

*Corresponding author. E-mail:hjavanshir@yahoo.com

Journal of Industrial Engineering International Islamic Azad University, Tehran South Branch

September 2005, Vol. 1, No. 1, 10 - 19

An ACO algorithm for one-dimensional cutting stock problem

K. Eshghi
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

H. Javanshir*

Islamic Azad University, Science and Research Branch, Tehran, Iran

Abstract

The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and
during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-
heuristic method based on ACO is presented to solve this problem.

In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select
the best patterns. Also because of the problem framework, effective improvements has been made to problem
solving process. The results of that algorithm in sample problems, show high efficiency of the algorithm in
different levels of problems.

Keywords: One-dimensional cutting stock problem; Ant colony optimization; Trim loss

1. Introduction

The one-dimensional cutting stock problem, that in
this paper is called "one-dimensional cutting prob-
lem" has so many applications in lots of industrial
processes [5,8,9] and during the past few years has
attracted an increasing attention of researchers all
over the world [1,12]. This attention has been mostly
focused on the solution to the problem in cases with
the stock of the same length or with a few different
standard lengths.

Most standard problems related to one-dimensional
cutting problem are known as NP-complete. How-
ever, in many cases these kinds of problems can be
modeled by means of mathematical programming
and a solution can be found by using approximate
methods and heuristics. The objective is to design a
plan of one-dimensional cutting of a certain number
of pieces of same lengths (stock lengths), into a large
number of short pieces (order lengths), which will
minimize the overall trim loss considering different
conditions that may appear in practice.

Using Dyckhoffsُ typology [4], the one-
dimensional cutting problem with enough required
material available can be described as:

1. Dimensionality
 N) Number of dimensions:

2. Kind of assignment:
 B) All large objects and a selection of small

items
V) A selection of large objects and all small

items
3. Assortment of large objects:
 O) One large object
 I) Many identical large objects
 D) Different large objects
4. Assortment of small items:
 F) Few items of different dimensions

M) Many items of numerous different dimen-
sions

 R) Many items of relatively few dimensions
 C) Many identical items

In this paper, the 1/V/O/R has been considered,

where 1 refers to one-dimensional problem, V means
that all items must be produced from a selection of
large objects, O means that one large object and R
indicates many items of relatively few dimensions.
The algorithm presented in this paper, also could be
used for 1/V/I/R, where I means that Many identical
large objects.

Dyckhoff classifies the solution of one-
dimensional cutting problems into two groups: item-
oriented and pattern-oriented approach. Item-
oriented approach is characterized by individual

Archive of SID

www.SID.ir

 An ACO algorithm for one-dimensional cutting stock problem 11

treatment of every item to be cut. In the pattern-
oriented approach, at first, order lengths are com-
bined into cutting patterns, for which - in a succeed-
ing step - the cutting frequencies are determined that
are necessary to satisfy the demands. The constraints
in the pattern-oriented approach are based on the al-
gorithm that Gilmore and Gomory have developed
[6,7]. However, a pattern-oriented approach is possi-
ble only when the stock is of the same length or of
several standard lengths, and an item-oriented ap-
proach is used when all stock lengths are different
and frequencies cannot be determined. The authors
selected pattern-oriented approach for solving the
cutting problem.

2. Describing one-dimensional cutting problem
model

In so many industries, the cost of raw materials is
the most percentage of the total cost (sometimes
more than 80%). Then lots of attempts have been
done to increase materials utilization. The cutting
problem is one of the well-known operation research
problems that is defined to make better use of materi-
als. In general, the cutting problem could be defined as:

One or more large objects are available and we
want to make some small required items by cutting
them. In this problem the cutting method should be
determined in a way that minimum trim loss is made
or smaller objects are cut, and used.

