two cutα intervals under the membership functions associated 
withα  quantity for each coefficient. Tables 7-8 show the 
trapezoidal fuzzy numbers for our model coefficients (Eq. 2b) in 
selected cutα  levels. The estimation results of fuzzy fixed effect 
coefficients are shown in table 6. As it is seen, higher fixed effect 
coefficients belong to the energy intensive industries such as 
chemical, mineral and metallic industries groups.   
 

Table 6: Estimation results of fuzzy  fixed effects terms for eq.2b 

Industry sector 
Short-run 

)ˆ,ˆ,ˆ( 000
RL cca  

Long-run 
)ˆ,ˆ,ˆ( 000

RL cca  
Food industries ( 2.5 , 0 , 0.6 ) (4.25 ,0.28,1.2) 
Textile industries (2.2 ,0.09,0.5) (3.7 ,0.53,0.54) 
 Wood industries ( 2 , 0 ,  0.47 ) (3.4 ,0.22,0.93) 
 Paper and press industries (2.2 , 0 , 0.11) (3.7 , 0.30 ,0.6) 
Chemical industries  (2.4 , 0 , 0.37) (4.08 ,0.4 ,0.92) 
 Non-metal mineral industries. ( 3 , 0.66 , 2 ) (5.1 ,1.28 ,0.63) 
 Main metallic industries  (2.8 , 1 , 1.18) (4.77,0.97,1.78) 
 Machinery and equipment 
industries  (1.98 , 0, 0.32) (3.37,0.08,0.78) 

Other industries (1.65 , 0 ,0.15) (2.81,0.11,0.53) 
 

Table 7: cutα s intervals of the short-run estimated coefficients for eq.2b 

1â  2â   
iâ  
 
jα  

Lower 
bound 

Med 
point 

Upper 
bound 

Lower 
bound 

Med 
point 

Upper 
bound 

01 =α  0.291 0.413 0.55 -.195 -.155 -.105 

25.02 =α  0.322 
 

0.413 0.516 -.189 -.155 -.118 

5.03 =α  
0.352 0.413 0.482 -.178 -.155 -.130 

75.04 =α  0.383 0.413 0.447 -.166 -.155 -.143 

9.05 =α  
0.40 0.413 0.427 -.159 -.155 -.150 
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Table 7: continuation 
3â  4â   

iâ  
 
jα  

Lower 
bound 

Med 
point 

Upper 
bound 

Lower 
bound 

Med 
point 

Upper 
bound 

01 =α  -.135 -.105 -.075 -.204 -.158 -.108 

25.02 =α  -.128 -.105 -.083 -.192 -.158 -.121 

5.03 =α  
-.120 -.105 -.09 -.181 -.158 -.133 

75.04 =α  -.133 -.105 -.098 -.169 -.158 -.146 

9.05 =α  
-.108 -.105 -.102 -.162 -.158 -.153 

 
Table 8: cutα s intervals of the long-run estimation for eq. 2b 

1â  2â   

   iâ  
 
jα  

Lower 
bound 

Med 
point 

Upper 
bound 

Lower 
bound 

Med 
point 

Upper 
bound 

01 =α  ------- ------ ------- -0.34 -.264 -.179 

25.02 =α  ------- ------ ------- -.321 -.264 -0.2 

5.03 =α  
------- ------ ------- -.302 -.264 -.222 

75.04 =α  ------- ------ ------- -.283 -.264 -.242 

9.05 =α  
------- ------ ------- -.272 -.264 -0.26 

 
Table 8:continuation 

3â  4â   

   iâ  
 
jα  

Lower 
bound 

Med 
point 

Upper 
bound 

Lower 
bound 

Med 
point 

Upper 
bound 

01 =α  -.229 -.179 -.129 -0.34 -0.27 -0.18 

25.02 =α  -.216 -.179 -.141 -0.32 -0.27 -0.2 

5.03 =α  
-.204 -.179 -.154 -.305 -0.27 -.225 

75.04 =α  -.191 -.179 -.167 -.287 -0.27 -0.25 

9.05 =α  
-.184 -.179 -.174 -.277 -0.27 -0.26 
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8. Summary and conclusions  
Compared to developed countries, energy intensity in the Iranian 
economy is very high. According to an IEA40 report, energy 
intensity based on exchange rates in Iran was almost 7 times as 
much as that of OECD, 6.8 times that of U.S, 14.7 times that of 
Japan and 3.5 times that of Turkey. The gradual price increases 
during the Iranian development programs have to be regarded as 
an important government effort for managing the energy demand 
side. For example, observations on the average real price of 
energy carriers reveal an increasing trend especially after 1968.              