The cutting problem was firstly described in 1939
by Kantorovich for one-dimensional cutting [10]. In
1960s P.C. Gilmore and R.E. Gomory published four
famous papers about one and two-dimensional cut-
ting problems. Their first paper was published about
the application of linear programming in solving one-
dimensional cutting problems in 1961 and it was a
real start for representing techniques used in actual
problems. Publishing Gilmore and Gomory papers
caused a new movement in analyzing and solving the
cutting problem and most papers published about cut-
ting problems till now have referenced Gilmore and
Gomory papers. While expanding the application of
computer in operation research problems and devel-
oping techniques and methods of modeling and prob-
lem solving, the cutting problem has been developed.

2.1. One-dimensional cutting problem

The one-dimensional cutting problem could be de-

scribed as:

There are some large objects and we want to cut
them (for ordered items that have two identical
dimensions) in a way that minimum trim loss is
made. Cutting problem dimension is the degree of
freedom for decision making. If the two dimensions
of ordered items and used large objects are the same,
only decision for the way of cutting third dimension
should be made and therefore, cutting process has
one dimension.

The main objective in cutting problems is decreas-
ing the cost of losses. Meaning that we want cutting
patterns, and number of using them to make mini-
mum trim loss cost. Of course, in some cases, time
and cost of set up change of a cutting machine is con-
siderable [14].

Represented models for cutting problems are
affected firstly by kind of its hypotheses and sec-
ondly by the modeling method.

2.2. Defining model

The problem model is as follows:

Min X0 = ∑
=

m

j 1

Sj Xj +∑
=

n

i
iV

1
 (1)

Subject to:

 ∑
=

m

j 1

Oij Xj > Di i = 1,…,n (2)

 Xj > 0, Integer j = 1,…,m (3)

where:

Xj : Number of large objects that have been cut by j

th cutting pattern.
Sj : Amount of loss in pattern j th.
Oij : Number of i th item cut by pattern j th.
Di : Number of demond for i th item.
Vi : Surplus production of i th item (surplus vari-

able of model constraints) that is calculated
as follows:

 ∑
=

m

j 1

Oij Xj – Vi = Di

 ⇒ Vi = ∑
=

m

j 1

Oij Xj – Di , i = 1,…,n (4)

m : Number of effective cutting patterns.
n : Number of different required items.

Archive of SID

www.SID.ir

12 K. Eshghi and H. Javanshir

 If L is the length of large objects and il is the
length of i th item, it is clear that we will have:

∑
=

n

i 1

Oij il + Sj = L , j = 1,…,m (5)

 It is worth mentioning that it is possible to write

objective function as Min X0 = j

m

j
X∑

=1

.

3. Ways to solving one-dimensional cutting prob-
lems

 The one-dimensional cutting problem is one the

NP-complete problems and therefore many different
ways are represented to solve it. These represented
methods could be divided into two main groups:
optimization methods and heuristics. Among optimi-
zation methods, some algorithms based on dynamic
programming and methods based on linear program-
ming could be mentioned. Heuristics are divided into
different types like metaheuristic algorithms.

3.1. Metaheuristic algorithms

Complexity in current problems made the optimi-

zation methods not be able to gain global optimum or
use lots of time to reach this answer. These problems
usually because of their own reasons have many local
optimum and only using current optimization meth-
ods is so expensive and sometimes impossible.
Therefore metaheuristics are represented that some of
them are: Tabu Search (TS) algorithm, Genetic Algo-
rithm (GA), Simulated Annealing (SA) algorithm and
Ant Colony Optimization (ACO). Nowadays these
methods because of not being designed for a particu-
lar problem and reaching to the answer in the mini-
mum possible time, have attracted an increasing at-
tention of researchers.

3.2. Aco metaheuristic algorithm

Metaheuristic optimization algorithm based on

ant’s behavior (ACO) was represented in the early
1990s by M. Dorigo, V. Maniezzo and A. Colorni
[2,3]. This algorithm is inspired of ant’s social behav-
ior. Ants have no sight and could find shortest way

from food to their nest by chemical materials called
Pheromone that they leave when moving [3].