Iranian industrial sectors consume about 20 percent of the 
total End-use energy. In 2001-08, the industrial end-use energy in 
the Iranian economy grew nearly 9% annually. In this study, 
industrial energy intensity is computed as end-use energy divided 
by real value added based on the 1990 constant price. Our 
computations show that industrial energy intensity has had a 
moderate declining trend after 1968 or at the beginning of the 
first development plan.      

Energy intensity attitude can be affected by many factors. 
These factors can be autocorrelation behavior, relative technical 
efficiency changes, structural changes and energy carriers’ price 
factors. Therefore the end-use energy changes in the production 
process are decomposed into three effects: energy pure intensity 
effect41, structural changes effect42 and production growth 
effect43. The autocorrelation factor is an index of the integrated 
based factors which can be determined by the main pattern of  
End-Use energy in economic activities. In this paper, these 
factors were explained by lagged energy intensity. 

Technical changes indicate improvements in the inputs’ 
combination required for achieving the frontier production 

                                                
40 International Energy Agency 
41 Pure energy intensity is a part of energy intensity which independent of the activity 
level and production structure. 
42 Structural changes effect  is a part of energy  end-use changes  which depended to 
the firm value added share in industry.   
43 Production growth effect  is a part of energy intensity which depended to the firm 
production growth. 
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function. In this study, technical changes were indexed by yearly 
efficiency scores computed based on data envelope analysis 
(DEA) method during the surveyed period. The DEA method 
allocated relative efficiency scores to decision making units 
(DMUs). Each year in the studied period was taken as a DMU. In 
other words, the efficiency score for each year was computed as a 
percentage of the “best practice”. Obviously, it is expected that a 
relative improvement in technical efficiency raises the End-Use 
energy productivity. 

In this paper, analyses and observations were based on a 
partial adjustment model. The fundamental assumption in this 
model was the current value of the respond variable approaches 
its long-term value or its desired value. The long-term value was 
determined by a functional relationship between the respond 
variable and explanatory variables. An important coefficient in 
this model was the dynamic adjustment rate which explains the 
proportion of the speed of the short-run energy intensity motion 
to its long-run trend. In other words, this rate is equal to the 
current value of energy intensity divided by its desired value.                                             

The estimation of the fuzzy regression model for the Iranian 
industrial sector shows that the lagged energy intensity variable is 
the only factor which has had a positive effect on the industrial 
energy intensity attitude. The lagged energy intensity coefficient 
has a trapezoidal fuzzy number equal to 0.413, 0.122 and 0.137. 
On the other hand, other explanatory variables, including energy 
price, value added share and technical efficiency scores, have had 
a negative effect on the energy intensity trend in the period 1982-
2006.  

The fuzzy dynamic adjustment rate has a trapezoidal value 
equal to (0.587, 0.122, 0.137). This means that the observed 
energy intensity would be varieties in [0.465-0.724] around its 
desired value. The price elasticity of energy intensity has a fuzzy 
number equal to (-0.155,-0.045, -0.05) in the short-run and 
 (-0.264, -0.076, -0.083) in the long-run. These indicate that 
energy intensity is price inelastic, thus the energy pricing policies 
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have had a low effect on the end-use energy behavior in the 
industrial activities in our studied period.  

The estimated value added share coefficient shows that 
increasing the relative scale of industry activity helps improve 
energy productivity. This means that the larger groups have been 
higher energy savers. The value added share coefficient attains 
the fuzzy number (-0.105, -0.03, -0.03) in the short-run and  
(-0.179, -0.05, -0.05) in the long-run. Infact the estimated fuzzy 
coefficient of the efficiency score indicates that technical 
efficiency changes in industrial groups have had a modifying 
effect on the energy intensity behavior in the surveyed period. 

Results reveal that the energy pure intensity was the main 
factor explaining the end-use energy changes in the Iranian 
industrial sector. This means that high energy intensity in this 
sector is mainly due to low productivity of employing energy 
carriers and so there is much potential for energy saving in the 
Iranian industrial sector which mainly emerges from pure energy 
intensity in the short-run. Moreover, the results reveal that all of 
the explanatory, such as energy price, value added share and 
relative efficiency variables, have had a negative effect on the 
energy efficiency. In fact, according to the estimated value of the 
dynamic adjustment rate parameters, this negative effect has 
almost doubled in the long run compared to short run. 

In sum, based on the model estimation results, it is 
recommended to improve price and technical policies for 
moderating end-use energy intensities, although this effectiveness 
was not rich enough in the study period. Indeed, the estimated 
domain of the gap between actual and desired states of energy 
intensity is about (0.54- 0.26), which shows that the energy 
supply management system in Iranian economic should make 
more effort to modify, redesign and execute the price and non-
price policies.                      
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APPENDIX 1: Estimation Results of Eq 3b 
                

Method: Pooled EGLS (Cross-section weights)  
Date: 10/10/09   Time: 00:21   

Sample: 1362 1385   
Included observations: 24   

Total panel (balanced) observations 216  
White Heteroskedasticity-Consistent Standard Errors & Covariance 

     
     Variable Coefficient Std. Error t-Statistic Prob. 
     