When ants are walking they leave Pheromone and
follow (catastrophically) other ants’ left Pheromones.
Ants like the way that has the most amount of
Pheromones. The process of finding the shortest way
by using Pheromone is shown in figure 1.

Look at figure 1-a. Ants have arrived at a junction
and should decide to go upward or direct. In this time
there is no memory about selecting the best way. So
ants choose their way randomly. It is estimated to see
that one half of ants will go upward and others will
go in the direct way that is shown in figure 1-b. Be-
cause the direct way is shorter and by supposing that
ants’ walking speed are identical, much more ants
could pass this way per unit time and therefore it
makes this way filled with Pheromone move quickly.
By the time, Pheromone difference between two
ways increases and after sometime Pheromone dif-
ference between two ways becomes enough great to
affect the ants’ way selection. This is shown in figure
1-c. When ants are coming back because of finding
more Pheromones in the down way, will probabilisti-
cally prefer this way. This process will continue with
a positive feedback, meaning that increasing the
number of selecting this way causes increasing
Pheromone and increasing Pheromone causes in-
creasing the number of selecting this way. After
sometime all ants will choose shorter way to continue
the movement.

First ant colony optimization algorithm was based
on this ants’ behavior. ACO algorithm was firstly
used in solving traveling salesman problems (TSP)
and then was used in solving combinational optimiza-
tion problems that among them we could indicate to
quadratic assignment problems (QAP), routing prob-
lems, graph coloring problems, etc. In the most prob-
lems that have been solved by ACO algorithm, re-
sults indicate superiority of this method to other
metaheuristics.

4. Representing an ACO algorithm for solving
one-dimensional cutting problem

In this section, an algorithm based on ACO method

is represented for solving one-dimensional cutting
problem. In this kind of algorithm, we should use
artificial ants which their maximum number is total
required cuts. Firstly every artificial ant selects a sto-
chastic probability rule to choose cut (item) type and
then selects desired pattern to perform that cut by

Archive of SID

www.SID.ir

 An ACO algorithm for one-dimensional cutting stock problem 13

Case a

Food
A B

Nest

Case b

Food
A B

Nest

Case c

Food
A B

Nest

Figure 1. The process of finding shortest way between two points by ants.

another probabilistic rule. Finally after updating the
amount of required left cuts and because of produc-
ing that pattern, selecting new cuts and patterns by
other ants using the remaining information of others
is performed till there is no cutting needs. Also after
some program iteration, Pheromone evaporation is
done to prevent repeated similar answers, and to es-
cape local optimum.

4.1. The method of efficient cutting patterns generation

Because in every iteration of algorithm, there is a

need of using cutting patterns by ants, in order to do
this we do as follows:

In order to generate efficient cutting patterns that
no one has superiority to the others, we could use
different methods like Pierce in 1964 and Suliman in
2001 that were used to generate all effective cutting
patterns for large objects [11,13,15].

In Pierce method, if L is the length of the large ob-
jects and 1l , 2l , … , nl are the lengths of the items
needed, in a descending length order and M is the
maximum trim loss allowable, then we have:

Step 1.Set

 ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

l

Lα ,

 ⎥
⎦

⎤
⎢
⎣

⎡ −
=

2

11
2

l

lα
α

L
=nα,,K

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−∑

−

=

n

n

i
iiL

l

l
1

1
α

,

where []g is the largest integer less than or equal
to g.

Step 2. If ML ii

n

i
≤−∑

=

lα
1

, then

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nα

α
α

M
2

1

 is an effi-

cient cutting pattern.
Step 3. If there is an i , 1 < i < n-1 , such that 0>iα ,
then let j be the largest such i and go to step 4. If not,
terminate the procedure. All efficient cutting patterns
have been identified.
Step 4. Set

 1−= jj αα ,

Archive of SID

www.SID.ir

14 K. Eshghi and H. Javanshir

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=
∑∑
−

=

+

=
+

n

n

i
ii

n
j

j

i
ii

j

LL

l

l

K
l

l
1

1

1

1
1 ,,

α
α

α
α ,

Go to step 2.

Step 5. If there are two pattern

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nj

j

j

nk

k

k

O

O
O

O

O
O

MM

2

1

2

1

, that

for all i we have Oik < Oij , then the cutting pattern

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nk

k

k

O

O
O

M
2

1

 because of the other pattern’s superiority

should not be considered.
After generating effective cutting patterns, it is

possible to decrease required number of items by fol-
lowing this note that:

If a kind of item is only produced by one pattern,
then firstly it will be produced in required numbers.
Since every pattern could make different cuts, then
whole number of total cuts is calculated and left re-
quirement of every kind of cut and problem modeling
information is updated.

4.2. Probabilistic rules and selecting cut and pattern

Now, ACO algorithm is described for solving one-

dimensional cutting problems. It is necessary to re-
member that in the ACO designed for solving one-
dimensional cutting problem, artificial ants are used
less than the number of total required cuts. So in this
algorithm, the number of artificial ants in every itera-
tion is a variable depending on total required cuts. In
every iteration firstly every ant using a probabilistic
rule, selects it is desired cut. For creating this prob-
abilistic rule assume that:

Pi : Number of production of the cut (item) of

the type i till this time of solving the model
(calculated on the number of selected patterns
by other ants).

Di : Whole required demand for the cut (item) of
the type i .

Then Di – Pi indicates left required demand for the

cut of the type i based on the produced items till now,

that we show by Mi. Then it is possible to write:

 Di – Pi if Di – Pi > 0
 =iM
 0 if Di – Pi < 0

If the sum of total left demands is shown with TM,

then:

 ∑

∀

=
i

iMTM (7)

Note that if TM=0, there is no need to choose an-

other type of cut by any other ant and therefore no
pattern is selected in this iteration and the iteration is
over. So the probability of selecting every kind of
cutting in a moment by every ant equals:

Probability of selecting the cutting type i by any

ant
TM
M

M
M i

i
i

i ==
∑
∀

 (8-1)

Obviously this probability for every kind of cutting

that has no demands is equal to zero. Also cuts hav-
ing more required left, has more probability by itself.

That probabilistic rule is improvable as follows:
Cuts (and patterns) selection by ants in the last

iteration, give important information including sur-
plus production of every type of cutting in the last
iteration.

Assume that:

iP′ : Number of whole production of type i in the
last iteration (calculated on the number of se-
lected patterns by ants in the last iteration).

l i : The length of demanded the cut of type i .
iV ′ : Amount of surplus cut production of type i in

last iteration.

Now this could be written:

 iiii DPV l*)(−′=′ (9)

If sum of the total different surplus cuts produc-

tions indicating with VTO ′ equals zero, used prob-
abilistic in the last iteration are suitable and again are
assumed in this iteration, else we should do the fol-
lowing:

So in particular cases we do not want cuts without
surplus production in the last iteration have very

(6)

Archive of SID

www.SID.ir

 An ACO algorithm for one-dimensional cutting stock problem 15

great probabilities and cuts with high surplus produc-
tion (and sometimes only cut with surplus produc-
tion) have little probabilities, then we equal amount
of surplus production of cuts without surplus produc-
tion to the small percentage of minimum of other dif-
ferent cuts (except zero) surplus production that are
selected to be equal to equation (9). When perform-
ing algorithm on the case studies, this amount is
equal to 5%.

Now recalculate the sum of cuts with more surplus
production in the last iteration shown with VTO ′
and find improvement probability coefficient resulted
equation (8-1) in this way:

Zi : Improvement probability coefficient for select-
ing the cut of type i by artificial ant.