     LOG(INTFUZ?(-1)) 0.413559 0.052745 7.840679 0.0000 

LOG(ENPRIC?) -0.155478 0.024814 -6.265649 0.0000 
LOG(VALUDR?/VALUDR

TOT) -0.105071 0.039739 -2.644006 0.0088 
LOG(EFFIC?) -0.157928 0.053813 -2.934772 0.0037 

Fixed Effects (Cross)     
_S31--C 2.487969    
_S32--C 2.236914    
_S33--C 2.081433    
_S34--C 2.243700    
_S35--C 2.461819    
_S36--C 3.046376    
_S37--C 2.788599    
_S38--C 1.981767    
_S39--C 1.659993    

     
      Effects Specification   
     
     Cross-section fixed (dummy variables)  
     
      Weighted Statistics   
     
     R-squared 0.968390 Mean dependent var 1.215091 

Adjusted R-squared 0.966522     S.D. dependent var 1.442237 
S.E. of regression 0.263888     Sum squared resid 14.13626 

Log likelihood 51.08571     F-statistic 2073.014 
Durbin-Watson stat 1.883090     Prob(F-statistic) 0.000000 
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APPENDIX 2:  Estimation Results of Eq 4b 

ystem: SYSFUZZYRIGHTNEW   
Estimation Method: Iterative Weighted Two-Stage Least Squares 

Date: 10/10/09   Time: 01:51   
Sample: 1362 1385   

Simultaneous weighting matrix & coefficient iteration 
Convergence achieved after: 19 weight matricies, 20 total coef iterations 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(331) -0.221769 0.257615 -0.860855 0.3903 

C(333) 0.332497 0.121353 2.739911 0.0067 
C(1) 0.524802 0.054303 9.664383 0.0000 

C(332) -0.682785 0.061598 -11.08450 0.0000 
C(313) -0.192267 0.220319 -0.872675 0.3839 
C(334) -0.623515 0.318382 -1.958387 0.0515 
C(335) -0.422379 0.296445 -1.424814 0.1557 
C(336) 1.060422 0.313409 3.383511 0.0009 
C(337) 0.268833 0.335443 0.801425 0.4238 
C(338) -0.339461 0.185095 -1.833981 0.0681 
C(339) -0.393170 0.156162 -2.517715 0.0126 

     
     Determinant residual covariance 2.79E-08   
     
          

Equation: LOG(INTFUZZR) = C(331) + C(333)*LOG(INTFUZ) 
                 +[AR(1)=C(1)]    

Observations: 24   
R-squared 0.638807     Mean dependent var 0.086845 

Adjusted R-squared 0.604407     S.D. dependent var 0.918698 
S.E. of regression 0.577826     Sum squared resid 7.011539 

Durbin-Watson stat 0.908672    
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APPENDIX 3: Estimation Results of Eq 5b 
System: SYSFUZZILEFTNEW   

Estimation Method: Iterative Weighted Two-Stage Least Squares 
Date: 10/10/09   Time: 01:50   

Sample: 1362 1385   
Sequential weighting matrix & coefficient iteration 

Convergence achieved after: 14 weight matricies, 47 total coef iterations 
     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(111) -0.972032 0.096806 -10.04101 0.0000 

C(222) 0.295707 0.090159 3.279823 0.0012 
C(1) 0.369417 0.059441 6.214892 0.0000 

C(112) -0.568909 0.055919 -10.17383 0.0000 
C(113) -0.785969 0.222000 -3.540409 0.0005 
C(114) -0.779095 0.094077 -8.281503 0.0000 
C(115) -0.766821 0.182870 -4.193251 0.0000 
C(116) -0.225267 0.194590 -1.157649 0.2484 
C(117) -0.431765 0.274355 -1.573747 0.1171 
C(118) -0.913412 0.077511 -11.78435 0.0000 
C(119) -0.718546 0.102477 -7.011782 0.0000 

     
     Determinant residual covariance 4.60E-11   
     
          

Equation: LOG(INTFUZL) = C(111) + C(222)*LOG(INTFUZ) 
        +[AR(1)=C(1)]    

Observations: 24   
R-squared -0.009598     Mean dependent var -0.698626 

Adjusted R-squared -0.105750     S.D. dependent var 0.159884 
S.E. of regression 0.168125     Sum squared resid 0.593586 

Durbin-Watson stat 0.394540    
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