Zi = 1 –
VTO

Vi

′
′

 (10-1)

Since we want cuts with more surplus production

in the last iteration to be less selecting probability by
ants to make these cuts have less surplus production
in this iteration.

In this case, equation (8-1) is improved as follows:

Probability of selecting the cutting type i by any

ant
TM
Mi= * Zi (8-2)

The important point is that in using the rule above,

the normalized form of probabilities should be ap-
plied so that sum of the resulted probabilities equals
to one.

 Now by using point below, equation (10-1) will be
improved:

As seen VTOVi ′′/ indicates percentage of surplus
cut of type i production in the previous iteration. But
this proportion is so important and could improve the
process of program performing iterations and its pro-
portional importance could be strengthened if after
some sequential iterations (for example 10 iterations)
there is no improvement in obtained answers. As-
sume that importance coefficient is shown with α ,
then firstly α=1, but if after some sequential iterations
(for example 10 iterations) there is no improvement
in the problem solving process, parameter α misses
its value by a defined amount (for example 10%). So
the ratio VTOVi ′′/ can be strengthened of the same
amount. Or firstly the value of parameter α is selected
less than one and proportional importance of the
equation above should be strengthened from the be-

ginning. So in equation (10-1), improvement prob-
ability coefficient for selecting cut of type i will be
changed as follows:

Zi = 1 –
α

⎟
⎠
⎞

⎜
⎝
⎛

′
′
VTO

Vi , 0 < α < 1 (10-2)

It is worth mentioning that in the first program it-

eration, all Zi are assumed equaled to one.
Immediately after selecting the cut of type i by

every ant, pattern of type j including the cut of type i
should be selected by the same ant. Therefore pat-
terns with the cut of type i are considered. Assume
that:

Oij : Number of obtained units from the cut of type i

in every selected pattern of type j.
jN ′ : Number of selections by ants from pattern of

type j in the previous algorithm iteration.
Sj : Amount of loss in pattern j th.

Then jj SN .′ indicates total loss resulted from select-

ing pattern of type j in the previous algorithm itera-
tion. Afterwards the probability of selecting pattern j
for cut of type i by artificial ant)()(jP′ is calculated as
follows:

j
jj

j Z
SN

P ′
′

=′ .
.
1

)((11-1)

ijj OZ =′ (12-1)

Here jZ ′ is the improvement probability coeffi-

cient for selecting pattern of type j that indicates the
number (weight) of the desired cut of type i in the
pattern j. Of course it is necessary to normalize prob-
abilities above)()(jP . It means:

∑
Ω∈∀

′
′

=

ij
j

j
j P

P
P

)(

)(
)(

 , iΩ ={ j ∀Oij > 0 , for desired

cut of type i } (13)

The important point is that the denominator of the

equation (11-1) should not become zero. So for pat-
terns that had no selection in the previous iteration or
its amount of wastage was zero, then we assume

jj SN .′ small percent of the minimum jj SN .′ of other
patterns (except zero) having the cut of type i.

Archive of SID

www.SID.ir

16 K. Eshghi and H. Javanshir

For improving equation (11-1) the following
method could be used:

Again consider equation (6). If in a moment of
solving, Mi for every cut of type i becomes zero, then
the length of that cut type will be considered as
waste. So in the equation (11-1) the value of Sj in this
moment starts to increase as following that could
make less production of the cut of type i.

∑
∈∀

+=
ii

iijjj OSS
δ

l. , iδ = {i 0=∀ iM , in the

desired pattern j} (14)

On the other hand, probability improvement coef-

ficient jZ ′ is also improvable for selecting pattern of
type j that is improved in (12-1). Because by select-
ing the desired cut i by every ant, we want to have
selected pattern of type j, strengthen more production
of this type of cut. So it can be written:

β)(ijj OZ =′ , 1>β (12-2)

Also equation (11-1) can be improved as follows:

j
jj

j Z
SN

P ′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′

=′ .
.
1

)(

γ

 , γ > 1 (11-2)

In those above equations, parameters β and γ are

best pattern selecting probability improvement pa-
rameters.

When performing above equations in the sample
problems, values of the parameters β and γ are con-
sidered as β=1 and 1 < γ < 2.5 .

It is necessary to indicate that if for a cut type i , all
Sj were equal to zero, then equation (11-2) for that
cut becomes as below:

=′)(jP
∑
∀i

ij

ij

O
O (15)

Also in the first algorithm iteration, all jN ′ and

even all jZ ′ could be considered equal to one. And
also it is possible to use the following equation by the
normalized probabilities form instead of (11-2):

=′)(jP
∑

Ω∈∀

−

ij
j

j

S
S

1 (16)

Making various answers process in this algorithm
is in this form that in every time using equation (11-
2), it inverts the movement direction from answers.
Or if in one time using it a worse solution compared
to the last iteration is made, then the next use, catches
better solution of the problem. This means that if the
direction movement toward optimum solution re-
quires improvement, the search continues by sequen-
tial directions inverting. So the solution algorithm
does not stop in a local optimum. Doing this work is
equivalent to the meaning of Pheromone evaporation
in the ACO algorithm.

After obtaining a basic feasible solution, equation

(11-2) will affect and shows movement direction to-
ward optimum solution. Now every time that the al-
gorithm solution in one iteration is better than the
previous iteration, or in other words movement direc-
tion is recognized toward improvement, then instead
of equation (11-2) we use the following equation:

j
j

j
j Z

S
N

P ′
′

=′ .)(, ijj OZ =′ (17-1)

It is worth mentioning that equations (12-2), (13)

and (14) could be completely applied like last times
and equation (17-1) can be improved in this way:

j
j

j
j Z

S
N

P ′
′

=′ .
)()(γ

 , β)(ijj OZ =′ (17-2)

After selecting the pattern by every ant, because

every pattern could produce various cuts, number of
products from the cut type i till this time will be up-
dated according to equation (18):

Pi = Pi + Oij , i∀ (18)

Of course, the above operations will be repeated by

so many artificial ants until all needs are met (means
that TM = 0). Thus at the end of algorithm, we will
have a desired feasible solution.

Now by using this program iteration information,
repeat the algorithm for some times until the best so-
lution is obtained. Parameters α, β and γ make neces-
sary improvement in program iteration.

 In order to improve obtained answers from every
program iteration finally we could behave as follows:

After finding the best answer between obtained an-
swers, the number of selected patterns can be de-

Archive of SID

www.SID.ir

 An ACO algorithm for one-dimensional cutting stock problem 17

creased well that amount of surplus production from
patterns will be minimum.

It is worth mentioning that, this operation can be
done in every program iteration after recording
needed information of every iteration only for finding
the best answer in different program iterations and
then finding the best obtained answer till the time that
is recognized and saved. The stoppage condition of
the algorithm is that if after some iterations (for
example 20 iterations) there is no change in the best
obtained answer, then the algorithm is stopped.

4.3. Summary of ACO algorithm for problem solving

The ACO algorithm could be summarily changed

to psedu-code for solving a one-dimensional cutting
problem as follows:

Procedure ACO_Cutting_Stock

Data Entry: L , il , Di ; i = 1,…,n
Patterns Generated by Pierce or Suliman Method:
Oij , Sj ; j = 1,…,m
Find Initial Feasible Solution by Equs. (8-2)&(16)
Calculate P’i , V’i , N’j , X0(k=1) for Initial Feasi-
ble Solution
Best-Solution = X0(k=1)
Repeat: (For k + 1)
 Foreach Ant: Until TM = 0

 Calculate Pi , Mi , TM by Equs. (6),(7),(18)
 Select Cut (i) by Equ. (8-2)
 If (X0(k) < X0(k-1)) Then

 Select Pattern (j) by Equ. (17-2)
 Else
 Select Pattern (j) by Equ. (11-2)
 End-If

 End-Foreach
 Calculate P’i , V’i , N’j , X0(k+1)
 Improve V’i , P’i , N’j , Calc. Again X0(k+1) &
Best-Solution

 Check Stopping Criteria
 End-Repeat

End-procedure

5. Computational results of the model solving

method

In order to examine the provided algorithm in this
paper, a software using Visual Basic 6.0 is supplied
that according to the mentioned algorithm, solves

sample problems. Then the algorithm software for
sample problems has been performed using a PC with
characteristics of pentium 4 with 2.8 GHz processor
and 512 MB RAM.

In table (1) computational results obtained from
average solution of 18 group of sample problems that
have different dimensions, are provided. In every
group of problem levels TP1 to TP10 ten different
sample problems and for problem levels TP11 to
TP18 five different samples were produced, and ob-
tained results are gained considering to the average
results in these samples. So totally 140 problems are
produced and solved. Sample problems dimensions
are so considered that we are able to compare final
algorithm answer with an answer using column gen-
eration method for solving a one-dimensional cutting
problem.

The method of producing sample problems in
every group is that for entering software, firstly the
length of large object is produced randomly an inte-
ger number between [20,100] and then by consider-
ing the number of different needed items (n), the
length of the demanded items are integer random
numbers that are produced using large object length
and their demands are random integer numbers be-
tween [50,400]. Then program according to above
entrances generates efficient cutting patterns in
needed numbers (m) using Pierce method. Now by
considering the number of produced patterns, pa-
rameters α , β and γ are determined by the user and
program will continue until getting the final answer.

In the columns of table (1) from left, name of sam-
ple problems (TP), number of required various items
(n), number of generated patterns by software (m)
that are classified, the best values of parameters α , β
and γ in different program performings, difference
between obtained result by algorithm and optimum
solution of the problem (Gap-Opt) and average
needed CPU working time (when performing pro-
gram) to get the final problem answer measured by
the dimension of second (Time) are shown.

According to computational experiences, the soft-
ware of the provided algorithm in this paper can find
optimum solution of all problems of different levels
with little solving time that this indicates the algo-
rithm strength. In other words, the optimum solution
in all 140 sample problems is obtained.

Also studying the obtained results from sample
problems shows that by enlarging parameter γ, prob-
lem desired answers tend to select less different
number of patterns. With due attention to solved
sample problems, γ=2 is a good value for the above
solving method. By reducing parameter α, there is

Archive of SID

www.SID.ir

18 K. Eshghi and H. Javanshir

Table 1. Computational results obtained of 18 groups of sample problems.

 Time Gap-Optγ β α m n TP
1.5 0 1 1 1 6 < m < 4 3 TP01
2 0 1 1 1 15 < m < 7 3 TP02
4 0 1 1 1 15 < m < 8 4 TP03

4.5 0 1 1 1 30 < m < 16 4 TP04
6 0 1 1 1 20 < m < 8 5 TP05

15 0 1 1 1 40 < m < 21 5 TP06
18 0 1 1 1 70 < m < 41 5 TP07
11 0 1 1 1 30 < m < 10 6 TP08
40 0 1 1 0.5 60 < m < 31 6 TP09
43 0 1 1 1 110 < m < 61 6 TP10
56 0 1.5 1 1 70 < m < 25 7 TP11
65 0 1.5 1 1 150 < m < 71 7 TP12
61 0 1.5 1 1 80 < m < 30 8 TP13
81 0 2 1 1 165 < m < 81 8 TP14
84 0 1.5 1 0.5 90 < m < 30 9 TP15
92 0 2 1 0.5 170 < m < 91 9 TP16

119 0 1.5 1 1 90 < m < 30 10 TP17
146 0 2 1 1 180 < m < 91 10 TP18

more equilibrium between surplus productions of
items. α = 0.5 makes a suitable equilibrium to the
optimum solution in the sample problems.

 Parameter β is a complement for parameter γ . In
the sample problems because by putting 1 < γ < 2.5
we have reached the optimum solution then putting
β = 1 is desirable.

What appears in solving sample problems is that
items with shorter length that are produced in more
number of patterns and also items with small de-
mands usually have more surplus production.

Despite in large problems like TP18 having 10
kinds of different items with more than 90 patterns,
algorithm performance time that resulted in optimum
solution, was lower than 150 seconds. Also average
algorithm performance time in 140 sample problems
in 35.5 second indicating algorithm high speed to
reach the optimum solution for the studied sample
problems.

6. Conclusions

In this paper, an ACO algorithm is designed for

solving one-dimensional cutting problem. In this al-
gorithm based on designed probabilistic laws and
improvements, the way of cutting large objects to
satisfy demand by artificial ants is provided. By look-
ing at the desired obtained results from performing

algorithm, it clears that metaheuristics for solving
one-dimensional cutting problem will result in very
desired answers with little solving time that could be
a good basis for researchers’ future researches.

References

[1] Bishoff, B. B. and Waesher, G., 1995, Cutting

and packing. European Journal of Operational
Research, 84, 503-505.

[2] Dorigo, M. and Di Caro, G., 1999, Ant Colony
Optimization: A New Meta-heuristic. Proceed-
ings of the 1999 Congress on Evolutionary Com-
putation.

[3] Dorigo, M., Maniezzo, V. and Colorni, A., 1999,
Positive Feed back as a Search Strategy. Techni-
cal Report, University of Milan, Italy, 91-106.

[4] Dyckhoff, H., A typology of cutting and packing
problems. European Journal of Operational Re-
search, 44, 145-159.

[5] Ferreira, J. S., Neves, M. A. and Fonseca, P.,
1990, A two-phase roll cutting problem. Euro-
pean Journal of Operational Research, 44, 185-
196.

[6] Gilmore, P. C. and Gomory, R. E., 1961, A linear
programming approach to the cutting stock prob-
lem. part I, Operations Research, 9, 849-859.

Archive of SID

www.SID.ir

 An ACO algorithm for one-dimensional cutting stock problem 19

[7] Gilmore, P. C. and Gomory, R. E., 1963, A linear
programming approach to the cutting stock prob-
lem, part II, Operations Research, 11, 863-888.

[8] Haessler, R. W. and Sweeney, P. E., 1991, Cut-
ting stock problems and solution procedures.
European Journal of Operational Research, 54,
141-150.

[9] Haessler, R. W. and Vonderembse, M. A., 1979,
A procedure for solving the master slab cutting
stock problem in the steel industry. AIIE Trans-
actions, 11, 160-165.

[10] Madsen, Olib B. G., 1988, An application of
traveling-salesman routines to solve pattern-
allocation problems in the glass industry. Jour-
nal of Operational Research Society, 39(3),
249-256.

[11] Pierce, J. F. Jr., 1964, Some Large-Scale Pro-
duction Scheduling Problems in the Paper In-
dustry. Prentice-Hall, Englewood Cliffs, NJ.
(1964).

[12] Rietz, J., Scheithauer, g., and Terno, J., 2002,
Families of non-IRUP instances of the one-
dimensional cutting stock problem. Discrete
Applied Mathematics, 121, 229-245.

[13] Suliman, Saad M. A., 2001, Pattern generating
procedure for the cutting stock problem, Inter-
national Journal of Production Economics, 74,
293-301.

 [14] Umetani, S., Yagiura, M. and Ibaraki, T., 2003,
One-dimensional cutting stock problem to
minimize the number of different patterns.
European Journal of Operational Research,
146, 388-402.

 [15] Wagner, B. J., 1999, A genetic algorithm solu-
tion for one-dimensional bundled stock cutting.
European Journal of Operational Research,
117, 368-381.

Archive of SID

www.SID.ir

